The Matrix of a Linear Transformation

Linear Algebra
MATH 2076

university of
Cincinnati

The Matrix of a Linear Transformation

Recall that every $\mathrm{LT} \mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{m}$ is a matrix transformation; i.e.,

The Matrix of a Linear Transformation

Recall that every LT $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{m}$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x})=A \vec{x}$.

The Matrix of a Linear Transformation

Recall that every LT $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{m}$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x})=A \vec{x}$. In fact, $\operatorname{Col}_{j}(A)=T\left(\vec{e}_{j}\right)$.

The Matrix of a Linear Transformation

Recall that every LT $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{m}$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x})=A \vec{x}$. In fact, $\operatorname{Col}_{j}(A)=T\left(\vec{e}_{j}\right)$.
Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation?

The Matrix of a Linear Transformation

Recall that every $L T \mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{m}$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x})=A \vec{x}$. In fact, $\operatorname{Col}_{j}(A)=T\left(\vec{e}_{j}\right)$.
Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation?
Yes, if we use coordinate vectors.

The Matrix of a Linear Transformation

Recall that every $L T \mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{m}$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x})=A \vec{x}$. In fact, $\operatorname{Col}_{j}(A)=T\left(\vec{e}_{j}\right)$.
Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation?
Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp.

The Matrix of a Linear Transformation

Recall that every $L T \mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{m}$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x})=A \vec{x}$. In fact, $\operatorname{Col}_{j}(A)=T\left(\vec{e}_{j}\right)$.
Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation?
Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp.
Consider the coordinate maps $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^{n}$ and $\mathbb{W} \xrightarrow{[\cdot]_{\mathcal{A}}} \mathbb{R}^{m}$.

The Matrix of a Linear Transformation

Recall that every $L T \mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{m}$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x})=A \vec{x}$. In fact, $\operatorname{Col}_{j}(A)=T\left(\vec{e}_{j}\right)$.
Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation?
Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp.
Consider the coordinate maps $\mathbb{V} \xrightarrow{\left[\cdot[]_{\mathcal{B}}\right.} \mathbb{R}^{n}$ and $\mathbb{W} \xrightarrow{[\cdot]_{\mathcal{A}}} \mathbb{R}^{m}$. Given \vec{v} in \mathbb{V}, we get $[\vec{v}]_{\mathcal{B}}$ in \mathbb{R}^{n}, and

The Matrix of a Linear Transformation

Recall that every LT $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{m}$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x})=A \vec{x}$. In fact, $\operatorname{Col}_{j}(A)=T\left(\vec{e}_{j}\right)$.
Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation?
Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp.
Consider the coordinate maps $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^{n}$ and $\mathbb{W} \xrightarrow{[\cdot]_{\mathcal{A}}} \mathbb{R}^{m}$. Given \vec{v} in \mathbb{V}, we get $[\vec{v}]_{\mathcal{B}}$ in \mathbb{R}^{n}, and given \vec{w} in \mathbb{W}, we get $[\vec{w}]_{\mathcal{A}}$ in \mathbb{R}^{m}.

The Matrix of a Linear Transformation

Recall that every LT $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{m}$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x})=A \vec{x}$. In fact, $\operatorname{Col}_{j}(A)=T\left(\vec{e}_{j}\right)$.
Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp. Consider the coordinate maps $\mathbb{V} \xrightarrow{\left[\cdot[]_{\mathcal{B}}\right.} \mathbb{R}^{n}$ and $\mathbb{W} \xrightarrow{[\cdot]_{\mathcal{A}}} \mathbb{R}^{m}$. Given \vec{v} in \mathbb{V}, we get $[\vec{v}]_{\mathcal{B}}$ in \mathbb{R}^{n}, and given \vec{w} in \mathbb{W}, we get $[\vec{w}]_{\mathcal{A}}$ in \mathbb{R}^{m}.

Consider $\vec{x}=[\vec{v}]_{\mathcal{B}}$ and $\vec{y}=[\vec{w}]_{\mathcal{A}}$ where \vec{v} is in \mathbb{V} and $\vec{w}=T(\vec{v})$.

The Matrix of a Linear Transformation

Recall that every LT $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{m}$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x})=A \vec{x}$. In fact, $\operatorname{Col}_{j}(A)=T\left(\vec{e}_{j}\right)$.
Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp. Consider the coordinate maps $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^{n}$ and $\mathbb{W} \xrightarrow{[\cdot]_{\mathcal{A}}} \mathbb{R}^{m}$. Given \vec{v} in \mathbb{V}, we get $[\vec{v}]_{\mathcal{B}}$ in \mathbb{R}^{n}, and given \vec{w} in \mathbb{W}, we get $[\vec{w}]_{\mathcal{A}}$ in \mathbb{R}^{m}.

Consider $\vec{x}=[\vec{v}]_{\mathcal{B}}$ and $\vec{y}=[\vec{w}]_{\mathcal{A}}$ where \vec{v} is in \mathbb{V} and $\vec{w}=T(\vec{v})$. By linearity props of coord vectors, the map $\vec{x} \mapsto \vec{y}$ (from \mathbb{R}^{n} to \mathbb{R}^{m}) is a linear transformation.

The Matrix of a Linear Transformation

Recall that every LT $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{m}$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x})=A \vec{x}$. In fact, $\operatorname{Col}_{j}(A)=T\left(\vec{e}_{j}\right)$.
Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp. Consider the coordinate maps $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^{n}$ and $\mathbb{W} \xrightarrow{[\cdot]_{\mathcal{A}}} \mathbb{R}^{m}$. Given \vec{v} in \mathbb{V}, we get $[\vec{v}]_{\mathcal{B}}$ in \mathbb{R}^{n}, and given \vec{w} in \mathbb{W}, we get $[\vec{w}]_{\mathcal{A}}$ in \mathbb{R}^{m}.

Consider $\vec{x}=[\vec{v}]_{\mathcal{B}}$ and $\vec{y}=[\vec{w}]_{\mathcal{A}}$ where \vec{v} is in \mathbb{V} and $\vec{w}=T(\vec{v})$. By linearity props of coord vectors, the map $\vec{x} \mapsto \vec{y}$ (from \mathbb{R}^{n} to \mathbb{R}^{m}) is a linear transformation. So $\vec{x} \mapsto \vec{y}$ is given by multiplication by some matrix M :

The Matrix of a Linear Transformation

Recall that every LT $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{m}$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x})=A \vec{x}$. In fact, $\operatorname{Col}_{j}(A)=T\left(\vec{e}_{j}\right)$.
Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp. Consider the coordinate maps $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^{n}$ and $\mathbb{W} \xrightarrow{[\cdot]_{\mathcal{A}}} \mathbb{R}^{m}$. Given \vec{v} in \mathbb{V}, we get $[\vec{v}]_{\mathcal{B}}$ in \mathbb{R}^{n}, and given \vec{w} in \mathbb{W}, we get $[\vec{w}]_{\mathcal{A}}$ in \mathbb{R}^{m}.

Consider $\vec{x}=[\vec{v}]_{\mathcal{B}}$ and $\vec{y}=[\vec{w}]_{\mathcal{A}}$ where \vec{v} is in \mathbb{V} and $\vec{w}=T(\vec{v})$. By linearity props of coord vectors, the map $\vec{x} \mapsto \vec{y}$ (from \mathbb{R}^{n} to \mathbb{R}^{m}) is a linear transformation. So $\vec{x} \mapsto \vec{y}$ is given by multiplication by some matrix M :

$$
\vec{y}=M \vec{x}
$$

The Matrix of a Linear Transformation

Recall that every LT $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{m}$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x})=A \vec{x}$. In fact, $\operatorname{Col}_{j}(A)=T\left(\vec{e}_{j}\right)$.
Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp. Consider the coordinate maps $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^{n}$ and $\mathbb{W} \xrightarrow{[\cdot]_{\mathcal{A}}} \mathbb{R}^{m}$. Given \vec{v} in \mathbb{V}, we get $[\vec{v}]_{\mathcal{B}}$ in \mathbb{R}^{n}, and given \vec{w} in \mathbb{W}, we get $[\vec{w}]_{\mathcal{A}}$ in \mathbb{R}^{m}.

Consider $\vec{x}=[\vec{v}]_{\mathcal{B}}$ and $\vec{y}=[\vec{w}]_{\mathcal{A}}$ where \vec{v} is in \mathbb{V} and $\vec{w}=T(\vec{v})$. By linearity props of coord vectors, the map $\vec{x} \mapsto \vec{y}$ (from \mathbb{R}^{n} to \mathbb{R}^{m}) is a linear transformation. So $\vec{x} \mapsto \vec{y}$ is given by multiplication by some matrix M :

$$
[\vec{w}]_{\mathcal{A}}=\vec{y}=M \vec{x}
$$

The Matrix of a Linear Transformation

Recall that every $L T \mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{m}$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x})=A \vec{x}$. In fact, $\operatorname{Col}_{j}(A)=T\left(\vec{e}_{j}\right)$.
Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp. Consider the coordinate maps $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^{n}$ and $\mathbb{W} \xrightarrow{[\cdot]_{\mathcal{A}}} \mathbb{R}^{m}$. Given \vec{v} in \mathbb{V}, we get $[\vec{v}]_{\mathcal{B}}$ in \mathbb{R}^{n}, and given \vec{w} in \mathbb{W}, we get $[\vec{w}]_{\mathcal{A}}$ in \mathbb{R}^{m}.

