Change of Basis and Coordinates

Linear Algebra MATH 2076

Change of Bases n Coords

Let $\mathcal{B} = \{ ec{b}_1, \dots, ec{b}_k \}$ be a basis for a vector space $\mathbb{V}.$

Let $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_k\}$ be a basis for a vector space \mathbb{V} . Then for each vector \vec{v} in \mathbb{V} , there are *unique* scalars c_1, c_2, \dots, c_k such that

Let $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_k\}$ be a basis for a vector space \mathbb{V} . Then for each vector \vec{v} in \mathbb{V} , there are *unique* scalars c_1, c_2, \dots, c_k such that

$$\vec{v} = c_1 \vec{b}_1 + c_2 \vec{b}_2 + \dots + c_k \vec{b}_k = \sum_{i=1}^k c_i \vec{b}_i.$$

Let $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_k\}$ be a basis for a vector space \mathbb{V} . Then for each vector \vec{v} in \mathbb{V} , there are *unique* scalars c_1, c_2, \dots, c_k such that

$$\vec{v} = c_1 \vec{b}_1 + c_2 \vec{b}_2 + \dots + c_k \vec{b}_k = \sum_{i=1}^k c_i \vec{b}_i.$$

We call c_1, c_2, \ldots, c_k the *B*-coordinates of \vec{v}

Let $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_k\}$ be a basis for a vector space \mathbb{V} . Then for each vector \vec{v} in \mathbb{V} , there are *unique* scalars c_1, c_2, \dots, c_k such that

$$\vec{v} = c_1 \vec{b}_1 + c_2 \vec{b}_2 + \dots + c_k \vec{b}_k = \sum_{i=1}^k c_i \vec{b}_i.$$

We call c_1, c_2, \ldots, c_k the *B*-coordinates of \vec{v} and $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \end{bmatrix}$ is the *B*-coordinate vector for \vec{v} .

Let $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_k\}$ be a basis for a vector space \mathbb{V} . Then for each vector \vec{v} in \mathbb{V} , there are *unique* scalars c_1, c_2, \dots, c_k such that

$$\vec{v} = c_1 \vec{b}_1 + c_2 \vec{b}_2 + \dots + c_k \vec{b}_k = \sum_{i=1}^k c_i \vec{b}_i.$$

We call c_1, c_2, \ldots, c_k the *B*-coordinates of \vec{v} and $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \end{bmatrix}$ Note that form

Note that $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ is a vector in \mathbb{R}^k .

Coordinates for Subspaces of \mathbb{R}^n

Suppose \mathbb{V} is a vector subspace of \mathbb{R}^n .

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

In this setting, finding coord vectors $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ (for \vec{v} in \mathbb{V}) is just the problem of solving $B\vec{x} = \vec{v}$ where $B = \begin{bmatrix} \vec{b}_1 & \vec{b}_2 & \cdots & \vec{b}_k \end{bmatrix}$.

In this setting, finding coord vectors $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ (for \vec{v} in \mathbb{V}) is just the problem of solving $B\vec{x} = \vec{v}$ where $B = \begin{bmatrix} \vec{b_1} & \vec{b_2} & \cdots & \vec{b_k} \end{bmatrix}$.

That is, given a vector \vec{v} in \mathbb{V} , $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ is just the unique solution to $B\vec{x} = \vec{v}$.

In this setting, finding coord vectors $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ (for \vec{v} in \mathbb{V}) is just the problem of solving $B\vec{x} = \vec{v}$ where $B = \begin{bmatrix} \vec{b}_1 & \vec{b}_2 & \cdots & \vec{b}_k \end{bmatrix}$.

That is, given a vector \vec{v} in \mathbb{V} , $[\vec{v}]_{\mathcal{B}}$ is just the unique solution to $B\vec{x} = \vec{v}$. This is just because if we have $\vec{v} = B\vec{x} = x_1\vec{b}_1 + x_2\vec{b}_2 + \cdots + x_k\vec{b}_k$,

In this setting, finding coord vectors $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ (for \vec{v} in \mathbb{V}) is just the problem of solving $B\vec{x} = \vec{v}$ where $B = \begin{bmatrix} \vec{b_1} & \vec{b_2} & \cdots & \vec{b_k} \end{bmatrix}$.

That is, given a vector \vec{v} in \mathbb{V} , $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ is just the unique solution to $B\vec{x} = \vec{v}$. This is just because if we have $\vec{v} = B\vec{x} = x_1\vec{b}_1 + x_2\vec{b}_2 + \cdots + x_k\vec{b}_k$, then x_1, x_2, \ldots, x_k are the \mathcal{B} -coords of \vec{v} .

In this setting, finding coord vectors $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ (for \vec{v} in \mathbb{V}) is just the problem of solving $B\vec{x} = \vec{v}$ where $B = \begin{bmatrix} \vec{b_1} & \vec{b_2} & \cdots & \vec{b_k} \end{bmatrix}$.

That is, given a vector \vec{v} in \mathbb{V} , $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ is just the unique solution to $B\vec{x} = \vec{v}$. This is just because if we have $\vec{v} = B\vec{x} = x_1\vec{b}_1 + x_2\vec{b}_2 + \cdots + x_k\vec{b}_k$, then x_1, x_2, \ldots, x_k are the \mathcal{B} -coords of \vec{v} .

Again, while \vec{v} is a vector in \mathbb{R}^n , $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ is a vector in \mathbb{R}^k .

