Linear Algebra MATH 2076

(日) (同) (日) (日) (日)

Recall that every LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is a matrix transformation; i.e.,

Recall that every LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$.

Recall that every LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $\text{Col}_j(A) = T(\vec{e_j})$.

Recall that every LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $\text{Col}_j(A) = T(\vec{e_j})$.

Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation?

Recall that every LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $\text{Col}_j(A) = T(\vec{e_j})$.

Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors.

Recall that every LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $\text{Col}_j(A) = T(\vec{e_j})$.

Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp.

Recall that every LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $\operatorname{Col}_j(A) = T(\vec{e_j})$. Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp. Consider the coordinate maps $\mathbb{V} \xrightarrow{[1]_{\mathcal{B}}} \mathbb{R}^n$ and $\mathbb{W} \xrightarrow{[1]_{\mathcal{A}}} \mathbb{R}^m$.

Recall that every LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $\operatorname{Col}_j(A) = T(\vec{e_j})$. Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp. Consider the coordinate maps $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^n$ and $\mathbb{W} \xrightarrow{[\cdot]_{\mathcal{A}}} \mathbb{R}^m$. Given \vec{v} in \mathbb{V} , we get $[\vec{v}]_{\mathcal{B}}$ in \mathbb{R}^n , and

Recall that every LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $\operatorname{Col}_j(A) = T(\vec{e_j})$. Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp. Consider the coordinate maps $\mathbb{V} \xrightarrow{[i]_{\mathcal{B}}} \mathbb{R}^n$ and $\mathbb{W} \xrightarrow{[i]_{\mathcal{A}}} \mathbb{R}^m$. Given \vec{v} in \mathbb{V} , we get $[\vec{v}]_{\mathcal{B}}$ in \mathbb{R}^n , and given \vec{w} in \mathbb{W} , we get $[\vec{w}]_{\mathcal{A}}$ in \mathbb{R}^m .

Recall that every LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $\operatorname{Col}_j(A) = T(\vec{e_j})$. Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp. Consider the coordinate maps $\mathbb{V} \xrightarrow{[i]_{\mathcal{B}}} \mathbb{R}^n$ and $\mathbb{W} \xrightarrow{[i]_{\mathcal{A}}} \mathbb{R}^m$. Given \vec{v} in \mathbb{V} , we get $[\vec{v}]_{\mathcal{B}}$ in \mathbb{R}^n , and given \vec{w} in \mathbb{W} , we get $[\vec{w}]_{\mathcal{A}}$ in \mathbb{R}^m .

Consider $\vec{x} = [\vec{v}]_{\mathcal{B}}$ and $\vec{y} = [\vec{w}]_{\mathcal{A}}$ where \vec{v} is in \mathbb{V} and $\vec{w} = T(\vec{v})$.

Recall that every LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $\operatorname{Col}_j(A) = T(\vec{e_j})$. Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp. Consider the coordinate maps $\mathbb{V} \xrightarrow{[:]_{\mathcal{B}}} \mathbb{R}^n$ and $\mathbb{W} \xrightarrow{[:]_{\mathcal{A}}} \mathbb{R}^m$. Given \vec{v} in \mathbb{V} , we get $[\vec{v}]_{\mathcal{B}}$ in \mathbb{R}^n , and given \vec{w} in \mathbb{W} , we get $[\vec{w}]_{\mathcal{A}}$ in \mathbb{R}^m .

Consider $\vec{x} = [\vec{v}]_{\mathcal{B}}$ and $\vec{y} = [\vec{w}]_{\mathcal{A}}$ where \vec{v} is in \mathbb{V} and $\vec{w} = T(\vec{v})$. By linearity props of coord vectors, the map $\vec{x} \mapsto \vec{y}$ (from \mathbb{R}^n to \mathbb{R}^m) is a linear transformation.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Recall that every LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $\operatorname{Col}_j(A) = T(\vec{e_j})$. Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp. Consider the coordinate maps $\mathbb{V} \xrightarrow{[i]_{\mathcal{B}}} \mathbb{R}^n$ and $\mathbb{W} \xrightarrow{[i]_{\mathcal{A}}} \mathbb{R}^m$. Given \vec{v} in \mathbb{V} , we get $[\vec{v}]_{\mathcal{B}}$ in \mathbb{R}^n , and given \vec{w} in \mathbb{W} , we get $[\vec{w}]_{\mathcal{A}}$ in \mathbb{R}^m .

Consider $\vec{x} = [\vec{v}]_{\mathcal{B}}$ and $\vec{y} = [\vec{w}]_{\mathcal{A}}$ where \vec{v} is in \mathbb{V} and $\vec{w} = T(\vec{v})$. By linearity props of coord vectors, the map $\vec{x} \mapsto \vec{y}$ (from \mathbb{R}^n to \mathbb{R}^m) is a linear transformation. So $\vec{x} \mapsto \vec{y}$ is given by multiplication by some matrix M:

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Recall that every LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $\operatorname{Col}_j(A) = T(\vec{e_j})$. Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp. Consider the coordinate maps $\mathbb{V} \xrightarrow{[:]_{\mathcal{B}}} \mathbb{R}^n$ and $\mathbb{W} \xrightarrow{[:]_{\mathcal{A}}} \mathbb{R}^m$. Given \vec{v} in \mathbb{V} , we get $[\vec{v}]_{\mathcal{B}}$ in \mathbb{R}^n , and given \vec{w} in \mathbb{W} , we get $[\vec{w}]_{\mathcal{A}}$ in \mathbb{R}^m .

Consider $\vec{x} = [\vec{v}]_{\mathcal{B}}$ and $\vec{y} = [\vec{w}]_{\mathcal{A}}$ where \vec{v} is in \mathbb{V} and $\vec{w} = T(\vec{v})$. By linearity props of coord vectors, the map $\vec{x} \mapsto \vec{y}$ (from \mathbb{R}^n to \mathbb{R}^m) is a linear transformation. So $\vec{x} \mapsto \vec{y}$ is given by multiplication by some matrix M:

$$\vec{y} = M\vec{x}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Recall that every LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $\operatorname{Col}_j(A) = T(\vec{e_j})$. Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp. Consider the coordinate maps $\mathbb{V} \xrightarrow{[:]_{\mathcal{B}}} \mathbb{R}^n$ and $\mathbb{W} \xrightarrow{[:]_{\mathcal{A}}} \mathbb{R}^m$. Given \vec{v} in \mathbb{V} , we get $[\vec{v}]_{\mathcal{B}}$ in \mathbb{R}^n , and given \vec{w} in \mathbb{W} , we get $[\vec{w}]_{\mathcal{A}}$ in \mathbb{R}^m .