Consider $\vec{x}=[\vec{v}]_{\mathcal{B}}$ and $\vec{y}=[\vec{w}]_{\mathcal{A}}$ where \vec{v} is in \mathbb{V} and $\vec{w}=T(\vec{v})$. By linearity props of coord vectors, the map $\vec{x} \mapsto \vec{y}$ (from \mathbb{R}^{n} to \mathbb{R}^{m}) is a linear transformation. So $\vec{x} \mapsto \vec{y}$ is given by multiplication by some matrix M :

$$
[T(\vec{v})]_{\mathcal{A}}=[\vec{w}]_{\mathcal{A}}=\vec{y}=M \vec{x}
$$

The Matrix of a Linear Transformation

Recall that every $L T \mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{m}$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x})=A \vec{x}$. In fact, $\operatorname{Col}_{j}(A)=T\left(\vec{e}_{j}\right)$.
Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp. Consider the coordinate maps $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^{n}$ and $\mathbb{W} \xrightarrow{[\cdot]_{\mathcal{A}}} \mathbb{R}^{m}$. Given \vec{v} in \mathbb{V}, we get $[\vec{v}]_{\mathcal{B}}$ in \mathbb{R}^{n}, and given \vec{w} in \mathbb{W}, we get $[\vec{w}]_{\mathcal{A}}$ in \mathbb{R}^{m}.

Consider $\vec{x}=[\vec{v}]_{\mathcal{B}}$ and $\vec{y}=[\vec{w}]_{\mathcal{A}}$ where \vec{v} is in \mathbb{V} and $\vec{w}=T(\vec{v})$. By linearity props of coord vectors, the map $\vec{x} \mapsto \vec{y}$ (from \mathbb{R}^{n} to \mathbb{R}^{m}) is a linear transformation. So $\vec{x} \mapsto \vec{y}$ is given by multiplication by some matrix M :

$$
[T(\vec{v})]_{\mathcal{A}}=[\vec{w}]_{\mathcal{A}}=\vec{y}=M \vec{x}=M[\vec{v}]_{\mathcal{B}}
$$

The Matrix of a Linear Transformation

Recall that every $L T \mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{m}$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x})=A \vec{x}$. In fact, $\operatorname{Col}_{j}(A)=T\left(\vec{e}_{j}\right)$.
Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp. Consider the coordinate maps $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^{n}$ and $\mathbb{W} \xrightarrow{[\cdot]_{\mathcal{A}}} \mathbb{R}^{m}$. Given \vec{v} in \mathbb{V}, we get $[\vec{v}]_{\mathcal{B}}$ in \mathbb{R}^{n}, and given \vec{w} in \mathbb{W}, we get $[\vec{w}]_{\mathcal{A}}$ in \mathbb{R}^{m}.

Consider $\vec{x}=[\vec{v}]_{\mathcal{B}}$ and $\vec{y}=[\vec{w}]_{\mathcal{A}}$ where \vec{v} is in \mathbb{V} and $\vec{w}=T(\vec{v})$. By linearity props of coord vectors, the map $\vec{x} \mapsto \vec{y}$ (from \mathbb{R}^{n} to \mathbb{R}^{m}) is a linear transformation. So $\vec{x} \mapsto \vec{y}$ is given by multiplication by some matrix M :

$$
[T(\vec{v})]_{\mathcal{A}}=[\vec{w}]_{\mathcal{A}}=\vec{y}=M \vec{x}=M[\vec{v}]_{\mathcal{B}}
$$

i.e., $[T(\vec{v})]_{\mathcal{A}}=M[\vec{v}]_{\mathcal{B}}$.

The Matrix of a Linear Transformation

Recall that every LT $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{m}$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x})=A \vec{x}$. In fact, $\operatorname{Col}_{j}(A)=T\left(\vec{e}_{j}\right)$.
Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp. Consider the coordinate maps $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^{n}$ and $\mathbb{W} \xrightarrow{[\cdot]_{\mathcal{A}}} \mathbb{R}^{m}$. Given \vec{v} in \mathbb{V}, we get $[\vec{v}]_{\mathcal{B}}$ in \mathbb{R}^{n}, and given \vec{w} in \mathbb{W}, we get $[\vec{w}]_{\mathcal{A}}$ in \mathbb{R}^{m}.

Consider $\vec{x}=[\vec{v}]_{\mathcal{B}}$ and $\vec{y}=[\vec{w}]_{\mathcal{A}}$ where \vec{v} is in \mathbb{V} and $\vec{w}=T(\vec{v})$. By linearity props of coord vectors, the map $\vec{x} \mapsto \vec{y}$ (from \mathbb{R}^{n} to \mathbb{R}^{m}) is a linear transformation. So $\vec{x} \mapsto \vec{y}$ is given by multiplication by some matrix M :

$$
[T(\vec{v})]_{\mathcal{A}}=[\vec{w}]_{\mathcal{A}}=\vec{y}=M \vec{x}=M[\vec{v}]_{\mathcal{B}}
$$

i.e., $[T(\vec{v})]_{\mathcal{A}}=M[\vec{v}]_{\mathcal{B}}$. We call M the matrix for T relative to \mathcal{B} and \mathcal{A} and

The Matrix of a Linear Transformation

Recall that every $L T \mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{m}$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x})=A \vec{x}$. In fact, $\operatorname{Col}_{j}(A)=T\left(\vec{e}_{j}\right)$.
Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a $L T$. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp. Consider the coordinate maps $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^{n}$ and $\mathbb{W} \xrightarrow{[\cdot]_{\mathcal{A}}} \mathbb{R}^{m}$. Given \vec{v} in \mathbb{V}, we get $[\vec{v}]_{\mathcal{B}}$ in \mathbb{R}^{n}, and given \vec{w} in \mathbb{W}, we get $[\vec{w}]_{\mathcal{A}}$ in \mathbb{R}^{m}.

Consider $\vec{x}=[\vec{v}]_{\mathcal{B}}$ and $\vec{y}=[\vec{w}]_{\mathcal{A}}$ where \vec{v} is in \mathbb{V} and $\vec{w}=T(\vec{v})$. By linearity props of coord vectors, the map $\vec{x} \mapsto \vec{y}$ (from \mathbb{R}^{n} to \mathbb{R}^{m}) is a linear transformation. So $\vec{x} \mapsto \vec{y}$ is given by multiplication by some matrix M :

$$
[T(\vec{v})]_{\mathcal{A}}=[\vec{w}]_{\mathcal{A}}=\vec{y}=M \vec{x}=M[\vec{v}]_{\mathcal{B}}
$$

i.e., $[T(\vec{v})]_{\mathcal{A}}=M[\vec{v}]_{\mathcal{B}}$. We call M the matrix for T relative to \mathcal{B} and \mathcal{A} and we write $[T]_{\mathcal{A B}}=M$, so

The Matrix of a Linear Transformation

Recall that every LT $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{m}$ is a matrix transformation; i.e., there is an $m \times n$ matrix A so that $T(\vec{x})=A \vec{x}$. In fact, $\operatorname{Col}_{j}(A)=T\left(\vec{e}_{j}\right)$.
Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a LT. Can we view T as a matrix transformation? Yes, if we use coordinate vectors. Let \mathcal{B}, \mathcal{A} be bases for \mathbb{V}, \mathbb{W} resp. Consider the coordinate maps $\mathbb{V} \xrightarrow{[]_{\mathcal{B}}} \mathbb{R}^{n}$ and $\mathbb{W} \xrightarrow{[]_{\mathcal{A}}} \mathbb{R}^{m}$. Given \vec{v} in \mathbb{V}, we get $[\vec{v}]_{\mathcal{B}}$ in \mathbb{R}^{n}, and given \vec{w} in \mathbb{W}, we get $[\vec{w}]_{\mathcal{A}}$ in \mathbb{R}^{m}.

Consider $\vec{x}=[\vec{v}]_{\mathcal{B}}$ and $\vec{y}=[\vec{w}]_{\mathcal{A}}$ where \vec{v} is in \mathbb{V} and $\vec{w}=T(\vec{v})$. By linearity props of coord vectors, the map $\vec{x} \mapsto \vec{y}\left(\right.$ from \mathbb{R}^{n} to $\left.\mathbb{R}^{m}\right)$ is a linear transformation. So $\vec{x} \mapsto \vec{y}$ is given by multiplication by some matrix M :

$$
[T(\vec{v})]_{\mathcal{A}}=[\vec{w}]_{\mathcal{A}}=\vec{y}=M \vec{x}=M[\vec{v}]_{\mathcal{B}} ;
$$

i.e., $[T(\vec{v})]_{\mathcal{A}}=M[\vec{v}]_{\mathcal{B}}$. We call M the matrix for T relative to \mathcal{B} and \mathcal{A} and we write $[T]_{\mathcal{A B}}=M$, so $[T(\vec{v})]_{\mathcal{A}}=[T]_{\mathcal{A B}}[\vec{v}]_{\mathcal{B}}$.