Let $\mathcal{B} = \{ ec{b}_1, \dots, ec{b}_k \}$ be a basis for a vector space $\mathbb{V}.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_k\}$ be a basis for a vector space \mathbb{V} . Then each \vec{v} in \mathbb{V} has an associated \mathcal{B} -coordinate vector $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ where c_1, c_2, \dots, c_k are the \mathcal{B} -coordinates of \vec{v} . $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \end{bmatrix}$

Let $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_k\}$ be a basis for a vector space \mathbb{V} . Then each \vec{v} in \mathbb{V} has an associated \mathcal{B} -coordinate vector $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ where c_1, c_2, \dots, c_k are the \mathcal{B} -coordinates of \vec{v} . Again, $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ is a vector in \mathbb{R}^k . $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \end{bmatrix}$

Let $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_k\}$ be a basis for a vector space \mathbb{V} . Then each \vec{v} in \mathbb{V} has an associated \mathcal{B} -coordinate vector $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ where c_1, c_2, \dots, c_k are the \mathcal{B} -coordinates of \vec{v} . Again, $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ is a vector in \mathbb{R}^k . $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \end{bmatrix}$

Now define $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^k$ by the formula $\vec{v} \mapsto [\vec{v}]_{\mathcal{B}}$.

Let $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_k\}$ be a basis for a vector space \mathbb{V} . Then each \vec{v} in \mathbb{V} has an associated \mathcal{B} -coordinate vector $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ where c_1, c_2, \dots, c_k are the \mathcal{B} -coordinates of \vec{v} . Again, $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ is a vector in \mathbb{R}^k . $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_3 \end{bmatrix}$

Now define $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^k$ by the formula $\vec{v} \mapsto [\vec{v}]_{\mathcal{B}}$. This is a LT called the *B*-coordinate mapping.

Let $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_k\}$ be a basis for a vector space \mathbb{V} . Then each \vec{v} in \mathbb{V} has an associated \mathcal{B} -coordinate vector $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ where c_1, c_2, \dots, c_k are the \mathcal{B} -coordinates of \vec{v} . Again, $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ is a vector in \mathbb{R}^k . $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$

Now define $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^k$ by the formula $\vec{v} \mapsto [\vec{v}]_{\mathcal{B}}$. This is a LT called the *B*-coordinate mapping.

The inverse of the \mathcal{B} -coordinate mapping is the linear transformation $\mathbb{R}^k \xrightarrow{T} \mathbb{V}$ given by the formula $[x_1]$

given by the formula

$$T(\vec{x}) = x_1 \vec{b}_1 + x_2 \vec{b}_2 + \dots + x_k \vec{b}_k \quad \text{where} \quad \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_k \end{bmatrix}.$$

Let $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_k\}$ be a basis for a vector space \mathbb{V} . Then each \vec{v} in \mathbb{V} has an associated \mathcal{B} -coordinate vector $[\vec{v}]_{\mathcal{B}}$ $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$ where c_1, c_2, \ldots, c_k are the *B*-coordinates of \vec{v} . Again, $[\vec{v}]_{\mathcal{B}}$ is a vector in \mathbb{R}^k .

Now define $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^k$ by the formula $\vec{v} \mapsto [\vec{v}]_{\mathcal{B}}$. This is a LT called the *B*-coordinate mapping.

The inverse of the \mathcal{B} -coordinate mapping is the linear transformation $\mathbb{R}^k \xrightarrow{T} \mathbb{V}$ given by the formula $\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_k \end{bmatrix}$

$$T(\vec{x}) = x_1 \vec{b}_1 + x_2 \vec{b}_2 + \dots + x_k \vec{b}_k$$
 where $\vec{x} = \begin{vmatrix} x_2 \\ \vdots \end{vmatrix}$

Thus \vec{x} in \mathbb{R}^k is mapped to $\vec{v} = T(\vec{x})$ in \mathbb{V} and $\left[\vec{v}\right]_{\mathcal{B}} = \vec{x}.$

- 4 同 6 4 日 6 4 日 6

Let $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_k\}$ be a basis for a vector space \mathbb{V} . Then each \vec{v} in \mathbb{V} has an associated \mathcal{B} -coordinate vector $|\vec{v}|_{\mathcal{B}}$ $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$ where c_1, c_2, \ldots, c_k are the *B*-coordinates of \vec{v} . Again, $[\vec{v}]_{\mathcal{B}}$ is a vector in \mathbb{R}^k .

Now define $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^k$ by the formula $\vec{v} \mapsto [\vec{v}]_{\mathcal{B}}$. This is a LT called the *B*-coordinate mapping.

The inverse of the \mathcal{B} -coordinate mapping is the linear transformation $\mathbb{R}^k \xrightarrow{T} \mathbb{V}$ given by the formula $\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_k \end{bmatrix}$

$$T(\vec{x}) = x_1 \vec{b}_1 + x_2 \vec{b}_2 + \dots + x_k \vec{b}_k$$
 where $\vec{x} = \begin{vmatrix} x_1 \\ y_2 \end{vmatrix}$

Thus \vec{x} in \mathbb{R}^k is mapped to $\vec{v} = T(\vec{x})$ in \mathbb{V} and $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}} = \vec{x}$. That is, $\begin{bmatrix} T(\vec{x}) \end{bmatrix}_{\mathcal{B}} = \vec{x}$.

Again, let \mathcal{B} be a basis for a vector space \mathbb{V} . Then:

A D > A A > A > A

Again, let ${\mathcal B}$ be a basis for a vector space ${\mathbb V}.$ Then:

• for all
$$\vec{v}, \vec{w}$$
 in \mathbb{V} , $\left[\vec{v} + \vec{w}\right]_{\mathcal{B}} = \left[\vec{v}\right]_{\mathcal{B}} + \left[\vec{w}\right]_{\mathcal{B}}$

A D > A A > A > A

Again, let ${\mathcal B}$ be a basis for a vector space ${\mathbb V}.$ Then:

- for all \vec{v}, \vec{w} in \mathbb{V} , $\left[\vec{v} + \vec{w}\right]_{\mathcal{B}} = \left[\vec{v}\right]_{\mathcal{B}} + \left[\vec{w}\right]_{\mathcal{B}}$
- for all scalars s and all \vec{v} in \mathbb{V} , $[s\vec{v}]_{\mathcal{B}} = s[\vec{v}]_{\mathcal{B}}$

Again, let ${\mathcal B}$ be a basis for a vector space ${\mathbb V}.$ Then:

- for all \vec{v}, \vec{w} in \mathbb{V} , $\left[\vec{v} + \vec{w}\right]_{\mathcal{B}} = \left[\vec{v}\right]_{\mathcal{B}} + \left[\vec{w}\right]_{\mathcal{B}}$
- for all scalars s and all \vec{v} in \mathbb{V} , $[s\vec{v}]_{\mathcal{B}} = s[\vec{v}]_{\mathcal{B}}$

This means that for any vectors $\vec{v_1}, \ldots, \vec{v_q}$ in \mathbb{V} ,

Again, let ${\mathcal B}$ be a basis for a vector space ${\mathbb V}.$ Then:

- for all \vec{v}, \vec{w} in \mathbb{V} , $\left[\vec{v} + \vec{w}\right]_{\mathcal{B}} = \left[\vec{v}\right]_{\mathcal{B}} + \left[\vec{w}\right]_{\mathcal{B}}$
- for all scalars s and all \vec{v} in \mathbb{V} , $[s\vec{v}]_{\mathcal{B}} = s[\vec{v}]_{\mathcal{B}}$

This means that for any vectors $\vec{v_1}, \ldots, \vec{v_q}$ in \mathbb{V} , the \mathcal{B} -coord vector for any LC of the $\vec{v_i}$'s if the same LC of the \mathcal{B} -coord vectors;

Again, let ${\mathcal B}$ be a basis for a vector space ${\mathbb V}.$ Then:

- for all \vec{v}, \vec{w} in \mathbb{V} , $\left[\vec{v} + \vec{w}\right]_{\mathcal{B}} = \left[\vec{v}\right]_{\mathcal{B}} + \left[\vec{w}\right]_{\mathcal{B}}$
- for all scalars s and all \vec{v} in \mathbb{V} , $[s\vec{v}]_{\mathcal{B}} = s[\vec{v}]_{\mathcal{B}}$

This means that for any vectors $\vec{v}_1, \ldots, \vec{v}_q$ in \mathbb{V} , the \mathcal{B} -coord vector for any LC of the \vec{v}_i 's if the same LC of the \mathcal{B} -coord vectors; that is,

$$\left[\sum_{i=1}^{q} s_i \vec{v_i}\right]_{\mathcal{B}} = \sum_{i=1}^{q} s_i \left[\vec{v_i}\right]_{\mathcal{B}}.$$

Again, let ${\mathcal B}$ be a basis for a vector space ${\mathbb V}.$ Then:

- for all \vec{v}, \vec{w} in $\mathbb{V}, [\vec{v} + \vec{w}]_{\mathcal{B}} = [\vec{v}]_{\mathcal{B}} + [\vec{w}]_{\mathcal{B}}$
- for all scalars s and all \vec{v} in \mathbb{V} , $[s\vec{v}]_{\mathcal{B}} = s[\vec{v}]_{\mathcal{B}}$

This means that for any vectors $\vec{v_1}, \ldots, \vec{v_q}$ in \mathbb{V} , the \mathcal{B} -coord vector for any LC of the $\vec{v_i}$'s if the same LC of the \mathcal{B} -coord vectors; that is,

$$\left[\sum_{i=1}^{q} s_i \vec{v_i}\right]_{\mathcal{B}} = \sum_{i=1}^{q} s_i \left[\vec{v_i}\right]_{\mathcal{B}}.$$

This is why the \mathcal{B} -coord mapping $\vec{v} \mapsto \begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ is a linear transformation.

Suppose we have two bases, say \mathcal{A} and \mathcal{B} for a vector space \mathbb{V} .

Suppose we have two bases, say ${\mathcal A}$ and ${\mathcal B}$ for a vector space ${\mathbb V}.$

How are the coordinate vectors $[\vec{v}]_{B}$ and $[\vec{v}]_{A}$ related to each other?

Suppose we have two bases, say \mathcal{A} and \mathcal{B} for a vector space \mathbb{V} .

How are the coordinate vectors $[\vec{v}]_{B}$ and $[\vec{v}]_{A}$ related to each other?

If we know one coordinate vector, how do we get the other?

Suppose we have two bases, say \mathcal{A} and \mathcal{B} for a vector space \mathbb{V} . How are the coordinate vectors $[\vec{v}]_{\mathcal{B}}$ and $[\vec{v}]_{\mathcal{A}}$ related to each other? If we know one coordinate vector, how do we get the other? How are the coordinate maps $\vec{v} \mapsto [\vec{v}]_{\mathcal{B}}$ and $\vec{v} \mapsto [\vec{v}]_{\mathcal{A}}$ related?

$$\mathcal{B}=\{\vec{b}_1,\vec{b}_2\}=\left\{\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}-1\\1\end{bmatrix}\right\} \text{ is a basis for } \mathbb{R}^2 \text{ and } \begin{bmatrix}1\\3\end{bmatrix}=$$

$$\mathcal{B} = \{\vec{b}_1, \vec{b}_2\} = \left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\} \text{ is a basis for } \mathbb{R}^2 \text{ and } \begin{bmatrix} 1\\3 \end{bmatrix} = 2\begin{bmatrix} 1\\1 \end{bmatrix} + \begin{bmatrix} -1\\1 \end{bmatrix},$$

SO

$$\begin{split} &\mathcal{B} = \{\vec{b}_1, \vec{b}_2\} = \left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\} \text{ is a basis for } \mathbb{R}^2 \text{ and } \begin{bmatrix} 1\\3 \end{bmatrix} = 2 \begin{bmatrix} 1\\1 \end{bmatrix} + \begin{bmatrix} -1\\1 \end{bmatrix}, \\ &\text{so } \begin{bmatrix} 1\\3 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 2\\1 \end{bmatrix}. \end{split}$$

$$\mathcal{B} = \{\vec{b}_1, \vec{b}_2\} = \left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\} \text{ is a basis for } \mathbb{R}^2 \text{ and } \begin{bmatrix} 1\\3 \end{bmatrix} = 2 \begin{bmatrix} 1\\1 \end{bmatrix} + \begin{bmatrix} -1\\1 \end{bmatrix},$$

so $\begin{bmatrix} 1\\3 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 2\\1 \end{bmatrix}$. What are the \mathcal{B} -coord vectors for each of $\begin{bmatrix} -7\\10 \end{bmatrix}, \begin{bmatrix} 8\\9 \end{bmatrix}, \begin{bmatrix} x\\y \end{bmatrix}$?