Consider $\vec{x} = [\vec{v}]_{\mathcal{B}}$ and $\vec{y} = [\vec{w}]_{\mathcal{A}}$ where \vec{v} is in \mathbb{V} and $\vec{w} = T(\vec{v})$. By linearity props of coord vectors, the map $\vec{x} \mapsto \vec{y}$ (from \mathbb{R}^n to \mathbb{R}^m) is a linear transformation. So $\vec{x} \mapsto \vec{y}$ is given by multiplication by some matrix M:

$$\left[\vec{w}\right]_{\mathcal{A}} = \vec{y} = M\vec{x}$$

Recall that every LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $\operatorname{Col}_j(A) = T(\vec{e_j})$. Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp. Consider the coordinate maps $\mathbb{V} \xrightarrow{[:]_{\mathcal{B}}} \mathbb{R}^n$ and $\mathbb{W} \xrightarrow{[:]_{\mathcal{A}}} \mathbb{R}^m$. Given \vec{v} in \mathbb{V} , we get $[\vec{v}]_{\mathcal{B}}$ in \mathbb{R}^n , and given \vec{w} in \mathbb{W} , we get $[\vec{w}]_{\mathcal{A}}$ in \mathbb{R}^m .

Consider $\vec{x} = [\vec{v}]_{\mathcal{B}}$ and $\vec{y} = [\vec{w}]_{\mathcal{A}}$ where \vec{v} is in \mathbb{V} and $\vec{w} = T(\vec{v})$. By linearity props of coord vectors, the map $\vec{x} \mapsto \vec{y}$ (from \mathbb{R}^n to \mathbb{R}^m) is a linear transformation. So $\vec{x} \mapsto \vec{y}$ is given by multiplication by some matrix M:

$$\left[T(\vec{v})\right]_{\mathcal{A}} = \left[\vec{w}\right]_{\mathcal{A}} = \vec{y} = M\vec{x}$$

Recall that every LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $\operatorname{Col}_j(A) = T(\vec{e_j})$. Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp. Consider the coordinate maps $\mathbb{V} \xrightarrow{[:]_{\mathcal{B}}} \mathbb{R}^n$ and $\mathbb{W} \xrightarrow{[:]_{\mathcal{A}}} \mathbb{R}^m$. Given \vec{v} in \mathbb{V} , we get $[\vec{v}]_{\mathcal{B}}$ in \mathbb{R}^n , and given \vec{w} in \mathbb{W} , we get $[\vec{w}]_{\mathcal{A}}$ in \mathbb{R}^m .

Consider $\vec{x} = [\vec{v}]_{\mathcal{B}}$ and $\vec{y} = [\vec{w}]_{\mathcal{A}}$ where \vec{v} is in \mathbb{V} and $\vec{w} = T(\vec{v})$. By linearity props of coord vectors, the map $\vec{x} \mapsto \vec{y}$ (from \mathbb{R}^n to \mathbb{R}^m) is a linear transformation. So $\vec{x} \mapsto \vec{y}$ is given by multiplication by some matrix M:

$$\left[T(\vec{v})\right]_{\mathcal{A}} = \left[\vec{w}\right]_{\mathcal{A}} = \vec{y} = M\vec{x} = M\left[\vec{v}\right]_{\mathcal{B}};$$

Recall that every LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $\operatorname{Col}_j(A) = T(\vec{e_j})$. Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp. Consider the coordinate maps $\mathbb{V} \xrightarrow{[:]_{\mathcal{B}}} \mathbb{R}^n$ and $\mathbb{W} \xrightarrow{[:]_{\mathcal{A}}} \mathbb{R}^m$. Given \vec{v} in \mathbb{V} , we get $[\vec{v}]_{\mathcal{B}}$ in \mathbb{R}^n , and given \vec{w} in \mathbb{W} , we get $[\vec{w}]_{\mathcal{A}}$ in \mathbb{R}^m .

Consider $\vec{x} = [\vec{v}]_{\mathcal{B}}$ and $\vec{y} = [\vec{w}]_{\mathcal{A}}$ where \vec{v} is in \mathbb{V} and $\vec{w} = T(\vec{v})$. By linearity props of coord vectors, the map $\vec{x} \mapsto \vec{y}$ (from \mathbb{R}^n to \mathbb{R}^m) is a linear transformation. So $\vec{x} \mapsto \vec{y}$ is given by multiplication by some matrix M:

$$\left[T(\vec{v})\right]_{\mathcal{A}} = \left[\vec{w}\right]_{\mathcal{A}} = \vec{y} = M\vec{x} = M\left[\vec{v}\right]_{\mathcal{B}};$$

i.e., $[T(\vec{v})]_{\mathcal{A}} = M[\vec{v}]_{\mathcal{B}}$.

イロト イポト イヨト イヨト 二日

Recall that every LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $\operatorname{Col}_j(A) = T(\vec{e_j})$. Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp. Consider the coordinate maps $\mathbb{V} \xrightarrow{[:]_{\mathcal{B}}} \mathbb{R}^n$ and $\mathbb{W} \xrightarrow{[:]_{\mathcal{A}}} \mathbb{R}^m$. Given \vec{v} in \mathbb{V} , we get $[\vec{v}]_{\mathcal{B}}$ in \mathbb{R}^n , and given \vec{w} in \mathbb{W} , we get $[\vec{w}]_{\mathcal{A}}$ in \mathbb{R}^m .