Picture for the matrix for T relative to \mathcal{B} and \mathcal{A}

We have a linear transformation $\mathbb{V} \xrightarrow{T} \mathbb{W}$ and bases \mathcal{B}, \mathcal{A} for \mathbb{V}, \mathbb{W} resp.
$\mathbb{V} \xrightarrow{T} \mathbb{W}$

Picture for the matrix for T relative to \mathcal{B} and \mathcal{A}

We have a linear transformation $\mathbb{V} \xrightarrow{T} \mathbb{W}$ and bases \mathcal{B}, \mathcal{A} for \mathbb{V}, \mathbb{W} resp.
Consider the \mathcal{B} and \mathcal{A} coord maps $\mathbb{V} \rightarrow \mathbb{R}^{n}$ and $\mathbb{W} \rightarrow \mathbb{R}^{m}$.

Picture for the matrix for T relative to \mathcal{B} and \mathcal{A}

We have a linear transformation $\mathbb{V} \xrightarrow{T} \mathbb{W}$ and bases \mathcal{B}, \mathcal{A} for \mathbb{V}, \mathbb{W} resp.
Consider the \mathcal{B} and \mathcal{A} coord maps $\mathbb{V} \rightarrow \mathbb{R}^{n}$ and $\mathbb{W} \rightarrow \mathbb{R}^{m}$. Given \vec{v} in \mathbb{V}, \vec{w} in \mathbb{W}, let

Picture for the matrix for T relative to \mathcal{B} and \mathcal{A}

We have a linear transformation $\mathbb{V} \xrightarrow{T} \mathbb{W}$ and bases \mathcal{B}, \mathcal{A} for \mathbb{V}, \mathbb{W} resp.
Consider the \mathcal{B} and \mathcal{A} coord maps $\mathbb{V} \rightarrow \mathbb{R}^{n}$ and $\mathbb{W} \rightarrow \mathbb{R}^{m}$. Given \vec{v} in \mathbb{V}, \vec{w} in \mathbb{W}, let

$$
\vec{x}=[\vec{v}]_{\mathcal{B}} \text { and } \vec{y}=[\vec{w}]_{\mathcal{A}} .
$$

Picture for the matrix for T relative to \mathcal{B} and \mathcal{A}

We have a linear transformation $\mathbb{V} \xrightarrow{T} \mathbb{W}$ and bases \mathcal{B}, \mathcal{A} for \mathbb{V}, \mathbb{W} resp.
Consider the \mathcal{B} and \mathcal{A} coord maps $\mathbb{V} \rightarrow \mathbb{R}^{n}$ and $\mathbb{W} \rightarrow \mathbb{R}^{m}$. Given \vec{v} in \mathbb{V}, \vec{w} in \mathbb{W}, let

$$
\vec{x}=[\vec{v}]_{\mathcal{B}} \text { and } \vec{y}=[\vec{w}]_{\mathcal{A}} \text {. }
$$

Consider the LT $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by $\vec{x} \mapsto \vec{y}$.

Picture for the matrix for T relative to \mathcal{B} and \mathcal{A}

We have a linear transformation $\mathbb{V} \xrightarrow{T} \mathbb{W}$ and bases \mathcal{B}, \mathcal{A} for \mathbb{V}, \mathbb{W} resp.
Consider the \mathcal{B} and \mathcal{A} coord maps $\mathbb{V} \rightarrow \mathbb{R}^{n}$ and $\mathbb{W} \rightarrow \mathbb{R}^{m}$. Given \vec{v} in \mathbb{V}, \vec{w} in \mathbb{W}, let

$$
\vec{x}=[\vec{v}]_{\mathcal{B}} \text { and } \vec{y}=[\vec{w}]_{\mathcal{A}} .
$$

Consider the LT $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by $\vec{x} \mapsto \vec{y}$. This is a matrix transformation, and

Picture for the matrix for T relative to \mathcal{B} and \mathcal{A}

We have a linear transformation $\mathbb{V} \xrightarrow{T} \mathbb{W}$ and bases \mathcal{B}, \mathcal{A} for \mathbb{V}, \mathbb{W} resp.
Consider the \mathcal{B} and \mathcal{A} coord maps $\mathbb{V} \rightarrow \mathbb{R}^{n}$ and $\mathbb{W} \rightarrow \mathbb{R}^{m}$. Given \vec{v} in \mathbb{V}, \vec{w} in \mathbb{W}, let

$$
\vec{x}=[\vec{v}]_{\mathcal{B}} \text { and } \vec{y}=[\vec{w}]_{\mathcal{A}} .
$$

Consider the LT $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by $\vec{x} \mapsto \vec{y}$. This is a matrix transformation, and

$$
\vec{y}=M \vec{x}
$$

Picture for the matrix for T relative to \mathcal{B} and \mathcal{A}

We have a linear transformation $\mathbb{V} \xrightarrow{T} \mathbb{W}$ and bases \mathcal{B}, \mathcal{A} for \mathbb{V}, \mathbb{W} resp.
Consider the \mathcal{B} and \mathcal{A} coord maps $\mathbb{V} \rightarrow \mathbb{R}^{n}$ and $\mathbb{W} \rightarrow \mathbb{R}^{m}$. Given \vec{v} in \mathbb{V}, \vec{w} in \mathbb{W}, let

$$
\vec{x}=[\vec{v}]_{\mathcal{B}} \text { and } \vec{y}=[\vec{w}]_{\mathcal{A}} .
$$

Consider the LT $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by $\vec{x} \mapsto \vec{y}$. This is a matrix transformation, and

$$
[\vec{w}]_{\mathcal{A}}=\vec{y}=M \vec{x}
$$

Picture for the matrix for T relative to \mathcal{B} and \mathcal{A}

We have a linear transformation $\mathbb{V} \xrightarrow{T} \mathbb{W}$ and bases \mathcal{B}, \mathcal{A} for \mathbb{V}, \mathbb{W} resp.
Consider the \mathcal{B} and \mathcal{A} coord maps $\mathbb{V} \rightarrow \mathbb{R}^{n}$ and $\mathbb{W} \rightarrow \mathbb{R}^{m}$. Given \vec{v} in \mathbb{V}, \vec{w} in \mathbb{W}, let

$$
\vec{x}=[\vec{v}]_{\mathcal{B}} \text { and } \vec{y}=[\vec{w}]_{\mathcal{A}} .
$$

Consider the LT $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by $\vec{x} \mapsto \vec{y}$. This is a matrix transformation, and
$[T(\vec{v})]_{\mathcal{A}}=[\vec{w}]_{\mathcal{A}}=\vec{y}=M \vec{x}$

Picture for the matrix for T relative to \mathcal{B} and \mathcal{A}

We have a linear transformation $\mathbb{V} \xrightarrow{T} \mathbb{W}$ and bases \mathcal{B}, \mathcal{A} for \mathbb{V}, \mathbb{W} resp.
Consider the \mathcal{B} and \mathcal{A} coord maps $\mathbb{V} \rightarrow \mathbb{R}^{n}$ and $\mathbb{W} \rightarrow \mathbb{R}^{m}$. Given \vec{v} in \mathbb{V}, \vec{w} in \mathbb{W}, let

$$
\vec{x}=[\vec{v}]_{\mathcal{B}} \text { and } \vec{y}=[\vec{w}]_{\mathcal{A}} .
$$

Consider the LT $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by $\vec{x} \mapsto \vec{y}$. This is a matrix transformation, and
$[T(\vec{v})]_{\mathcal{A}}=[\vec{w}]_{\mathcal{A}}=\vec{y}=M \vec{x}=A[\vec{v}]_{\mathcal{B}}$

Picture for the matrix for T relative to \mathcal{B} and \mathcal{A}

We have a linear transformation $\mathbb{V} \xrightarrow{T} \mathbb{W}$ and bases \mathcal{B}, \mathcal{A} for \mathbb{V}, \mathbb{W} resp.
Consider the \mathcal{B} and \mathcal{A} coord maps $\mathbb{V} \rightarrow \mathbb{R}^{n}$ and $\mathbb{W} \rightarrow \mathbb{R}^{m}$. Given \vec{v} in \mathbb{V}, \vec{w} in \mathbb{W}, let

$$
\vec{x}=[\vec{v}]_{\mathcal{B}} \text { and } \vec{y}=[\vec{w}]_{\mathcal{A}} .
$$

Consider the LT $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by $\vec{x} \mapsto \vec{y}$. This is a matrix transformation, and $[T(\vec{v})]_{\mathcal{A}}=[\vec{w}]_{\mathcal{A}}=\vec{y}=M \vec{x}=A[\vec{v}]_{\mathcal{B}}$ where $M=[T]_{\mathcal{A B}}$.