 $\mathcal{B} = \{\vec{b}_1, \vec{b}_2\} = \left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\} \text{ is a basis for } \mathbb{R}^2 \text{ and } \begin{bmatrix} 1\\3 \end{bmatrix} = 2\begin{bmatrix} 1\\1 \end{bmatrix} + \begin{bmatrix} -1\\1 \end{bmatrix},$ so $\begin{bmatrix} 1\\3 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 2\\1 \end{bmatrix}$. What are the \mathcal{B} -coord vectors for each of $\begin{bmatrix} -7\\10 \end{bmatrix}, \begin{bmatrix} 8\\9 \end{bmatrix}, \begin{bmatrix} x\\y \end{bmatrix}$? We could just solve the appropriate SLEs, but is there a better way?

$$\mathcal{B} = \{\vec{b}_1, \vec{b}_2\} = \left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\} \text{ is a basis for } \mathbb{R}^2 \text{ and } \begin{bmatrix} 1\\3 \end{bmatrix} = 2 \begin{bmatrix} 1\\1 \end{bmatrix} + \begin{bmatrix} -1\\1 \end{bmatrix},$$

so $\begin{bmatrix} 1\\3 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 2\\1 \end{bmatrix}$. What are the \mathcal{B} -coord vectors for each of $\begin{bmatrix} -7\\10 \end{bmatrix}, \begin{bmatrix} 8\\9 \end{bmatrix}, \begin{bmatrix} x\\y \end{bmatrix}$? We could just solve the appropriate SLEs, but is there a better way?

Remember, $\vec{x} = \begin{bmatrix} \vec{b}_1 & \vec{b}_2 \end{bmatrix} \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$, right?

イロン 不問 とくほど 不良という

$$\mathcal{B} = \{\vec{b}_1, \vec{b}_2\} = \left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\} \text{ is a basis for } \mathbb{R}^2 \text{ and } \begin{bmatrix} 1\\3 \end{bmatrix} = 2 \begin{bmatrix} 1\\1 \end{bmatrix} + \begin{bmatrix} -1\\1 \end{bmatrix},$$

so $\begin{bmatrix} 1\\3 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 2\\1 \end{bmatrix}$. What are the \mathcal{B} -coord vectors for each of $\begin{bmatrix} -7\\10 \end{bmatrix}, \begin{bmatrix} 8\\9 \end{bmatrix}, \begin{bmatrix} x\\y \end{bmatrix}$? We could just solve the appropriate SLEs, but is there a better way?

Remember,
$$\vec{x} = \begin{bmatrix} \vec{b}_1 & \vec{b}_2 \end{bmatrix} \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$$
, right? Letting $P = \begin{bmatrix} \vec{b}_1 & \vec{b}_2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ we have

$$\mathcal{B} = \{\vec{b}_1, \vec{b}_2\} = \left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\} \text{ is a basis for } \mathbb{R}^2 \text{ and } \begin{bmatrix} 1\\3 \end{bmatrix} = 2 \begin{bmatrix} 1\\1 \end{bmatrix} + \begin{bmatrix} -1\\1 \end{bmatrix},$$

so $\begin{bmatrix} 1\\3 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 2\\1 \end{bmatrix}$. What are the \mathcal{B} -coord vectors for each of $\begin{bmatrix} -7\\10 \end{bmatrix}, \begin{bmatrix} 8\\9 \end{bmatrix}, \begin{bmatrix} x\\y \end{bmatrix}$? We could just solve the appropriate SLEs, but is there a better way?

Remember,
$$\vec{x} = \begin{bmatrix} \vec{b}_1 & \vec{b}_2 \end{bmatrix} \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$$
, right? Letting $P = \begin{bmatrix} \vec{b}_1 & \vec{b}_2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ we have $\vec{x} = P\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$.

(日) (四) (王) (王) (王)

 $\mathcal{B} = \{\vec{b}_1, \vec{b}_2\} = \left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\} \text{ is a basis for } \mathbb{R}^2 \text{ and } \begin{bmatrix} 1\\3 \end{bmatrix} = 2\begin{bmatrix} 1\\1 \end{bmatrix} + \begin{bmatrix} -1\\1 \end{bmatrix},$ so $\begin{bmatrix} 1\\3 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 2\\1 \end{bmatrix}$. What are the \mathcal{B} -coord vectors for each of $\begin{bmatrix} -7\\10 \end{bmatrix}, \begin{bmatrix} 8\\9 \end{bmatrix}, \begin{bmatrix} x\\y \end{bmatrix}$? We could just solve the appropriate SLEs, but is there a better way?

Remember, $\vec{x} = \begin{bmatrix} \vec{b}_1 & \vec{b}_2 \end{bmatrix} \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$, right? Letting $P = \begin{bmatrix} \vec{b}_1 & \vec{b}_2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ we have $\vec{x} = P \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$. We call P the \mathcal{B} to \mathcal{E} change of coordinates matrix, and write $P = P_{\mathcal{EB}}$.

 $\mathcal{B} = \{\vec{b}_1, \vec{b}_2\} = \left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\} \text{ is a basis for } \mathbb{R}^2 \text{ and } \begin{bmatrix} 1\\3 \end{bmatrix} = 2\begin{bmatrix} 1\\1 \end{bmatrix} + \begin{bmatrix} -1\\1 \end{bmatrix},$ so $\begin{bmatrix} 1\\3 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 2\\1 \end{bmatrix}$. What are the \mathcal{B} -coord vectors for each of $\begin{bmatrix} -7\\10 \end{bmatrix}, \begin{bmatrix} 8\\9 \end{bmatrix}, \begin{bmatrix} x\\y \end{bmatrix}$? We could just solve the appropriate SLEs, but is there a better way?