Consider $\vec{x} = [\vec{v}]_{\mathcal{B}}$ and $\vec{y} = [\vec{w}]_{\mathcal{A}}$ where \vec{v} is in \mathbb{V} and $\vec{w} = T(\vec{v})$. By linearity props of coord vectors, the map $\vec{x} \mapsto \vec{y}$ (from \mathbb{R}^n to \mathbb{R}^m) is a linear transformation. So $\vec{x} \mapsto \vec{y}$ is given by multiplication by some matrix M:

$$\left[T(\vec{v})\right]_{\mathcal{A}} = \left[\vec{w}\right]_{\mathcal{A}} = \vec{y} = M\vec{x} = M\left[\vec{v}\right]_{\mathcal{B}};$$

i.e., $[T(\vec{v})]_{\mathcal{A}} = M[\vec{v}]_{\mathcal{B}}$. We call M the matrix for T relative to \mathcal{B} and \mathcal{A} and

Recall that every LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $\operatorname{Col}_j(A) = T(\vec{e_j})$. Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp. Consider the coordinate maps $\mathbb{V} \xrightarrow{[:]_{\mathcal{B}}} \mathbb{R}^n$ and $\mathbb{W} \xrightarrow{[:]_{\mathcal{A}}} \mathbb{R}^m$. Given \vec{v} in \mathbb{V} , we get $[\vec{v}]_{\mathcal{B}}$ in \mathbb{R}^n , and given \vec{w} in \mathbb{W} , we get $[\vec{w}]_{\mathcal{A}}$ in \mathbb{R}^m .

Consider $\vec{x} = [\vec{v}]_{\mathcal{B}}$ and $\vec{y} = [\vec{w}]_{\mathcal{A}}$ where \vec{v} is in \mathbb{V} and $\vec{w} = T(\vec{v})$. By linearity props of coord vectors, the map $\vec{x} \mapsto \vec{y}$ (from \mathbb{R}^n to \mathbb{R}^m) is a linear transformation. So $\vec{x} \mapsto \vec{y}$ is given by multiplication by some matrix M:

$$\left[T(\vec{v})\right]_{\mathcal{A}} = \left[\vec{w}\right]_{\mathcal{A}} = \vec{y} = M\vec{x} = M\left[\vec{v}\right]_{\mathcal{B}};$$

i.e., $[T(\vec{v})]_{\mathcal{A}} = M[\vec{v}]_{\mathcal{B}}$. We call M the matrix for T relative to \mathcal{B} and \mathcal{A} and we write $[T]_{\mathcal{AB}} = M$, so

イロト イヨト イヨト イヨト 三日

Recall that every LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. In fact, $\operatorname{Col}_j(A) = T(\vec{e_j})$. Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp. Consider the coordinate maps $\mathbb{V} \xrightarrow{[:]_{\mathcal{B}}} \mathbb{R}^n$ and $\mathbb{W} \xrightarrow{[:]_{\mathcal{A}}} \mathbb{R}^m$. Given \vec{v} in \mathbb{V} , we get $[\vec{v}]_{\mathcal{B}}$ in \mathbb{R}^n , and given \vec{w} in \mathbb{W} , we get $[\vec{w}]_{\mathcal{A}}$ in \mathbb{R}^m .

Consider $\vec{x} = [\vec{v}]_{\mathcal{B}}$ and $\vec{y} = [\vec{w}]_{\mathcal{A}}$ where \vec{v} is in \mathbb{V} and $\vec{w} = T(\vec{v})$. By linearity props of coord vectors, the map $\vec{x} \mapsto \vec{y}$ (from \mathbb{R}^n to \mathbb{R}^m) is a linear transformation. So $\vec{x} \mapsto \vec{y}$ is given by multiplication by some matrix M:

$$\left[T(\vec{v})\right]_{\mathcal{A}} = \left[\vec{w}\right]_{\mathcal{A}} = \vec{y} = M\vec{x} = M\left[\vec{v}\right]_{\mathcal{B}};$$

i.e., $[T(\vec{v})]_{\mathcal{A}} = M[\vec{v}]_{\mathcal{B}}$. We call M the matrix for T relative to \mathcal{B} and \mathcal{A} and we write $[T]_{\mathcal{AB}} = M$, so $[T(\vec{v})]_{\mathcal{A}} = [T]_{\mathcal{AB}}[\vec{v}]_{\mathcal{B}}$.

Picture for the matrix for ${\mathcal T}$ relative to ${\mathcal B}$ and ${\mathcal A}$

We have a linear transformation $\mathbb{V} \xrightarrow{T} \mathbb{W}$ and bases \mathcal{B}, \mathcal{A} for \mathbb{V}, \mathbb{W} resp.

$$\mathbb{V} \xrightarrow{T} \mathbb{W}$$

Picture for the matrix for ${\mathcal T}$ relative to ${\mathcal B}$ and ${\mathcal A}$

We have a linear transformation $\mathbb{V} \xrightarrow{T} \mathbb{W}$ and bases \mathcal{B}, \mathcal{A} for \mathbb{V}, \mathbb{W} resp.

Consider the \mathcal{B} and \mathcal{A} coord maps $\mathbb{V} \to \mathbb{R}^n$ and $\mathbb{W} \to \mathbb{R}^m$.

Picture for the matrix for \mathcal{T} relative to \mathcal{B} and \mathcal{A}

We have a linear transformation $\mathbb{V} \xrightarrow{T} \mathbb{W}$ and bases \mathcal{B}, \mathcal{A} for \mathbb{V}, \mathbb{W} resp.

Consider the \mathcal{B} and \mathcal{A} coord maps $\mathbb{V} \to \mathbb{R}^n$ and $\mathbb{W} \to \mathbb{R}^m$. Given \vec{v} in \mathbb{V} , \vec{w} in \mathbb{W} , let

Consider the \mathcal{B} and \mathcal{A} coord maps $\mathbb{V} \to \mathbb{R}^n$ and $\mathbb{W} \to \mathbb{R}^m$. Given \vec{v} in \mathbb{V} , \vec{w} in \mathbb{W} , let $\vec{x} = \begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ and $\vec{y} = \begin{bmatrix} \vec{w} \end{bmatrix}_{\mathcal{A}}$.

Consider the LT $\mathbb{R}^n \to \mathbb{R}^m$ given by $\vec{x} \mapsto \vec{y}$.