Finding the Matrix for a Linear Transformation

Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a linear transformation and \mathcal{B}, \mathcal{A} are bases for \mathbb{V}, \mathbb{W} resp. Then

Finding the Matrix for a Linear Transformation

Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a linear transformation and \mathcal{B}, \mathcal{A} are bases for \mathbb{V}, \mathbb{W} resp. Then $[T(\vec{v})]_{\mathcal{A}}=[T]_{\mathcal{A B}}[\vec{v}]_{\mathcal{B}}$

Finding the Matrix for a Linear Transformation

Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a linear transformation and \mathcal{B}, \mathcal{A} are bases for \mathbb{V}, \mathbb{W} resp. Then $[T(\vec{v})]_{\mathcal{A}}=[T]_{\mathcal{A B}}[\vec{v}]_{\mathcal{B}}$ where $[T]_{\mathcal{A} \mathcal{B}}$ is the matrix for T relative to \mathcal{B} and \mathcal{A}.

Finding the Matrix for a Linear Transformation

Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a linear transformation and \mathcal{B}, \mathcal{A} are bases for \mathbb{V}, \mathbb{W} resp. Then $[T(\vec{v})]_{\mathcal{A}}=[T]_{\mathcal{A B}}[\vec{v}]_{\mathcal{B}}$ where $[T]_{\mathcal{A} \mathcal{B}}$ is the matrix for T relative to \mathcal{B} and \mathcal{A}.

To find $[T]_{\mathcal{A B}}$, we need to know \mathcal{B}.

Finding the Matrix for a Linear Transformation

Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a linear transformation and \mathcal{B}, \mathcal{A} are bases for \mathbb{V}, \mathbb{W} resp. Then $[T(\vec{v})]_{\mathcal{A}}=[T]_{\mathcal{A B}}[\vec{v}]_{\mathcal{B}}$ where $[T]_{\mathcal{A} \mathcal{B}}$ is the matrix for T relative to \mathcal{B} and \mathcal{A}.

To find $[T]_{\mathcal{A B}}$, we need to know \mathcal{B}. Suppose $\mathcal{B}=\left\{\vec{b}_{1}, \vec{b}_{2}, \ldots, \vec{b}_{n}\right\}$. Then

Finding the Matrix for a Linear Transformation

Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a linear transformation and \mathcal{B}, \mathcal{A} are bases for \mathbb{V}, \mathbb{W} resp. Then $[T(\vec{v})]_{\mathcal{A}}=[T]_{\mathcal{A B}}[\vec{v}]_{\mathcal{B}}$ where $[T]_{\mathcal{A B}}$ is the matrix for T relative to \mathcal{B} and \mathcal{A}.

To find $[T]_{\mathcal{A B}}$, we need to know \mathcal{B}. Suppose $\mathcal{B}=\left\{\vec{b}_{1}, \vec{b}_{2}, \ldots, \vec{b}_{n}\right\}$. Then

$$
\operatorname{Col}_{j}\left([T]_{\mathcal{A B}}\right)=\left[T\left(\vec{b}_{j}\right)\right]_{\mathcal{A}} .
$$

Finding the Matrix for a Linear Transformation

Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a linear transformation and \mathcal{B}, \mathcal{A} are bases for \mathbb{V}, \mathbb{W} resp. Then $[T(\vec{v})]_{\mathcal{A}}=[T]_{\mathcal{A B}}[\vec{v}]_{\mathcal{B}}$ where $[T]_{\mathcal{A} \mathcal{B}}$ is the matrix for T relative to \mathcal{B} and \mathcal{A}.

To find $[T]_{\mathcal{A B}}$, we need to know \mathcal{B}. Suppose $\mathcal{B}=\left\{\vec{b}_{1}, \vec{b}_{2}, \ldots, \vec{b}_{n}\right\}$. Then

$$
\operatorname{Col}_{j}\left([T]_{\mathcal{A B}}\right)=\left[T\left(\vec{b}_{j}\right)\right]_{\mathcal{A}} .
$$

When $\mathbb{V}=\mathbb{R}^{n}, \mathbb{W}=\mathbb{R}^{m}$ and \mathcal{B}, \mathcal{A} are the standard bases, this is the usual formula for the standard matrix for T.

Finding the Matrix for a Linear Transformation

Suppose $\mathbb{V} \xrightarrow{T} \mathbb{W}$ is a linear transformation and \mathcal{B}, \mathcal{A} are bases for \mathbb{V}, \mathbb{W} resp. Then $[T(\vec{v})]_{\mathcal{A}}=[T]_{\mathcal{A B}}[\vec{v}]_{\mathcal{B}}$ where $[T]_{\mathcal{A} \mathcal{B}}$ is the matrix for T relative to \mathcal{B} and \mathcal{A}.

To find $[T]_{\mathcal{A B}}$, we need to know \mathcal{B}. Suppose $\mathcal{B}=\left\{\vec{b}_{1}, \vec{b}_{2}, \ldots, \vec{b}_{n}\right\}$. Then

$$
\operatorname{Col}_{j}\left([T]_{\mathcal{A B}}\right)=\left[T\left(\vec{b}_{j}\right)\right]_{\mathcal{A}} .
$$

When $\mathbb{V}=\mathbb{R}^{n}, \mathbb{W}=\mathbb{R}^{m}$ and \mathcal{B}, \mathcal{A} are the standard bases, this is the usual formula for the standard matrix for T.

You can remember this as $[T]_{\mathcal{A B}}=[T(\mathcal{B})]_{\mathcal{A}}$, but this abuses notation!

The \mathcal{B}-Matrix for a Linear Transformation

Suppose $\mathbb{V}=\mathbb{R}^{n}=\mathbb{W}$ and $\mathcal{B}=\mathcal{A}$, so $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{n}$ is a linear transformation and \mathcal{B} is some basis for \mathbb{R}^{n}.

$$
\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{n}
$$

The \mathcal{B}-Matrix for a Linear Transformation

Suppose $\mathbb{V}=\mathbb{R}^{n}=\mathbb{W}$ and $\mathcal{B}=\mathcal{A}$, so $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{n}$ is a linear transformation and \mathcal{B} is some basis for \mathbb{R}^{n}. Here we write $[T]_{\mathcal{B}}=[T]_{\mathcal{B B}}$ for the matrix for T relative to \mathcal{B} and \mathcal{B},

$$
\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{n}
$$

The \mathcal{B}-Matrix for a Linear Transformation

Suppose $\mathbb{V}=\mathbb{R}^{n}=\mathbb{W}$ and $\mathcal{B}=\mathcal{A}$, so $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{n}$ is a linear transformation and \mathcal{B} is some basis for \mathbb{R}^{n}. Here we write $[T]_{\mathcal{B}}=[T]_{\mathcal{B B}}$ for the matrix for T relative to \mathcal{B} and \mathcal{B}, and call this the the \mathcal{B}-matrix for T.

$$
\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{n}
$$

The \mathcal{B}-Matrix for a Linear Transformation

Suppose $\mathbb{V}=\mathbb{R}^{n}=\mathbb{W}$ and $\mathcal{B}=\mathcal{A}$, so $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{n}$ is a linear transformation and \mathcal{B} is some basis for \mathbb{R}^{n}. Here we write $[T]_{\mathcal{B}}=[T]_{\mathcal{B B}}$ for the matrix for T relative to \mathcal{B} and \mathcal{B}, and call this the the \mathcal{B}-matrix for T.

Consider the \mathcal{B} coord map $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.

The \mathcal{B}-Matrix for a Linear Transformation

Suppose $\mathbb{V}=\mathbb{R}^{n}=\mathbb{W}$ and $\mathcal{B}=\mathcal{A}$, so $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{n}$ is a linear transformation and \mathcal{B} is some basis for \mathbb{R}^{n}. Here we write $[T]_{\mathcal{B}}=[T]_{\mathcal{B B}}$ for the matrix for T relative to \mathcal{B} and \mathcal{B}, and call this the the \mathcal{B}-matrix for T.

Consider the \mathcal{B} coord map $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Given \vec{x} and $\vec{y}=T(\vec{x})=A \vec{x}$, look at

The \mathcal{B}-Matrix for a Linear Transformation

Suppose $\mathbb{V}=\mathbb{R}^{n}=\mathbb{W}$ and $\mathcal{B}=\mathcal{A}$, so $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{n}$ is a linear transformation and \mathcal{B} is some basis for \mathbb{R}^{n}. Here we write $[T]_{\mathcal{B}}=[T]_{\mathcal{B B}}$ for the matrix for T relative to \mathcal{B} and \mathcal{B}, and call this the the \mathcal{B}-matrix for T.