Remember, $\vec{x} = \begin{bmatrix} \vec{b}_1 & \vec{b}_2 \end{bmatrix} \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$, right? Letting $P = \begin{bmatrix} \vec{b}_1 & \vec{b}_2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ we have $\vec{x} = P \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$. We call P the \mathcal{B} to \mathcal{E} change of coordinates matrix, and write $P = P_{\mathcal{EB}}$. Thus $\begin{bmatrix} \vec{x} = P_{\mathcal{EB}} \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} \end{bmatrix}$.

 $\mathcal{B} = \{\vec{b}_1, \vec{b}_2\} = \left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\} \text{ is a basis for } \mathbb{R}^2 \text{ and } \begin{bmatrix} 1\\3 \end{bmatrix} = 2\begin{bmatrix} 1\\1 \end{bmatrix} + \begin{bmatrix} -1\\1 \end{bmatrix},$ so $\begin{bmatrix} 1\\3 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 2\\1 \end{bmatrix}$. What are the \mathcal{B} -coord vectors for each of $\begin{bmatrix} -7\\10 \end{bmatrix}, \begin{bmatrix} 8\\9 \end{bmatrix}, \begin{bmatrix} x\\y \end{bmatrix}$? We could just solve the appropriate SLEs, but is there a better way?

Remember, $\vec{x} = \begin{bmatrix} \vec{b}_1 & \vec{b}_2 \end{bmatrix} \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$, right? Letting $P = \begin{bmatrix} \vec{b}_1 & \vec{b}_2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ we have $\vec{x} = P \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$. We call P the \mathcal{B} to \mathcal{E} change of coordinates matrix, and write $P = P_{\mathcal{EB}}$. Thus $\begin{bmatrix} \vec{x} = P_{\mathcal{EB}} \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} \end{bmatrix}$.

Notice that P is invertible.

$$\mathcal{B} = \{\vec{b}_1, \vec{b}_2\} = \left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\} \text{ is a basis for } \mathbb{R}^2 \text{ and } \begin{bmatrix} 1\\3 \end{bmatrix} = 2 \begin{bmatrix} 1\\1 \end{bmatrix} + \begin{bmatrix} -1\\1 \end{bmatrix},$$
so $\begin{bmatrix} 1\\3 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 2\\1 \end{bmatrix}$. What are the \mathcal{B} -coord vectors for each of
 $\begin{bmatrix} -7\\10 \end{bmatrix}, \begin{bmatrix} 8\\9 \end{bmatrix}, \begin{bmatrix} x\\y \end{bmatrix}$? We could just solve the appropriate SLEs, but is there a better way?

Remember,
$$\vec{x} = \begin{bmatrix} \vec{b}_1 & \vec{b}_2 \end{bmatrix} \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$$
, right? Letting $P = \begin{bmatrix} \vec{b}_1 & \vec{b}_2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ we have $\vec{x} = P \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$. We call P the \mathcal{B} to \mathcal{E} change of coordinates matrix, and write $P = P_{\mathcal{EB}}$. Thus $\begin{bmatrix} \vec{x} = P_{\mathcal{EB}} \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} \end{bmatrix}$.

Notice that *P* is invertible. Therefore, $P^{-1}\vec{x} = [\vec{x}]_{\mathcal{B}}$.

イロト イヨト イヨト イヨト 二日

$$\mathcal{B} = \{\vec{b}_1, \vec{b}_2\} = \left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\} \text{ is a basis for } \mathbb{R}^2 \text{ and } \begin{bmatrix} 1\\3 \end{bmatrix} = 2 \begin{bmatrix} 1\\1 \end{bmatrix} + \begin{bmatrix} -1\\1 \end{bmatrix},$$
so $\begin{bmatrix} 1\\3 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 2\\1 \end{bmatrix}$. What are the \mathcal{B} -coord vectors for each of
 $\begin{bmatrix} -7\\10 \end{bmatrix}, \begin{bmatrix} 8\\9 \end{bmatrix}, \begin{bmatrix} x\\y \end{bmatrix}$? We could just solve the appropriate SLEs, but is there a better way?

Remember,
$$\vec{x} = \begin{bmatrix} \vec{b}_1 & \vec{b}_2 \end{bmatrix} \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$$
, right? Letting $P = \begin{bmatrix} \vec{b}_1 & \vec{b}_2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ we have $\vec{x} = P \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$. We call P the \mathcal{B} to \mathcal{E} change of coordinates matrix, and write $P = P_{\mathcal{EB}}$. Thus $\begin{bmatrix} \vec{x} = P_{\mathcal{EB}} \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} \end{bmatrix}$.

Notice that *P* is invertible. Therefore, $P^{-1}\vec{x} = \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$. Thus P^{-1} is the

 ${\mathcal E}$ to ${\mathcal B}$ change of coordinates matrix,

Section 4.7

—

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\mathcal{B} = \{\vec{b}_1, \vec{b}_2\} = \left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} -1\\1 \end{bmatrix} \right\} \text{ is a basis for } \mathbb{R}^2 \text{ and } \begin{bmatrix} 1\\3 \end{bmatrix} = 2 \begin{bmatrix} 1\\1 \end{bmatrix} + \begin{bmatrix} -1\\1 \end{bmatrix},$$
so $\begin{bmatrix} 1\\3 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 2\\1 \end{bmatrix}$. What are the \mathcal{B} -coord vectors for each of
 $\begin{bmatrix} -7\\10 \end{bmatrix}, \begin{bmatrix} 8\\9 \end{bmatrix}, \begin{bmatrix} x\\y \end{bmatrix}$? We could just solve the appropriate SLEs, but is there a better way?