Consider the \mathcal{B} and \mathcal{A} coord maps $\mathbb{V} \to \mathbb{R}^n$ and $\mathbb{W} \to \mathbb{R}^m$. Given \vec{v} in \mathbb{V} , \vec{w} in \mathbb{W} , let $\vec{x} = \begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ and $\vec{y} = \begin{bmatrix} \vec{w} \end{bmatrix}_{\mathcal{A}}$.

Consider the LT $\mathbb{R}^n \to \mathbb{R}^m$ given by $\vec{x} \mapsto \vec{y}$. This is a matrix transformation, and

Consider the \mathcal{B} and \mathcal{A} coord maps $\mathbb{V} \to \mathbb{R}^n$ and $\mathbb{W} \to \mathbb{R}^m$. Given \vec{v} in \mathbb{V} , \vec{w} in \mathbb{W} , let $\vec{x} = \begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ and $\vec{y} = \begin{bmatrix} \vec{w} \end{bmatrix}_{\mathcal{A}}$.

Consider the LT $\mathbb{R}^n \to \mathbb{R}^m$ given by $\vec{x} \mapsto \vec{y}$. This is a matrix transformation, and

$$\vec{y} = M\vec{x}$$

Consider the \mathcal{B} and \mathcal{A} coord maps $\mathbb{V} \to \mathbb{R}^n$ and $\mathbb{W} \to \mathbb{R}^m$. Given \vec{v} in \mathbb{V} , \vec{w} in \mathbb{W} , let $\vec{x} = \begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ and $\vec{y} = \begin{bmatrix} \vec{w} \end{bmatrix}_{\mathcal{A}}$.

Consider the LT $\mathbb{R}^n \to \mathbb{R}^m$ given by $\vec{x} \mapsto \vec{y}$. This is a matrix transformation, and

$$\left[\vec{w}\right]_{\mathcal{A}} = \vec{y} = M\vec{x}$$

Consider the \mathcal{B} and \mathcal{A} coord maps $\mathbb{V} \to \mathbb{R}^n$ and $\mathbb{W} \to \mathbb{R}^m$. Given \vec{v} in \mathbb{V} , \vec{w} in \mathbb{W} , let $\vec{x} = \begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ and $\vec{y} = \begin{bmatrix} \vec{w} \end{bmatrix}_{\mathcal{A}}$.

Consider the LT $\mathbb{R}^n \to \mathbb{R}^m$ given by $\vec{x} \mapsto \vec{y}$. This is a matrix transformation, and $[T(\vec{v})]_{\mathcal{A}} = [\vec{w}]_{\mathcal{A}} = \vec{y} = M\vec{x}$

Consider the \mathcal{B} and \mathcal{A} coord maps $\mathbb{V} \to \mathbb{R}^n$ and $\mathbb{W} \to \mathbb{R}^m$. Given \vec{v} in \mathbb{V} , \vec{w} in \mathbb{W} , let $\vec{x} = \begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ and $\vec{y} = \begin{bmatrix} \vec{w} \end{bmatrix}_{\mathcal{A}}$.

Consider the LT $\mathbb{R}^n \to \mathbb{R}^m$ given by $\vec{x} \mapsto \vec{y}$. This is a matrix transformation, and $[T(\vec{v})]_{\mathcal{A}} = [\vec{w}]_{\mathcal{A}} = \vec{y} = M\vec{x} = A[\vec{v}]_{\mathcal{B}}$

Consider the \mathcal{B} and \mathcal{A} coord maps $\mathbb{V} \to \mathbb{R}^n$ and $\mathbb{W} \to \mathbb{R}^m$. Given \vec{v} in \mathbb{V} , \vec{w} in \mathbb{W} , let $\vec{x} = \begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ and $\vec{y} = \begin{bmatrix} \vec{w} \end{bmatrix}_{\mathcal{A}}$.

Consider the LT $\mathbb{R}^n \to \mathbb{R}^m$ given by $\vec{x} \mapsto \vec{y}$. This is a matrix transformation, and $[T(\vec{v})]_{\mathcal{A}} = [\vec{w}]_{\mathcal{A}} = \vec{y} = M\vec{x} = A[\vec{v}]_{\mathcal{B}}$ where $M = [T]_{\mathcal{AB}}$.

Suppose $\mathbb{V} \xrightarrow{\mathcal{T}} \mathbb{W}$ is a linear transformation and \mathcal{B}, \mathcal{A} are bases for \mathbb{V}, \mathbb{W} resp. Then

Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a linear transformation and \mathcal{B}, \mathcal{A} are bases for \mathbb{V}, \mathbb{W} resp. Then $\left[[\mathcal{T}(\vec{v})]_{\mathcal{A}} = [\mathcal{T}]_{\mathcal{AB}} [\vec{v}]_{\mathcal{B}} \right]$

Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a linear transformation and \mathcal{B}, \mathcal{A} are bases for \mathbb{V}, \mathbb{W} resp. Then $\boxed{[T(\vec{v})]_{\mathcal{A}} = [T]_{\mathcal{AB}}[\vec{v}]_{\mathcal{B}}}$ where $[T]_{\mathcal{AB}}$ is the matrix for T relative to \mathcal{B} and \mathcal{A} .

Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a linear transformation and \mathcal{B}, \mathcal{A} are bases for \mathbb{V}, \mathbb{W} resp. Then $[[T(\vec{v})]_{\mathcal{A}} = [T]_{\mathcal{AB}}[\vec{v}]_{\mathcal{B}}]$ where $[T]_{\mathcal{AB}}$ is the matrix for T relative to \mathcal{B} and \mathcal{A} .

To find $[T]_{\mathcal{AB}}$, we need to know \mathcal{B} .
Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a linear transformation and \mathcal{B}, \mathcal{A} are bases for \mathbb{V}, \mathbb{W} resp. Then $\boxed{[T(\vec{v})]_{\mathcal{A}} = [T]_{\mathcal{AB}}[\vec{v}]_{\mathcal{B}}}$ where $[T]_{\mathcal{AB}}$ is the matrix for T relative to \mathcal{B} and \mathcal{A} .