Consider the \mathcal{B} coord map $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Given \vec{x} and $\vec{y}=T(\vec{x})=A \vec{x}$, look at

$$
\begin{array}{r}
{[\vec{x}]_{\mathcal{B}} \text { and }[\vec{y}]_{\mathcal{B}}=[A \vec{x}]_{\mathcal{B}} . \quad \begin{array}{l}
\vec{x} \quad \vec{y}=A \vec{x} \\
\left.\mathbb{R}^{n} \xrightarrow{\left.[\cdot]_{\mathcal{B}}\right|^{\prime}}\right|_{\mathbb{R}^{n}} \\
\left.\mathbb{R}^{n} \longrightarrow \cdot\right]_{\mathcal{B}} \\
{[\vec{x}]_{\mathcal{B}} \longmapsto[\vec{y}]_{\mathcal{B}}}
\end{array}}
\end{array}
$$

The \mathcal{B}-Matrix for a Linear Transformation

Suppose $\mathbb{V}=\mathbb{R}^{n}=\mathbb{W}$ and $\mathcal{B}=\mathcal{A}$, so $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{n}$ is a linear transformation and \mathcal{B} is some basis for \mathbb{R}^{n}. Here we write $[T]_{\mathcal{B}}=[T]_{\mathcal{B B}}$ for the matrix for T relative to \mathcal{B} and \mathcal{B}, and call this the the \mathcal{B}-matrix for T.

Consider the \mathcal{B} coord map $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Given \vec{x} and $\vec{y}=T(\vec{x})=A \vec{x}$, look at

$$
[\vec{x}]_{\mathcal{B}} \text { and }[\vec{y}]_{\mathcal{B}}=[A \vec{x}]_{\mathcal{B}}
$$

Recall that $\vec{x}=P[\vec{x}]_{\mathcal{B}}$ where $P=P_{\mathcal{E B}}=[\mathcal{B}]$.

$$
\begin{aligned}
& {[\vec{x}]_{\mathcal{B}} \longmapsto[\vec{y}]_{\mathcal{B}}}
\end{aligned}
$$

The \mathcal{B}-Matrix for a Linear Transformation

Suppose $\mathbb{V}=\mathbb{R}^{n}=\mathbb{W}$ and $\mathcal{B}=\mathcal{A}$, so $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{n}$ is a linear transformation and \mathcal{B} is some basis for \mathbb{R}^{n}. Here we write $[T]_{\mathcal{B}}=[T]_{\mathcal{B B}}$ for the matrix for T relative to \mathcal{B} and \mathcal{B}, and call this the the \mathcal{B}-matrix for T.

Consider the \mathcal{B} coord map $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Given \vec{x} and $\vec{y}=T(\vec{x})=A \vec{x}$, look at

$$
[\vec{x}]_{\mathcal{B}} \text { and }[\vec{y}]_{\mathcal{B}}=[A \vec{x}]_{\mathcal{B}}
$$

Recall that $\vec{x}=P[\vec{x}]_{\mathcal{B}}$ where $P=P_{\mathcal{E B}}=[\mathcal{B}]$. So $[\vec{y}]_{\mathcal{B}}=P^{-1} \vec{y}$ and we see that

The \mathcal{B}-Matrix for a Linear Transformation

Suppose $\mathbb{V}=\mathbb{R}^{n}=\mathbb{W}$ and $\mathcal{B}=\mathcal{A}$, so $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{n}$ is a linear transformation and \mathcal{B} is some basis for \mathbb{R}^{n}. Here we write $[T]_{\mathcal{B}}=[T]_{\mathcal{B B}}$ for the matrix for T relative to \mathcal{B} and \mathcal{B}, and call this the the \mathcal{B}-matrix for T.

Consider the \mathcal{B} coord map $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Given \vec{x} and $\vec{y}=T(\vec{x})=A \vec{x}$, look at

$$
[\vec{x}]_{\mathcal{B}} \text { and }[\vec{y}]_{\mathcal{B}}=[A \vec{x}]_{\mathcal{B}}
$$

Recall that $\vec{x}=P[\vec{x}]_{\mathcal{B}}$ where $P=P_{\mathcal{E B}}=[\mathcal{B}]$. So $[\vec{y}]_{\mathcal{B}}=P^{-1} \vec{y}$ and we see that

$$
[T]_{\mathcal{B}}[\vec{x}]_{\mathcal{B}}=
$$

$$
\begin{gathered}
\stackrel{\vec{x}}{\vec{y}=A \vec{x}} \\
\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{n} \\
\left.\left.[\cdot]_{\mathcal{B}}\right|^{\mathbb{R}^{n}} \longrightarrow \downarrow^{2}\right]_{\mathcal{B}} \\
{[\vec{x}]_{\mathcal{B}} \longmapsto[\vec{y}]_{\mathcal{B}}}
\end{gathered}
$$

The \mathcal{B}-Matrix for a Linear Transformation

Suppose $\mathbb{V}=\mathbb{R}^{n}=\mathbb{W}$ and $\mathcal{B}=\mathcal{A}$, so $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{n}$ is a linear transformation and \mathcal{B} is some basis for \mathbb{R}^{n}. Here we write $[T]_{\mathcal{B}}=[T]_{\mathcal{B B}}$ for the matrix for T relative to \mathcal{B} and \mathcal{B}, and call this the the \mathcal{B}-matrix for T.

Consider the \mathcal{B} coord map $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Given \vec{x} and $\vec{y}=T(\vec{x})=A \vec{x}$, look at

$$
[\vec{x}]_{\mathcal{B}} \text { and }[\vec{y}]_{\mathcal{B}}=[A \vec{x}]_{\mathcal{B}} \text {. }
$$

Recall that $\vec{x}=P[\vec{x}]_{\mathcal{B}}$ where $P=P_{\mathcal{E B}}=[\mathcal{B}]$. So $[\vec{y}]_{\mathcal{B}}=P^{-1} \vec{y}$ and we see that

$$
[T]_{\mathcal{B}}[\vec{x}]_{\mathcal{B}}=[T(\vec{x})]_{\mathcal{B}}=
$$

The \mathcal{B}-Matrix for a Linear Transformation

Suppose $\mathbb{V}=\mathbb{R}^{n}=\mathbb{W}$ and $\mathcal{B}=\mathcal{A}$, so $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{n}$ is a linear transformation and \mathcal{B} is some basis for \mathbb{R}^{n}. Here we write $[T]_{\mathcal{B}}=[T]_{\mathcal{B B}}$ for the matrix for T relative to \mathcal{B} and \mathcal{B}, and call this the the \mathcal{B}-matrix for T.

Consider the \mathcal{B} coord map $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Given \vec{x} and $\vec{y}=T(\vec{x})=A \vec{x}$, look at

$$
[\vec{x}]_{\mathcal{B}} \text { and }[\vec{y}]_{\mathcal{B}}=[A \vec{x}]_{\mathcal{B}} \text {. }
$$

Recall that $\vec{x}=P[\vec{x}]_{\mathcal{B}}$ where $P=P_{\mathcal{E B}}=[\mathcal{B}]$. So $[\vec{y}]_{\mathcal{B}}=P^{-1} \vec{y}$ and we see that

$$
[T]_{\mathcal{B}}[\vec{x}]_{\mathcal{B}}=[T(\vec{x})]_{\mathcal{B}}=[\vec{y}]_{\mathcal{B}}=
$$

$$
\begin{gathered}
\stackrel{\vec{x}}{\vec{y}=A \vec{x}} \\
\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{n} \\
{\left.\left.[\cdot]_{\mathcal{B}}\right|_{\mathbb{R}^{n}} \longrightarrow\right|_{\mathbb{R}^{n}}} \\
{[\cdot]_{\mathcal{B}}} \\
{[\vec{x}]_{\mathcal{B}} \longmapsto[\vec{y}]_{\mathcal{B}}}
\end{gathered}
$$

The \mathcal{B}-Matrix for a Linear Transformation

Suppose $\mathbb{V}=\mathbb{R}^{n}=\mathbb{W}$ and $\mathcal{B}=\mathcal{A}$, so $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{n}$ is a linear transformation and \mathcal{B} is some basis for \mathbb{R}^{n}. Here we write $[T]_{\mathcal{B}}=[T]_{\mathcal{B B}}$ for the matrix for T relative to \mathcal{B} and \mathcal{B}, and call this the the \mathcal{B}-matrix for T.