Remember,
$$\vec{x} = \begin{bmatrix} \vec{b}_1 & \vec{b}_2 \end{bmatrix} \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$$
, right? Letting $P = \begin{bmatrix} \vec{b}_1 & \vec{b}_2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ we have $\vec{x} = P \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$. We call P the \mathcal{B} to \mathcal{E} change of coordinates matrix, and write $P = P_{\mathcal{EB}}$. Thus $\begin{bmatrix} \vec{x} = P_{\mathcal{EB}} \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} \end{bmatrix}$.

Notice that *P* is invertible. Therefore, $P^{-1}\vec{x} = [\vec{x}]_{\mathcal{B}}$. Thus P^{-1} is the \mathcal{E} to \mathcal{B} change of coordinates matrix, that is, $P_{\mathcal{B}\mathcal{E}} = P_{\mathcal{E}\mathcal{B}}^{-1}$.

Let \mathcal{A} and \mathcal{B} be bases for a vector space \mathbb{V} . Suppose $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_k\}$.

Let \mathcal{A} and \mathcal{B} be bases for a vector space \mathbb{V} . Suppose $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_k\}$. Then each \vec{v} in \mathbb{V} has an associated \mathcal{B} -coordinate vector $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ where c_1, c_2, \dots, c_k are the \mathcal{B} -coordinates of \vec{v} .

Let \mathcal{A} and \mathcal{B} be bases for a vector space \mathbb{V} . Suppose $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_k\}$. Then each \vec{v} in \mathbb{V} has an associated \mathcal{B} -coordinate vector $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ where c_1, c_2, \dots, c_k are the \mathcal{B} -coordinates of \vec{v} . So, $\vec{v} = \sum_{i=1}^k c_i \vec{b}_i$.

Let \mathcal{A} and \mathcal{B} be bases for a vector space \mathbb{V} . Suppose $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_k\}$. Then each \vec{v} in \mathbb{V} has an associated \mathcal{B} -coordinate vector $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ where c_1, c_2, \dots, c_k are the \mathcal{B} -coordinates of \vec{v} . So, $\vec{v} = \sum_{i=1}^k c_i \vec{b}_i$. It follows that $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{A}} = \begin{bmatrix} \sum_{i=1}^k c_i \vec{b}_i \end{bmatrix}_{\mathcal{A}}$ $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \end{bmatrix}$

Let \mathcal{A} and \mathcal{B} be bases for a vector space \mathbb{V} . Suppose $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_k\}$. Then each \vec{v} in \mathbb{V} has an associated \mathcal{B} -coordinate vector $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ where c_1, c_2, \dots, c_k are the \mathcal{B} -coordinates of \vec{v} . So, $\vec{v} = \sum_{i=1}^k c_i \vec{b}_i$. It follows that $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{A}} = \begin{bmatrix} \sum_{i=1}^k c_i \vec{b}_i \end{bmatrix}_{\mathcal{A}} = \sum_{i=1}^k c_i \begin{bmatrix} \vec{b}_i \end{bmatrix}_{\mathcal{A}}$ $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_1 \end{bmatrix}_{\mathcal{A}}$

Let \mathcal{A} and \mathcal{B} be bases for a vector space \mathbb{V} . Suppose $\mathcal{B} = \{b_1, \dots, b_k\}$. Then each \vec{v} in \mathbb{V} has an associated \mathcal{B} -coordinate vector $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ where c_1, c_2, \ldots, c_k are the \mathcal{B} -coordinates of \vec{v} . So, $\vec{v} = \sum_{i=1}^k c_i \vec{b}_i$. $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_1 \end{bmatrix}$ $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{A}} = \begin{bmatrix} \sum_{i=1}^{k} c_i \vec{b}_i \end{bmatrix}_{\mathcal{A}} = \sum_{i=1}^{k} c_i \begin{bmatrix} \vec{b}_i \end{bmatrix}_{\mathcal{A}}$ It follows that $= \left[\begin{bmatrix} \vec{b}_1 \end{bmatrix}_{\mathcal{A}} \dots \begin{bmatrix} \vec{b}_k \end{bmatrix}_{\mathcal{A}} \right] \begin{vmatrix} c_1 \\ \vdots \\ c_k \end{vmatrix}$

Let \mathcal{A} and \mathcal{B} be bases for a vector space \mathbb{V} . Suppose $\mathcal{B} = \{b_1, \dots, b_k\}$. Then each \vec{v} in \mathbb{V} has an associated \mathcal{B} -coordinate vector $[\vec{v}]_{B}$ where $c_1, c_2, ..., c_k$ are the \mathcal{B} -coordinates of \vec{v} . So, $\vec{v} = \sum_{i=1}^{k} c_i \vec{b}_i$. $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \end{bmatrix}$ $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{A}} = \begin{bmatrix} \sum_{i=1}^{k} c_i \vec{b}_i \end{bmatrix}_{\mathcal{A}} = \sum_{i=1}^{k} c_i \begin{bmatrix} \vec{b}_i \end{bmatrix}_{\mathcal{A}}$ It follows that $= \left[\begin{bmatrix} \vec{b}_1 \end{bmatrix}_{\mathcal{A}} \dots \begin{bmatrix} \vec{b}_k \end{bmatrix}_{\mathcal{A}} \right] \begin{vmatrix} c_1 \\ \vdots \\ c_k \end{vmatrix}$ $= P[\vec{v}]_{A}$

Let \mathcal{A} and \mathcal{B} be bases for a vector space \mathbb{V} . Suppose $\mathcal{B} = \{b_1, \dots, b_k\}$. Then each \vec{v} in \mathbb{V} has an associated \mathcal{B} -coordinate vector $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ where c_1, c_2, \ldots, c_k are the \mathcal{B} -coordinates of \vec{v} . $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$ So, $\vec{v} = \sum_{i=1}^{k} c_i \vec{b}_i$. $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{A}} = \begin{bmatrix} \sum_{i=1}^{k} c_i \vec{b}_i \end{bmatrix}_{\mathcal{A}} = \sum_{i=1}^{k} c_i \begin{bmatrix} \vec{b}_i \end{bmatrix}_{\mathcal{A}}$ It follows that $= \left[\begin{bmatrix} \vec{b}_1 \end{bmatrix}_{\mathcal{A}} \dots \begin{bmatrix} \vec{b}_k \end{bmatrix}_{\mathcal{A}} \right] \begin{vmatrix} c_1 \\ \vdots \\ c_k \end{vmatrix}$ $= P[\vec{v}]_{A}$ where $P = \left| \begin{bmatrix} \vec{b_1} \end{bmatrix}_{\mathcal{A}} \dots \begin{bmatrix} \vec{b_k} \end{bmatrix}_{\mathcal{A}} \right|$