To find $[T]_{\mathcal{AB}}$, we need to know \mathcal{B} . Suppose $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_n\}$. Then

Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a linear transformation and \mathcal{B}, \mathcal{A} are bases for \mathbb{V}, \mathbb{W} resp. Then $[[T(\vec{v})]_{\mathcal{A}} = [T]_{\mathcal{AB}}[\vec{v}]_{\mathcal{B}}]$ where $[T]_{\mathcal{AB}}$ is the matrix for T relative to \mathcal{B} and \mathcal{A} .

To find $[T]_{\mathcal{AB}}$, we need to know \mathcal{B} . Suppose $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_n\}$. Then

$$\operatorname{Col}_{j}\left(\left[T\right]_{\mathcal{AB}}\right) = \left[T(\vec{b}_{j})\right]_{\mathcal{A}}$$

Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a linear transformation and \mathcal{B}, \mathcal{A} are bases for \mathbb{V}, \mathbb{W} resp. Then $\left[[T(\vec{v})]_{\mathcal{A}} = [T]_{\mathcal{AB}} [\vec{v}]_{\mathcal{B}} \right]$ where $[T]_{\mathcal{AB}}$ is the matrix for T relative to \mathcal{B} and \mathcal{A} .

To find $[T]_{\mathcal{AB}}$, we need to know \mathcal{B} . Suppose $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_n\}$. Then

$$\operatorname{Col}_{j}\left(\left[T\right]_{\mathcal{AB}}\right)=\left[T(\vec{b}_{j})\right]_{\mathcal{A}}$$

When $\mathbb{V} = \mathbb{R}^n$, $\mathbb{W} = \mathbb{R}^m$ and \mathcal{B} , \mathcal{A} are the standard bases, this is the usual formula for the standard matrix for T.

Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a linear transformation and \mathcal{B}, \mathcal{A} are bases for \mathbb{V}, \mathbb{W} resp. Then $\boxed{[T(\vec{v})]_{\mathcal{A}} = [T]_{\mathcal{AB}}[\vec{v}]_{\mathcal{B}}}$ where $[T]_{\mathcal{AB}}$ is the matrix for T relative to \mathcal{B} and \mathcal{A} .

To find $[T]_{\mathcal{AB}}$, we need to know \mathcal{B} . Suppose $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_n\}$. Then

$$\operatorname{Col}_{j}\left(\left[T\right]_{\mathcal{AB}}\right)=\left[T(\vec{b}_{j})\right]_{\mathcal{A}}$$

When $\mathbb{V} = \mathbb{R}^n$, $\mathbb{W} = \mathbb{R}^m$ and \mathcal{B}, \mathcal{A} are the standard bases, this is the usual formula for the standard matrix for T.

You can remember this as $[T]_{AB} = [T(B)]_A$, but this abuses notation!

Suppose $\mathbb{V} = \mathbb{R}^n = \mathbb{W}$ and $\mathcal{B} = \mathcal{A}$, so $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ is a linear transformation and \mathcal{B} is some basis for \mathbb{R}^n .

Suppose $\mathbb{V} = \mathbb{R}^n = \mathbb{W}$ and $\mathcal{B} = \mathcal{A}$, so $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ is a linear transformation and \mathcal{B} is some basis for \mathbb{R}^n . Here we write $[T]_{\mathcal{B}} = [T]_{\mathcal{B}\mathcal{B}}$ for the matrix for T relative to \mathcal{B} and \mathcal{B} ,

Suppose $\mathbb{V} = \mathbb{R}^n = \mathbb{W}$ and $\mathcal{B} = \mathcal{A}$, so $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ is a linear transformation and \mathcal{B} is some basis for \mathbb{R}^n . Here we write $[T]_{\mathcal{B}} = [T]_{\mathcal{B}\mathcal{B}}$ for the matrix for T relative to \mathcal{B} and \mathcal{B} , and call this the *the* \mathcal{B} -matrix for T.

Suppose $\mathbb{V} = \mathbb{R}^n = \mathbb{W}$ and $\mathcal{B} = \mathcal{A}$, so $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ is a linear transformation and \mathcal{B} is some basis for \mathbb{R}^n . Here we write $[T]_{\mathcal{B}} = [T]_{\mathcal{B}\mathcal{B}}$ for the matrix for T relative to \mathcal{B} and \mathcal{B} , and call this the *the* \mathcal{B} -matrix for T.

Consider the \mathcal{B} coord map $\mathbb{R}^n \to \mathbb{R}^n$.

-			
5	actu	inn	4
5			

Suppose $\mathbb{V} = \mathbb{R}^n = \mathbb{W}$ and $\mathcal{B} = \mathcal{A}$, so $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ is a linear transformation and \mathcal{B} is some basis for \mathbb{R}^n . Here we write $[T]_{\mathcal{B}} = [T]_{\mathcal{B}\mathcal{B}}$ for the matrix for T relative to \mathcal{B} and \mathcal{B} , and call this the *the* \mathcal{B} -matrix for T.

Consider the \mathcal{B} coord map $\mathbb{R}^n \to \mathbb{R}^n$. Given \vec{x} and $\vec{y} = \mathcal{T}(\vec{x}) = A\vec{x}$, look at

Suppose $\mathbb{V} = \mathbb{R}^n = \mathbb{W}$ and $\mathcal{B} = \mathcal{A}$, so $\mathbb{R}^n \xrightarrow{I} \mathbb{R}^n$ is a linear transformation and \mathcal{B} is some basis for \mathbb{R}^n . Here we write $[T]_{\mathcal{B}} = [T]_{\mathcal{B}\mathcal{B}}$ for the matrix for T relative to \mathcal{B} and \mathcal{B} , and call this the *the* \mathcal{B} -matrix for T.

Suppose $\mathbb{V} = \mathbb{R}^n = \mathbb{W}$ and $\mathcal{B} = \mathcal{A}$, so $\mathbb{R}^n \xrightarrow{I} \mathbb{R}^n$ is a linear transformation and \mathcal{B} is some basis for \mathbb{R}^n . Here we write $[T]_{\mathcal{B}} = [T]_{\mathcal{B}\mathcal{B}}$ for the matrix for T relative to \mathcal{B} and \mathcal{B} , and call this the *the* \mathcal{B} -matrix for T.