Consider the \mathcal{B} coord map $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Given \vec{x} and $\vec{y}=T(\vec{x})=A \vec{x}$, look at

$$
[\vec{x}]_{\mathcal{B}} \text { and }[\vec{y}]_{\mathcal{B}}=[A \vec{x}]_{\mathcal{B}}
$$

Recall that $\vec{x}=P[\vec{x}]_{\mathcal{B}}$ where $P=P_{\mathcal{E B}}=[\mathcal{B}]$. So $[\vec{y}]_{\mathcal{B}}=P^{-1} \vec{y}$ and we see that

$$
[T]_{\mathcal{B}}[\vec{x}]_{\mathcal{B}}=[T(\vec{x})]_{\mathcal{B}}=[\vec{y}]_{\mathcal{B}}=P^{-1} \vec{y}
$$

$$
=
$$

$$
\begin{gathered}
\stackrel{\vec{x}}{\vec{y}=A \vec{x}} \\
\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{n} \\
{\left.\left.[\cdot]_{\mathcal{B}}\right|_{\mathbb{R}^{n}} \longrightarrow\right|_{\mathbb{R}^{n}}} \\
{[\cdot]_{\mathcal{B}}} \\
{[\vec{x}]_{\mathcal{B}} \longmapsto[\vec{y}]_{\mathcal{B}}}
\end{gathered}
$$

The \mathcal{B}-Matrix for a Linear Transformation

Suppose $\mathbb{V}=\mathbb{R}^{n}=\mathbb{W}$ and $\mathcal{B}=\mathcal{A}$, so $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{n}$ is a linear transformation and \mathcal{B} is some basis for \mathbb{R}^{n}. Here we write $[T]_{\mathcal{B}}=[T]_{\mathcal{B B}}$ for the matrix for T relative to \mathcal{B} and \mathcal{B}, and call this the the \mathcal{B}-matrix for T.

Consider the \mathcal{B} coord map $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Given \vec{x} and $\vec{y}=T(\vec{x})=A \vec{x}$, look at

$$
[\vec{x}]_{\mathcal{B}} \text { and }[\vec{y}]_{\mathcal{B}}=[A \vec{x}]_{\mathcal{B}}
$$

Recall that $\vec{x}=P[\vec{x}]_{\mathcal{B}}$ where $P=P_{\mathcal{E B}}=[\mathcal{B}]$. So $[\vec{y}]_{\mathcal{B}}=P^{-1} \vec{y}$ and we see that

$$
\begin{aligned}
{[T]_{\mathcal{B}}[\vec{x}]_{\mathcal{B}} } & =[T(\vec{x})]_{\mathcal{B}}=[\vec{y}]_{\mathcal{B}}=P^{-1} \vec{y} \\
& =P^{-1} A \vec{x}=
\end{aligned}
$$

$$
\begin{gathered}
\stackrel{\vec{x}}{\vec{y}=A \vec{x}} \\
\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{n} \\
{\left.\left.[\cdot]_{\mathcal{B}}\right|_{\mathbb{R}^{n}} \longrightarrow\right|_{\mathbb{R}^{n}}} \\
{[\cdot]_{\mathcal{B}}} \\
{[\vec{x}]_{\mathcal{B}} \longmapsto[\vec{y}]_{\mathcal{B}}}
\end{gathered}
$$

The \mathcal{B}-Matrix for a Linear Transformation

Suppose $\mathbb{V}=\mathbb{R}^{n}=\mathbb{W}$ and $\mathcal{B}=\mathcal{A}$, so $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{n}$ is a linear transformation and \mathcal{B} is some basis for \mathbb{R}^{n}. Here we write $[T]_{\mathcal{B}}=[T]_{\mathcal{B B}}$ for the matrix for T relative to \mathcal{B} and \mathcal{B}, and call this the the \mathcal{B}-matrix for T.

Consider the \mathcal{B} coord map $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Given \vec{x} and $\vec{y}=T(\vec{x})=A \vec{x}$, look at

$$
[\vec{x}]_{\mathcal{B}} \text { and }[\vec{y}]_{\mathcal{B}}=[A \vec{x}]_{\mathcal{B}}
$$

Recall that $\vec{x}=P[\vec{x}]_{\mathcal{B}}$ where $P=P_{\mathcal{E B}}=[\mathcal{B}]$. So $[\vec{y}]_{\mathcal{B}}=P^{-1} \vec{y}$ and we see that

$$
\begin{aligned}
{[T]_{\mathcal{B}}[\vec{x}]_{\mathcal{B}} } & =[T(\vec{x})]_{\mathcal{B}}=[\vec{y}]_{\mathcal{B}}=P^{-1} \vec{y} \\
& =P^{-1} A \vec{x}=P^{-1} A P[\vec{x}]_{\mathcal{B}} .
\end{aligned}
$$

$$
\begin{gathered}
\stackrel{\vec{x}}{\vec{y}=A \vec{x}} \\
\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{n} \\
{\left.\left.[\cdot]_{\mathcal{B}}\right|_{\mathbb{R}^{n}} \longrightarrow\right|_{\mathbb{R}^{n}}} \\
{[\cdot]_{\mathcal{B}}} \\
{[\vec{x}]_{\mathcal{B}} \longmapsto[\vec{y}]_{\mathcal{B}}}
\end{gathered}
$$

The \mathcal{B}-Matrix for a Linear Transformation

Suppose $\mathbb{V}=\mathbb{R}^{n}=\mathbb{W}$ and $\mathcal{B}=\mathcal{A}$, so $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{n}$ is a linear transformation and \mathcal{B} is some basis for \mathbb{R}^{n}. Here we write $[T]_{\mathcal{B}}=[T]_{\mathcal{B B}}$ for the matrix for T relative to \mathcal{B} and \mathcal{B}, and call this the the \mathcal{B}-matrix for T.

Consider the \mathcal{B} coord map $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Given \vec{x} and $\vec{y}=T(\vec{x})=A \vec{x}$, look at

$$
\left[[\vec{x}]_{\mathcal{B}} \text { and }[\vec{y}]_{\mathcal{B}}=[A \vec{x}]_{\mathcal{B}}\right. \text {. }
$$

Recall that $\vec{x}=P[\vec{x}]_{\mathcal{B}}$ where $P=P_{\mathcal{E B}}=[\mathcal{B}]$. So $[\vec{y}]_{\mathcal{B}}=P^{-1} \vec{y}$ and we see that

$$
\begin{aligned}
{[T]_{\mathcal{B}}[\vec{x}]_{\mathcal{B}} } & =[T(\vec{x})]_{\mathcal{B}}=[\vec{y}]_{\mathcal{B}}=P^{-1} \vec{y} \\
& =P^{-1} A \vec{x}=P^{-1} A P[\vec{x}]_{\mathcal{B}} .
\end{aligned}
$$

$$
\begin{aligned}
& \vec{x} \\
& \mathbb{R}^{n} \xrightarrow{\vec{y}=A \vec{x}} \\
& {\left.[\cdot]_{\mathcal{B}}\right|_{\mathbb{R}^{n}} }\left.\|_{\mathbb{R}^{n}} \longrightarrow\right]_{\mathcal{B}} \\
& {\left[\overrightarrow{\mathbb{R}^{n}}\right]_{\mathcal{B}} \longmapsto[\vec{y}]_{\mathcal{B}} }
\end{aligned}
$$

It follows that the \mathcal{B}-matrix for T is given by $[T]_{\mathcal{B}}=P^{-1} A P$, so

The \mathcal{B}-Matrix for a Linear Transformation

Suppose $\mathbb{V}=\mathbb{R}^{n}=\mathbb{W}$ and $\mathcal{B}=\mathcal{A}$, so $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{n}$ is a linear transformation and \mathcal{B} is some basis for \mathbb{R}^{n}. Here we write $[T]_{\mathcal{B}}=[T]_{\mathcal{B B}}$ for the matrix for T relative to \mathcal{B} and \mathcal{B}, and call this the the \mathcal{B}-matrix for T.

Consider the \mathcal{B} coord map $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Given \vec{x} and $\vec{y}=T(\vec{x})=A \vec{x}$, look at

$$
\left[[\vec{x}]_{\mathcal{B}} \text { and }[\vec{y}]_{\mathcal{B}}=[A \vec{x}]_{\mathcal{B}}\right. \text {. }
$$

Recall that $\vec{x}=P[\vec{x}]_{\mathcal{B}}$ where $P=P_{\mathcal{E B}}=[\mathcal{B}]$. So $[\vec{y}]_{\mathcal{B}}=P^{-1} \vec{y}$ and we see that

$$
\begin{aligned}
{[T]_{\mathcal{B}}[\vec{x}]_{\mathcal{B}} } & =[T(\vec{x})]_{\mathcal{B}}=[\vec{y}]_{\mathcal{B}}=P^{-1} \vec{y} \\
& =P^{-1} A \vec{x}=P^{-1} A P[\vec{x}]_{\mathcal{B}} .
\end{aligned}
$$

$$
\begin{aligned}
& \vec{x} \\
& \mathbb{R}^{n} \xrightarrow{\vec{y}=A \vec{x}} \\
& {\left.[\cdot]_{\mathcal{B}}\right|_{\mathbb{R}^{n}} }\left.\left.\right|_{\mathbb{R}^{n}} \longrightarrow\right]_{\mathcal{B}} \\
& {\left[\overrightarrow{\mathbb{R}^{n}}\right]_{\mathcal{B}} \longmapsto[\vec{y}]_{\mathcal{B}} }
\end{aligned}
$$

It follows that the \mathcal{B}-matrix for T is given by $[T]_{\mathcal{B}}=P^{-1} A P$, so $A=P[T]_{\mathcal{B}} P^{-1}$.