Let \mathcal{A} and \mathcal{B} be bases for a vector space \mathbb{V} . Suppose $\mathcal{B} = \{b_1, \dots, b_k\}$. Then each \vec{v} in \mathbb{V} has an associated \mathcal{B} -coordinate vector $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ where c_1, c_2, \ldots, c_k are the \mathcal{B} -coordinates of \vec{v} . So, $\vec{v} = \sum_{i=1}^k c_i \vec{b}_i$. $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$ $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{A}} = \begin{bmatrix} \sum_{i=1}^{k} c_i \vec{b}_i \end{bmatrix}_{\mathcal{A}} = \sum_{i=1}^{k} c_i \begin{bmatrix} \vec{b}_i \end{bmatrix}_{\mathcal{A}}$ It follows that $= \left[\begin{bmatrix} \vec{b}_1 \end{bmatrix}_{\mathcal{A}} \dots \begin{bmatrix} \vec{b}_k \end{bmatrix}_{\mathcal{A}} \right] \begin{vmatrix} c_1 \\ \vdots \\ c_k \end{vmatrix}$ $= P[\vec{v}]_{A}$

where $P = \left[\begin{bmatrix} \vec{b_1} \end{bmatrix}_{\mathcal{A}} \dots \begin{bmatrix} \vec{b_k} \end{bmatrix}_{\mathcal{A}} \right]$ is the \mathcal{B} to \mathcal{A} change of coordinates matrix.

Let \mathcal{A} and \mathcal{B} be bases for a vector space \mathbb{V} . Suppose $\mathcal{B} = \{b_1, \dots, b_k\}$. Then each \vec{v} in \mathbb{V} has an associated \mathcal{B} -coordinate vector $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ where c_1, c_2, \ldots, c_k are the \mathcal{B} -coordinates of \vec{v} . So, $\vec{v} = \sum_{i=1}^k c_i \vec{b}_i$. $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \end{bmatrix}$ $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{A}} = \begin{bmatrix} \sum_{i=1}^{k} c_i \vec{b}_i \end{bmatrix}_{\mathcal{A}} = \sum_{i=1}^{k} c_i \begin{bmatrix} \vec{b}_i \end{bmatrix}_{\mathcal{A}}$ It follows that $= \left[\begin{bmatrix} \vec{b}_1 \end{bmatrix}_{\mathcal{A}} \dots \begin{bmatrix} \vec{b}_k \end{bmatrix}_{\mathcal{A}} \right] \begin{vmatrix} c_1 \\ \vdots \\ c_k \end{vmatrix}$ $= P[\vec{v}]_{A}$

where $P = \left[\left[\vec{b_1} \right]_{\mathcal{A}} \dots \left[\vec{b_k} \right]_{\mathcal{A}} \right]$ is the \mathcal{B} to \mathcal{A} change of coordinates matrix.

Writing $P = P_{AB}$

Let \mathcal{A} and \mathcal{B} be bases for a vector space \mathbb{V} . Suppose $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_k\}$. Then each \vec{v} in \mathbb{V} has an associated \mathcal{B} -coordinate vector $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ where c_1, c_2, \ldots, c_k are the \mathcal{B} -coordinates of \vec{v} . $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_2 \end{bmatrix}$ So, $\vec{v} = \sum_{i=1}^{k} c_i \vec{b}_i$. $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{A}} = \begin{bmatrix} \sum_{i=1}^{k} c_i \vec{b}_i \end{bmatrix}_{\mathcal{A}} = \sum_{i=1}^{k} c_i \begin{bmatrix} \vec{b}_i \end{bmatrix}_{\mathcal{A}}$ It follows that $= \left[\begin{bmatrix} \vec{b}_1 \end{bmatrix}_{\mathcal{A}} \dots \begin{bmatrix} \vec{b}_k \end{bmatrix}_{\mathcal{A}} \right] \begin{vmatrix} c_1 \\ \vdots \\ c_k \end{vmatrix}$ $= P[\vec{v}]_{A}$

where $P = \left[\begin{bmatrix} \vec{b}_1 \end{bmatrix}_{\mathcal{A}} \dots \begin{bmatrix} \vec{b}_k \end{bmatrix}_{\mathcal{A}} \right]$ is the \mathcal{B} to \mathcal{A} change of coordinates matrix. Writing $P = P_{\mathcal{A}\mathcal{B}}$ get $\left[\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{A}} = P_{\mathcal{A}\mathcal{B}} \begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}} \right]$ and $\left[P_{\mathcal{A}\mathcal{B}} = \left[\begin{bmatrix} \vec{b}_1 \end{bmatrix}_{\mathcal{A}} \dots \begin{bmatrix} \vec{b}_k \end{bmatrix}_{\mathcal{A}} \right]$.

Let $\mathcal A$ and $\mathcal B$ be bases for a vector space $\mathbb V.$

A D > A P > A B > A

Let \mathcal{A} and \mathcal{B} be bases for a vector space \mathbb{V} . Consider the \mathcal{B} and \mathcal{A} coordinate mappings from \mathbb{V} to \mathbb{R}^k .