Suppose $\mathbb{V} = \mathbb{R}^n = \mathbb{W}$ and $\mathcal{B} = \mathcal{A}$, so $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ is a linear transformation and \mathcal{B} is some basis for \mathbb{R}^n . Here we write $[T]_{\mathcal{B}} = [T]_{\mathcal{B}\mathcal{B}}$ for the matrix for T relative to \mathcal{B} and \mathcal{B} , and call this the *the* \mathcal{B} -matrix for T.

Suppose $\mathbb{V} = \mathbb{R}^n = \mathbb{W}$ and $\mathcal{B} = \mathcal{A}$, so $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ is a linear transformation and \mathcal{B} is some basis for \mathbb{R}^n . Here we write $[T]_{\mathcal{B}} = [T]_{\mathcal{B}\mathcal{B}}$ for the matrix for T relative to \mathcal{B} and \mathcal{B} , and call this the *the* \mathcal{B} -matrix for T.

Suppose $\mathbb{V} = \mathbb{R}^n = \mathbb{W}$ and $\mathcal{B} = \mathcal{A}$, so $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ is a linear transformation and \mathcal{B} is some basis for \mathbb{R}^n . Here we write $[T]_{\mathcal{B}} = [T]_{\mathcal{B}\mathcal{B}}$ for the matrix for T relative to \mathcal{B} and \mathcal{B} , and call this the *the* \mathcal{B} -matrix for T.

Suppose $\mathbb{V} = \mathbb{R}^n = \mathbb{W}$ and $\mathcal{B} = \mathcal{A}$, so $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ is a linear transformation and \mathcal{B} is some basis for \mathbb{R}^n . Here we write $[T]_{\mathcal{B}} = [T]_{\mathcal{B}\mathcal{B}}$ for the matrix for T relative to \mathcal{B} and \mathcal{B} , and call this the *the* \mathcal{B} -matrix for T.

Consider the
$$\mathcal{B}$$
 coord map $\mathbb{R}^{n} \to \mathbb{R}^{n}$. Given \vec{x}
and $\vec{y} = T(\vec{x}) = A\vec{x}$, look at
 $[\vec{x}]_{\mathcal{B}}$ and $[\vec{y}]_{\mathcal{B}} = [A\vec{x}]_{\mathcal{B}}$.
Recall that $\vec{x} = P[\vec{x}]_{\mathcal{B}}$ where $P = P_{\mathcal{E}\mathcal{B}} = [\mathcal{B}]$.
So $[\vec{y}]_{\mathcal{B}} = P^{-1}\vec{y}$ and we see that
 $[T]_{\mathcal{B}}[\vec{x}]_{\mathcal{B}} = [T(\vec{x})]_{\mathcal{B}} = [\vec{y}]_{\mathcal{B}} =$
 $[\vec{x}]_{\mathcal{B}} \longmapsto [\vec{y}]_{\mathcal{B}}$

Suppose $\mathbb{V} = \mathbb{R}^n = \mathbb{W}$ and $\mathcal{B} = \mathcal{A}$, so $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ is a linear transformation and \mathcal{B} is some basis for \mathbb{R}^n . Here we write $[T]_{\mathcal{B}} = [T]_{\mathcal{B}\mathcal{B}}$ for the matrix for T relative to \mathcal{B} and \mathcal{B} , and call this the *the* \mathcal{B} -matrix for T.

Suppose $\mathbb{V} = \mathbb{R}^n = \mathbb{W}$ and $\mathcal{B} = \mathcal{A}$, so $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ is a linear transformation and \mathcal{B} is some basis for \mathbb{R}^n . Here we write $[T]_{\mathcal{B}} = [T]_{\mathcal{B}\mathcal{B}}$ for the matrix for T relative to \mathcal{B} and \mathcal{B} , and call this the *the* \mathcal{B} -matrix for T.

Consider the \mathcal{B} coord map $\mathbb{R}^{n} \to \mathbb{R}^{n}$. Given \vec{x} and $\vec{y} = T(\vec{x}) = A\vec{x}$, look at $[\vec{x}]_{\mathcal{B}}$ and $[\vec{y}]_{\mathcal{B}} = [A\vec{x}]_{\mathcal{B}}$. Recall that $\vec{x} = P[\vec{x}]_{\mathcal{B}}$ where $P = P_{\mathcal{E}\mathcal{B}} = [\mathcal{B}]$. So $[\vec{y}]_{\mathcal{B}} = P^{-1}\vec{y}$ and we see that $[T]_{\mathcal{B}}[\vec{x}]_{\mathcal{B}} = [T(\vec{x})]_{\mathcal{B}} = [\vec{y}]_{\mathcal{B}} = P^{-1}\vec{y}$ $= P^{-1}A\vec{x} =$ $[\vec{x}]_{\mathcal{B}} \longmapsto [\vec{y}]_{\mathcal{B}}$

Suppose $\mathbb{V} = \mathbb{R}^n = \mathbb{W}$ and $\mathcal{B} = \mathcal{A}$, so $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ is a linear transformation and \mathcal{B} is some basis for \mathbb{R}^n . Here we write $[T]_{\mathcal{B}} = [T]_{\mathcal{B}\mathcal{B}}$ for the matrix for T relative to \mathcal{B} and \mathcal{B} , and call this the *the* \mathcal{B} -matrix for T.

Consider the \mathcal{B} coord map $\mathbb{R}^n \to \mathbb{R}^n$. Given \vec{x} and $\vec{y} = T(\vec{x}) = A\vec{x}$, look at $[\vec{x}]_{\mathcal{B}}$ and $[\vec{y}]_{\mathcal{B}} = [A\vec{x}]_{\mathcal{B}}$. Recall that $\vec{x} = P[\vec{x}]_{\mathcal{B}}$ where $P = P_{\mathcal{E}\mathcal{B}} = [\mathcal{B}]$. So $[\vec{y}]_{\mathcal{B}} = P^{-1}\vec{y}$ and we see that $[T]_{\mathcal{B}}[\vec{x}]_{\mathcal{B}} = [T(\vec{x})]_{\mathcal{B}} = [\vec{y}]_{\mathcal{B}} = P^{-1}\vec{y}$ $= P^{-1}A\vec{x} = P^{-1}AP[\vec{x}]_{\mathcal{B}}$.