The \mathcal{B}-Matrix for a Linear Transformation

Suppose $\mathbb{V}=\mathbb{R}^{n}=\mathbb{W}$ and $\mathcal{B}=\mathcal{A}$, so $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{n}$ is a linear transformation and \mathcal{B} is some basis for \mathbb{R}^{n}. Here we write $[T]_{\mathcal{B}}=[T]_{\mathcal{B B}}$ for the matrix for T relative to \mathcal{B} and \mathcal{B}, and call this the the \mathcal{B}-matrix for T.

Consider the \mathcal{B} coord map $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. Given \vec{x} and $\vec{y}=T(\vec{x})=A \vec{x}$, look at

$$
\left[[\vec{x}]_{\mathcal{B}} \text { and }[\vec{y}]_{\mathcal{B}}=[A \vec{x}]_{\mathcal{B}}\right. \text {. }
$$

Recall that $\vec{x}=P[\vec{x}]_{\mathcal{B}}$ where $P=P_{\mathcal{E B}}=[\mathcal{B}]$. So $[\vec{y}]_{\mathcal{B}}=P^{-1} \vec{y}$ and we see that

$$
\begin{aligned}
{[T]_{\mathcal{B}}[\vec{x}]_{\mathcal{B}} } & =[T(\vec{x})]_{\mathcal{B}}=[\vec{y}]_{\mathcal{B}}=P^{-1} \vec{y} \\
& =P^{-1} A \vec{x}=P^{-1} A P[\vec{x}]_{\mathcal{B}} .
\end{aligned}
$$

$$
\begin{array}{r}
\vec{x} \quad \stackrel{\vec{y}=A \vec{x}}{\mathbb{R}^{n}} \xrightarrow{T} \mathbb{R}^{n} \\
{\left[\left.\left.\cdot[]_{\mathcal{B}}\right|_{\mathbb{R}^{n}} \longrightarrow\right|_{\mathbb{R}^{n}} \longrightarrow[]_{\mathcal{B}}\right.} \\
{[\vec{x}]_{\mathcal{B}} \longmapsto[\vec{y}]_{\mathcal{B}}}
\end{array}
$$

It follows that the \mathcal{B}-matrix for T is given by $[T]_{\mathcal{B}}=P^{-1} A P$, so $A=P[T]_{\mathcal{B}} P^{-1}$. Thus $A=[T]_{\mathcal{E}}$ and $[T]_{\mathcal{B}}$ are similar matrices!

Connection with Diagonalization

Let A be a diagonalizable $n \times n$ matrix.

Connection with Diagonalization

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{n}$ by $T(\vec{x})=A \vec{x}$.

Connection with Diagonalization

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{n}$ by $T(\vec{x})=A \vec{x}$.
Since A is diagonalizable, there is an eigenbasis assoc'd with A; that is,

Connection with Diagonalization

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{n}$ by $T(\vec{x})=A \vec{x}$.
Since A is diagonalizable, there is an eigenbasis assoc'd with A; that is, there is a basis $\mathcal{B}=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ for \mathbb{R}^{n} such that each vector \vec{v}_{i} is an eigenvector for A.

Connection with Diagonalization

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{n}$ by $T(\vec{x})=A \vec{x}$.
Since A is diagonalizable, there is an eigenbasis assoc'd with A; that is, there is a basis $\mathcal{B}=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ for \mathbb{R}^{n} such that each vector \vec{v}_{i} is an eigenvector for A. Assume $A \vec{v}_{i}=\lambda_{i} \vec{v}_{i}$. Then

Connection with Diagonalization

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{n}$ by $T(\vec{x})=A \vec{x}$.
Since A is diagonalizable, there is an eigenbasis assoc'd with A; that is, there is a basis $\mathcal{B}=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ for \mathbb{R}^{n} such that each vector \vec{v}_{i} is an eigenvector for A. Assume $A \vec{v}_{i}=\lambda_{i} \vec{v}_{i}$. Then
$A=P D P^{-1}$ where $P=\left[\begin{array}{lll}\vec{v}_{1} & \vec{v}_{2} & \ldots \\ \vec{v}_{n}\end{array}\right]$ and $D=\left[\begin{array}{cccc}\lambda_{1} & 0 & \ldots & 0 \\ 0 & \lambda_{2} & \ldots & 0 \\ \vdots & \vdots & \vdots & 0 \\ 0 & 0 & \ldots & \lambda_{n}\end{array}\right]$

Connection with Diagonalization

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{n}$ by $T(\vec{x})=A \vec{x}$.
Since A is diagonalizable, there is an eigenbasis assoc'd with A; that is, there is a basis $\mathcal{B}=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ for \mathbb{R}^{n} such that each vector \vec{v}_{i} is an eigenvector for A. Assume $A \vec{v}_{i}=\lambda_{i} \vec{v}_{i}$. Then
$A=P D P^{-1}$ where $P=\left[\vec{v}_{1} \vec{v}_{2} \ldots \vec{v}_{n}\right]$ and $D=\left[\begin{array}{cccc}\lambda_{1} & 0 & \ldots & 0 \\ 0 & \lambda_{2} & \ldots & 0 \\ \vdots & \vdots & \vdots & 0 \\ 0 & 0 & \ldots & \lambda_{n}\end{array}\right]$
Recall that $P=P_{\mathcal{E B}}$; so,

Connection with Diagonalization

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{n}$ by $T(\vec{x})=A \vec{x}$.
Since A is diagonalizable, there is an eigenbasis assoc'd with A; that is, there is a basis $\mathcal{B}=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ for \mathbb{R}^{n} such that each vector \vec{v}_{i} is an eigenvector for A. Assume $A \vec{v}_{i}=\lambda_{i} \vec{v}_{i}$. Then
$A=P D P^{-1}$ where $P=\left[\vec{v}_{1} \overrightarrow{v_{2}} \ldots \vec{v}_{n}\right]$ and $D=\left[\begin{array}{cccc}\lambda_{1} & 0 & \ldots & 0 \\ 0 & \lambda_{2} & \ldots & 0 \\ \vdots & \vdots & \vdots & 0 \\ 0 & 0 & \ldots & \lambda_{n}\end{array}\right]$
Recall that $P=P_{\mathcal{E B}}$; so, $P^{-1}=P_{\mathcal{B E}}$ which means that

Connection with Diagonalization

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{n}$ by $T(\vec{x})=A \vec{x}$.
Since A is diagonalizable, there is an eigenbasis assoc'd with A; that is, there is a basis $\mathcal{B}=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ for \mathbb{R}^{n} such that each vector \vec{v}_{i} is an eigenvector for A. Assume $A \vec{v}_{i}=\lambda_{i} \vec{v}_{i}$. Then
$A=P D P^{-1}$ where $P=\left[\begin{array}{llll}\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{n}\end{array}\right]$ and $D=\left[\begin{array}{cccc}\lambda_{1} & 0 & \ldots & 0 \\ 0 & \lambda_{2} & \ldots & 0 \\ \vdots & \vdots & \vdots & 0 \\ 0 & 0 & \ldots & \lambda_{n}\end{array}\right]$
Recall that $P=P_{\mathcal{E B}}$; so, $P^{-1}=P_{\mathcal{B E}}$ which means that $[\vec{y}]_{\mathcal{B}}=P^{-1} \vec{y}$.

Connection with Diagonalization

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{n}$ by $T(\vec{x})=A \vec{x}$.
Since A is diagonalizable, there is an eigenbasis assoc'd with A; that is, there is a basis $\mathcal{B}=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ for \mathbb{R}^{n} such that each vector \vec{v}_{i} is an eigenvector for A. Assume $A \vec{v}_{i}=\lambda_{i} \vec{v}_{i}$. Then
$A=P D P^{-1}$ where $P=\left[\begin{array}{llll}\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{n}\end{array}\right]$ and $D=\left[\begin{array}{cccc}\lambda_{1} & 0 & \ldots & 0 \\ 0 & \lambda_{2} & \ldots & 0 \\ \vdots & \vdots & \vdots & 0 \\ 0 & 0 & \ldots & \lambda_{n}\end{array}\right]$
Recall that $P=P_{\mathcal{E B}}$; so, $P^{-1}=P_{\mathcal{B E}}$ which means that $[\vec{y}]_{\mathcal{B}}=P^{-1} \vec{y}$. Thus

$$
[T(\vec{x})]_{\mathcal{B}}=
$$

Connection with Diagonalization

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{n}$ by $T(\vec{x})=A \vec{x}$.
Since A is diagonalizable, there is an eigenbasis assoc'd with A; that is, there is a basis $\mathcal{B}=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ for \mathbb{R}^{n} such that each vector \vec{v}_{i} is an eigenvector for A. Assume $A \vec{v}_{i}=\lambda_{i} \vec{v}_{i}$. Then
$A=P D P^{-1}$ where $P=\left[\begin{array}{llll}\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{n}\end{array}\right]$ and $D=\left[\begin{array}{cccc}\lambda_{1} & 0 & \ldots & 0 \\ 0 & \lambda_{2} & \ldots & 0 \\ \vdots & \vdots & \vdots & 0 \\ 0 & 0 & \ldots & \lambda_{n}\end{array}\right]$
Recall that $P=P_{\mathcal{E B}}$; so, $P^{-1}=P_{\mathcal{B E}}$ which means that $[\vec{y}]_{\mathcal{B}}=P^{-1} \vec{y}$. Thus