Suppose $\mathbb{V} = \mathbb{R}^n = \mathbb{W}$ and $\mathcal{B} = \mathcal{A}$, so $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ is a linear transformation and \mathcal{B} is some basis for \mathbb{R}^n . Here we write $[T]_{\mathcal{B}} = [T]_{\mathcal{B}\mathcal{B}}$ for the matrix for T relative to \mathcal{B} and \mathcal{B} , and call this the *the* \mathcal{B} -matrix for T.

It follows that the \mathcal{B} -matrix for T is given by $[T]_{\mathcal{B}} = P^{-1}AP$, so

イロト 不得 トイヨト イヨト 二日

Suppose $\mathbb{V} = \mathbb{R}^n = \mathbb{W}$ and $\mathcal{B} = \mathcal{A}$, so $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ is a linear transformation and \mathcal{B} is some basis for \mathbb{R}^n . Here we write $[T]_{\mathcal{B}} = [T]_{\mathcal{B}\mathcal{B}}$ for the matrix for T relative to \mathcal{B} and \mathcal{B} , and call this the *the* \mathcal{B} -matrix for T.

It follows that the \mathcal{B} -matrix for T is given by $[T]_{\mathcal{B}} = P^{-1}AP$, so $A = P[T]_{\mathcal{B}}P^{-1}$.

Section 4.7

Suppose $\mathbb{V} = \mathbb{R}^n = \mathbb{W}$ and $\mathcal{B} = \mathcal{A}$, so $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ is a linear transformation and \mathcal{B} is some basis for \mathbb{R}^n . Here we write $[T]_{\mathcal{B}} = [T]_{\mathcal{B}\mathcal{B}}$ for the matrix for T relative to \mathcal{B} and \mathcal{B} , and call this the *the* \mathcal{B} -matrix for T.

It follows that the \mathcal{B} -matrix for T is given by $[T]_{\mathcal{B}} = P^{-1}AP$, so $A = P[T]_{\mathcal{B}}P^{-1}$. Thus $A = [T]_{\mathcal{E}}$ and $[T]_{\mathcal{B}}$ are similar matrices!

Let A be a *diagonalizable* $n \times n$ matrix.

(日) (同) (三) (三)

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Since A is diagonalizable, there is an *eigenbasis* assoc'd with A; that is,

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Since A is diagonalizable, there is an *eigenbasis* assoc'd with A; that is, there is a basis $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ for \mathbb{R}^n such that each vector \vec{v}_i is an eigenvector for A.

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Since A is diagonalizable, there is an *eigenbasis* assoc'd with A; that is, there is a basis $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ for \mathbb{R}^n such that each vector \vec{v}_i is an eigenvector for A. Assume $A\vec{v}_i = \lambda_i \vec{v}_i$. Then

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Since A is diagonalizable, there is an *eigenbasis* assoc'd with A; that is, there is a basis $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ for \mathbb{R}^n such that each vector \vec{v}_i is an eigenvector for A. Assume $A\vec{v}_i = \lambda_i \vec{v}_i$. Then

$$A = PDP^{-1} \quad \text{where} \quad P = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \dots & \vec{v}_n \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \vdots & 0 \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Since A is diagonalizable, there is an *eigenbasis* assoc'd with A; that is, there is a basis $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ for \mathbb{R}^n such that each vector \vec{v}_i is an eigenvector for A. Assume $A\vec{v}_i = \lambda_i \vec{v}_i$. Then

$$A = PDP^{-1} \quad \text{where} \quad P = \begin{bmatrix} \vec{v}_1 \ \vec{v}_2 \ \dots \vec{v}_n \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \vdots & 0 \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

Recall that $P = P_{\mathcal{EB}}$; so,

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Since A is diagonalizable, there is an *eigenbasis* assoc'd with A; that is, there is a basis $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ for \mathbb{R}^n such that each vector \vec{v}_i is an eigenvector for A. Assume $A\vec{v}_i = \lambda_i \vec{v}_i$. Then

$$A = PDP^{-1} \quad \text{where} \quad P = \begin{bmatrix} \vec{v}_1 \ \vec{v}_2 \ \dots \vec{v}_n \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \vdots & 0 \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

Recall that $P = P_{\mathcal{EB}}$; so, $P^{-1} = P_{\mathcal{BE}}$ which means that

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Since A is diagonalizable, there is an *eigenbasis* assoc'd with A; that is, there is a basis $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ for \mathbb{R}^n such that each vector \vec{v}_i is an eigenvector for A. Assume $A\vec{v}_i = \lambda_i \vec{v}_i$. Then

$$A = PDP^{-1} \quad \text{where} \quad P = \begin{bmatrix} \vec{v}_1 \ \vec{v}_2 \ \dots \vec{v}_n \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \vdots & 0 \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Since A is diagonalizable, there is an *eigenbasis* assoc'd with A; that is, there is a basis $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ for \mathbb{R}^n such that each vector \vec{v}_i is an eigenvector for A. Assume $A\vec{v}_i = \lambda_i \vec{v}_i$. Then

$$A = PDP^{-1} \quad \text{where} \quad P = \begin{bmatrix} \vec{v_1} \ \vec{v_2} \ \dots \vec{v_n} \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \vdots & 0 \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

Recall that $P = P_{\mathcal{EB}}$; so, $P^{-1} = P_{\mathcal{BE}}$ which means that $\left[\vec{y}\right]_{\mathcal{B}} = P^{-1}\vec{y}$. Thus

$$\left[T(\vec{x})\right]_{\mathcal{B}} =$$

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Since A is diagonalizable, there is an *eigenbasis* assoc'd with A; that is, there is a basis $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ for \mathbb{R}^n such that each vector \vec{v}_i is an eigenvector for A. Assume $A\vec{v}_i = \lambda_i \vec{v}_i$. Then

$$A = PDP^{-1} \quad \text{where} \quad P = \begin{bmatrix} \vec{v}_1 \ \vec{v}_2 \ \dots \vec{v}_n \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \vdots & 0 \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

$$\left[T(\vec{x})\right]_{\mathcal{B}} = \left[A\vec{x}\right]_{\mathcal{B}} =$$

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Since A is diagonalizable, there is an *eigenbasis* assoc'd with A; that is, there is a basis $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ for \mathbb{R}^n such that each vector \vec{v}_i is an eigenvector for A. Assume $A\vec{v}_i = \lambda_i \vec{v}_i$. Then

$$A = PDP^{-1} \quad \text{where} \quad P = \begin{bmatrix} \vec{v}_1 \ \vec{v}_2 \ \dots \vec{v}_n \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \vdots & 0 \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

$$\left[T(\vec{x})\right]_{\mathcal{B}} = \left[A\vec{x}\right]_{\mathcal{B}} = P^{-1}(A\vec{x}) =$$

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Since A is diagonalizable, there is an *eigenbasis* assoc'd with A; that is, there is a basis $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ for \mathbb{R}^n such that each vector \vec{v}_i is an eigenvector for A. Assume $A\vec{v}_i = \lambda_i \vec{v}_i$. Then

$$A = PDP^{-1} \quad \text{where} \quad P = \begin{bmatrix} \vec{v}_1 \ \vec{v}_2 \ \dots \vec{v}_n \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \vdots & 0 \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

$$\left[T(\vec{x})\right]_{\mathcal{B}} = \left[A\vec{x}\right]_{\mathcal{B}} = P^{-1}(A\vec{x}) = P^{-1}(PDP^{-1}\vec{x}) =$$

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Since A is diagonalizable, there is an *eigenbasis* assoc'd with A; that is, there is a basis $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ for \mathbb{R}^n such that each vector \vec{v}_i is an eigenvector for A. Assume $A\vec{v}_i = \lambda_i \vec{v}_i$. Then

$$A = PDP^{-1} \quad \text{where} \quad P = \begin{bmatrix} \vec{v}_1 \ \vec{v}_2 \ \dots \vec{v}_n \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \vdots & 0 \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

$$\left[T(\vec{x})\right]_{\mathcal{B}} = \left[A\vec{x}\right]_{\mathcal{B}} = P^{-1}(A\vec{x}) = P^{-1}(PDP^{-1}\vec{x}) = D(P^{-1}\vec{x}) =$$

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Since A is diagonalizable, there is an *eigenbasis* assoc'd with A; that is, there is a basis $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ for \mathbb{R}^n such that each vector \vec{v}_i is an eigenvector for A. Assume $A\vec{v}_i = \lambda_i \vec{v}_i$. Then

$$A = PDP^{-1} \quad \text{where} \quad P = \begin{bmatrix} \vec{v}_1 \ \vec{v}_2 \ \dots \vec{v}_n \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \vdots & 0 \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

Recall that $P = P_{\mathcal{EB}}$; so, $P^{-1} = P_{\mathcal{BE}}$ which means that $\begin{bmatrix} \vec{y} \end{bmatrix}_{\mathcal{B}} = P^{-1}\vec{y}$. Thus

$$\left[T(\vec{x})\right]_{\mathcal{B}} = \left[A\vec{x}\right]_{\mathcal{B}} = P^{-1}\left(A\vec{x}\right) = P^{-1}\left(PDP^{-1}\vec{x}\right) = D\left(P^{-1}\vec{x}\right) = D\left[\vec{x}\right]_{\mathcal{B}}.$$
Connection with Diagonalization

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Since A is diagonalizable, there is an *eigenbasis* assoc'd with A; that is, there is a basis $\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ for \mathbb{R}^n such that each vector \vec{v}_i is an eigenvector for A. Assume $A\vec{v}_i = \lambda_i \vec{v}_i$. Then

$$A = PDP^{-1} \quad \text{where} \quad P = \begin{bmatrix} \vec{v}_1 \ \vec{v}_2 \ \dots \vec{v}_n \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \vdots & 0 \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

Recall that $P = P_{\mathcal{EB}}$; so, $P^{-1} = P_{\mathcal{BE}}$ which means that $\begin{bmatrix} \vec{y} \end{bmatrix}_{\mathcal{B}} = P^{-1}\vec{y}$. Thus

$$\left[T(\vec{x})\right]_{\mathcal{B}} = \left[A\vec{x}\right]_{\mathcal{B}} = P^{-1}(A\vec{x}) = P^{-1}(PDP^{-1}\vec{x}) = D(P^{-1}\vec{x}) = D[\vec{x}]_{\mathcal{B}}.$$

This says that $D = [T]_{\mathcal{B}} = [T]_{\mathcal{BB}}$.

The matrix
$$A = \begin{bmatrix} 4 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 4 \end{bmatrix}$$
 has *simple* eigenvalues 3, 4, 6 with

associated eigenvectors

<ロト <回 > < 回 > < 回 > < 回 >

The matrix
$$A = \begin{bmatrix} 4 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 4 \end{bmatrix}$$
 has *simple* eigenvalues 3, 4, 6 with associated eigenvectors $\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$.

イロト イヨト イヨト イヨト

The matrix
$$A = \begin{bmatrix} 4 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 4 \end{bmatrix}$$
 has *simple* eigenvalues 3, 4, 6 with associated eigenvectors $\vec{v_1} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\vec{v_2} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$, $\vec{v_3} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$.

Since $\mathcal{B} = \{\vec{v_1}, \vec{v_2}, \vec{v_3}\}$ is a basis for \mathbb{R}^3 , A is diagonalizable with

$$A = PDP^{-1} \quad \text{where} \quad P = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & -2 \\ 1 & 1 & 1 \end{bmatrix} \quad \text{and} \quad D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 6 \end{bmatrix}.$$

イロト イポト イヨト イヨト

The matrix
$$A = \begin{bmatrix} 4 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 4 \end{bmatrix}$$
 has *simple* eigenvalues 3, 4, 6 with associated eigenvectors $\vec{v_1} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\vec{v_2} = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$, $\vec{v_3} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$.

Since $\mathcal{B}=\{ec{v_1},ec{v_2},ec{v_3}\}$ is a basis for \mathbb{R}^3 , A is diagonalizable with

$$A = PDP^{-1}$$
 where $P = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 0 & -2 \\ 1 & 1 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 6 \end{bmatrix}$.

Here D is the B-matrix for the LT $\vec{x} \mapsto A\vec{x}$.