$$
[T(\vec{x})]_{\mathcal{B}}=[A \vec{x}]_{\mathcal{B}}=
$$

Connection with Diagonalization

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{n}$ by $T(\vec{x})=A \vec{x}$.
Since A is diagonalizable, there is an eigenbasis assoc'd with A; that is, there is a basis $\mathcal{B}=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ for \mathbb{R}^{n} such that each vector \vec{v}_{i} is an eigenvector for A. Assume $A \vec{v}_{i}=\lambda_{i} \vec{v}_{i}$. Then
$A=P D P^{-1}$ where $P=\left[\begin{array}{llll}\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{n}\end{array}\right]$ and $D=\left[\begin{array}{cccc}\lambda_{1} & 0 & \ldots & 0 \\ 0 & \lambda_{2} & \ldots & 0 \\ \vdots & \vdots & \vdots & 0 \\ 0 & 0 & \ldots & \lambda_{n}\end{array}\right]$
Recall that $P=P_{\mathcal{E B}}$; so, $P^{-1}=P_{\mathcal{B E}}$ which means that $[\vec{y}]_{\mathcal{B}}=P^{-1} \vec{y}$. Thus

$$
[T(\vec{x})]_{\mathcal{B}}=[A \vec{x}]_{\mathcal{B}}=P^{-1}(A \vec{x})=
$$

Connection with Diagonalization

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{n}$ by $T(\vec{x})=A \vec{x}$.
Since A is diagonalizable, there is an eigenbasis assoc'd with A; that is, there is a basis $\mathcal{B}=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ for \mathbb{R}^{n} such that each vector \vec{v}_{i} is an eigenvector for A. Assume $A \vec{v}_{i}=\lambda_{i} \vec{v}_{i}$. Then
$A=P D P^{-1}$ where $P=\left[\begin{array}{llll}\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{n}\end{array}\right]$ and $D=\left[\begin{array}{cccc}\lambda_{1} & 0 & \ldots & 0 \\ 0 & \lambda_{2} & \ldots & 0 \\ \vdots & \vdots & \vdots & 0 \\ 0 & 0 & \ldots & \lambda_{n}\end{array}\right]$
Recall that $P=P_{\mathcal{E B}}$; so, $P^{-1}=P_{\mathcal{B E}}$ which means that $[\vec{y}]_{\mathcal{B}}=P^{-1} \vec{y}$. Thus

$$
[T(\vec{x})]_{\mathcal{B}}=[A \vec{x}]_{\mathcal{B}}=P^{-1}(A \vec{x})=P^{-1}\left(P D P^{-1} \vec{x}\right)=
$$

Connection with Diagonalization

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{n}$ by $T(\vec{x})=A \vec{x}$.
Since A is diagonalizable, there is an eigenbasis assoc'd with A; that is, there is a basis $\mathcal{B}=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ for \mathbb{R}^{n} such that each vector \vec{v}_{i} is an eigenvector for A. Assume $A \vec{v}_{i}=\lambda_{i} \vec{v}_{i}$. Then
$A=P D P^{-1}$ where $P=\left[\begin{array}{llll}\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{n}\end{array}\right]$ and $D=\left[\begin{array}{cccc}\lambda_{1} & 0 & \ldots & 0 \\ 0 & \lambda_{2} & \ldots & 0 \\ \vdots & \vdots & \vdots & 0 \\ 0 & 0 & \ldots & \lambda_{n}\end{array}\right]$
Recall that $P=P_{\mathcal{E B}}$; so, $P^{-1}=P_{\mathcal{B E}}$ which means that $[\vec{y}]_{\mathcal{B}}=P^{-1} \vec{y}$. Thus

$$
[T(\vec{x})]_{\mathcal{B}}=[A \vec{x}]_{\mathcal{B}}=P^{-1}(A \vec{x})=P^{-1}\left(P D P^{-1} \vec{x}\right)=D\left(P^{-1} \vec{x}\right)=
$$

Connection with Diagonalization

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{n}$ by $T(\vec{x})=A \vec{x}$.
Since A is diagonalizable, there is an eigenbasis assoc'd with A; that is, there is a basis $\mathcal{B}=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ for \mathbb{R}^{n} such that each vector \vec{v}_{i} is an eigenvector for A. Assume $A \vec{v}_{i}=\lambda_{i} \vec{v}_{i}$. Then
$A=P D P^{-1}$ where $P=\left[\begin{array}{llll}\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{n}\end{array}\right]$ and $D=\left[\begin{array}{cccc}\lambda_{1} & 0 & \ldots & 0 \\ 0 & \lambda_{2} & \ldots & 0 \\ \vdots & \vdots & \vdots & 0 \\ 0 & 0 & \ldots & \lambda_{n}\end{array}\right]$
Recall that $P=P_{\mathcal{E B}}$; so, $P^{-1}=P_{\mathcal{B E}}$ which means that $[\vec{y}]_{\mathcal{B}}=P^{-1} \vec{y}$. Thus

$$
[T(\vec{x})]_{\mathcal{B}}=[A \vec{x}]_{\mathcal{B}}=P^{-1}(A \vec{x})=P^{-1}\left(P D P^{-1} \vec{x}\right)=D\left(P^{-1} \vec{x}\right)=D[\vec{x}]_{\mathcal{B}}
$$

Connection with Diagonalization

Let A be a diagonalizable $n \times n$ matrix. Define $\mathbb{R}^{n} \xrightarrow{T} \mathbb{R}^{n}$ by $T(\vec{x})=A \vec{x}$.
Since A is diagonalizable, there is an eigenbasis assoc'd with A; that is, there is a basis $\mathcal{B}=\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ for \mathbb{R}^{n} such that each vector \vec{v}_{i} is an eigenvector for A. Assume $A \vec{v}_{i}=\lambda_{i} \vec{v}_{i}$. Then
$A=P D P^{-1}$ where $P=\left[\begin{array}{llll}\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{n}\end{array}\right]$ and $D=\left[\begin{array}{cccc}\lambda_{1} & 0 & \ldots & 0 \\ 0 & \lambda_{2} & \ldots & 0 \\ \vdots & \vdots & \vdots & 0 \\ 0 & 0 & \ldots & \lambda_{n}\end{array}\right]$
Recall that $P=P_{\mathcal{E B}}$; so, $P^{-1}=P_{\mathcal{B E}}$ which means that $[\vec{y}]_{\mathcal{B}}=P^{-1} \vec{y}$. Thus

$$
[T(\vec{x})]_{\mathcal{B}}=[A \vec{x}]_{\mathcal{B}}=P^{-1}(A \vec{x})=P^{-1}\left(P D P^{-1} \vec{x}\right)=D\left(P^{-1} \vec{x}\right)=D[\vec{x}]_{\mathcal{B}}
$$

This says that $D=[T]_{\mathcal{B}}=[T]_{\mathcal{B B}}$.

A 3×3 Example

The matrix $A=\left[\begin{array}{ccc}4 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 4\end{array}\right]$ has simple eigenvalues $3,4,6$ with
associated eigenvectors

A 3×3 Example

The matrix $A=\left[\begin{array}{ccc}4 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 4\end{array}\right]$ has simple eigenvalues $3,4,6$ with associated eigenvectors $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], \overrightarrow{v_{2}}=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right], \vec{v}_{3}=\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]$.

A 3×3 Example

The matrix $A=\left[\begin{array}{ccc}4 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 4\end{array}\right]$ has simple eigenvalues $3,4,6$ with associated eigenvectors $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right], \vec{v}_{3}=\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]$.

Since $\mathcal{B}=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is a basis for \mathbb{R}^{3}, A is diagonalizable with

$$
A=P D P^{-1} \quad \text { where } \quad P=\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & -2 \\
1 & 1 & 1
\end{array}\right] \quad \text { and } \quad D=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 6
\end{array}\right]
$$

A 3×3 Example

The matrix $A=\left[\begin{array}{ccc}4 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 4\end{array}\right]$ has simple eigenvalues $3,4,6$ with associated eigenvectors $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right], \vec{v}_{3}=\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]$.

Since $\mathcal{B}=\left\{\vec{v}_{1}, \vec{v}_{2}, \overrightarrow{v_{3}}\right\}$ is a basis for \mathbb{R}^{3}, A is diagonalizable with

$$
A=P D P^{-1} \quad \text { where } P=\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & -2 \\
1 & 1 & 1
\end{array}\right] \quad \text { and } \quad D=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 6
\end{array}\right]
$$

Here D is the \mathcal{B}-matrix for the $\mathrm{LT} \vec{x} \mapsto A \vec{x}$.