0		
54	ection	14
5	Section	

Let \mathcal{A} and \mathcal{B} be bases for a vector space \mathbb{V} . Consider the \mathcal{B} and \mathcal{A} coordinate mappings from \mathbb{V} to \mathbb{R}^k . Given \vec{v} in \mathbb{V} , let

Let \mathcal{A} and \mathcal{B} be bases for a vector space \mathbb{V} . Consider the \mathcal{B} and \mathcal{A} coordinate mappings from \mathbb{V} to \mathbb{R}^k . Given \vec{v} in \mathbb{V} , let

$$\vec{x} = \begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$$
 and $\vec{y} = \begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{A}}$

Let \mathcal{A} and \mathcal{B} be bases for a vector space \mathbb{V} . Consider the \mathcal{B} and \mathcal{A} coordinate mappings from \mathbb{V} to \mathbb{R}^k . Given \vec{v} in \mathbb{V} , let

$$\vec{x} = \left[\vec{v}
ight]_{\mathcal{B}}$$
 and $\vec{y} = \left[\vec{v}
ight]_{\mathcal{A}}$

Consider the LT $\mathbb{R}^k \to \mathbb{R}^k$ given by $\vec{x} \mapsto \vec{y}$.

Let \mathcal{A} and \mathcal{B} be bases for a vector space \mathbb{V} . Consider the \mathcal{B} and \mathcal{A} coordinate mappings from \mathbb{V} to \mathbb{R}^k . Given \vec{v} in \mathbb{V} , let

$$\vec{x} = \left[\vec{v} \right]_{\mathcal{B}}$$
 and $\vec{y} = \left[\vec{v} \right]_{\mathcal{A}}$

Consider the LT
$$\mathbb{R}^k \to \mathbb{R}^k$$
 given by $\vec{x} \mapsto \vec{y}$.

This is a matrix transformation, and evidently

Let \mathcal{A} and \mathcal{B} be bases for a vector space \mathbb{V} . Consider the \mathcal{B} and \mathcal{A} coordinate mappings from \mathbb{V} to \mathbb{R}^k . Given \vec{v} in \mathbb{V} , let

$$\vec{x} = \left[\vec{v} \right]_{\mathcal{B}}$$
 and $\vec{y} = \left[\vec{v} \right]_{\mathcal{A}}$

Consider the LT
$$\mathbb{R}^k \to \mathbb{R}^k$$
 given by $\vec{x} \mapsto \vec{y}$.

This is a matrix transformation, and evidently $\vec{y} = \begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{A}} = P \begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{A}}$

(日) (同) (日) (日) (日)

Let \mathcal{A} and \mathcal{B} be bases for a vector space \mathbb{V} . Consider the \mathcal{B} and \mathcal{A} coordinate mappings from \mathbb{V} to \mathbb{R}^k . Given \vec{v} in \mathbb{V} , let

$$\vec{x} = \begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$$
 and $\vec{y} = \begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{A}}$.

Consider the LT
$$\mathbb{R}^k \to \mathbb{R}^k$$
 given by $\vec{x} \mapsto \vec{y}$.

This is a matrix transformation, and evidently $\vec{y} = \begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{A}} = P \begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{A}} = P \vec{x}$ where

(日) (同) (日) (日) (日)

Let \mathcal{A} and \mathcal{B} be bases for a vector space \mathbb{V} . Consider the \mathcal{B} and \mathcal{A} coordinate mappings from \mathbb{V} to \mathbb{R}^k . Given \vec{v} in \mathbb{V} , let

$$\vec{x} = \begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$$
 and $\vec{y} = \begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{A}}$.

Consider the LT
$$\mathbb{R}^k \to \mathbb{R}^k$$
 given by $\vec{x} \mapsto \vec{y}$.

This is a matrix transformation, and evidently $\vec{y} = [\vec{v}]_{\mathcal{A}} = P[\vec{v}]_{\mathcal{A}} = P\vec{x}$ where $P = P_{\mathcal{AB}}$.

(日) (同) (三) (三)

Find
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}_{\mathcal{B}}$$
 where $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \vec{b}_3\} = \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \right\}$ is a basis for \mathbb{R}^3 .

(日) (四) (三) (三) (三)

Find
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}_{\mathcal{B}}$$
 where $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \vec{b}_3\} = \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \right\}$ is a basis for \mathbb{R}^3 .
 $P = \begin{bmatrix} \vec{b}_1 \ \vec{b}_2 \ \vec{b}_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix} = P_{\mathcal{EB}},$

Find
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}_{\mathcal{B}}$$
 where $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \vec{b}_3\} = \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \right\}$ is a basis for \mathbb{R}^3 .
 $P = \begin{bmatrix} \vec{b}_1 \ \vec{b}_2 \ \vec{b}_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix} = P_{\mathcal{EB}}$, so $P_{\mathcal{BE}} = P^{-1} = \begin{bmatrix} 3 & -2 & 1 \\ -2 & 2 & -1 \\ 1 & -1 & 1 \end{bmatrix}$.

Find
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}_{\mathcal{B}}$$
 where $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \vec{b}_3\} = \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \right\}$ is a basis for \mathbb{R}^3
 $P = \begin{bmatrix} \vec{b}_1 \ \vec{b}_2 \ \vec{b}_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix} = P_{\mathcal{EB}}$, so $P_{\mathcal{BE}} = P^{-1} = \begin{bmatrix} 3 & -2 & 1 \\ -2 & 2 & -1 \\ 1 & -1 & 1 \end{bmatrix}$.
Thus

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}_{\mathcal{B}} = P_{\mathcal{B}\mathcal{E}} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 & -2 & 1 \\ -2 & 2 & -1 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3x - 2y + z \\ -2x + 2y - z \\ x - y + z \end{bmatrix}$$

Find
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}_{\mathcal{B}}$$
 where $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \vec{b}_3\} = \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \right\}$ is a basis for \mathbb{R}^3
 $P = \begin{bmatrix} \vec{b}_1 \ \vec{b}_2 \ \vec{b}_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix} = P_{\mathcal{EB}}$, so $P_{\mathcal{BE}} = P^{-1} = \begin{bmatrix} 3 & -2 & 1 \\ -2 & 2 & -1 \\ 1 & -1 & 1 \end{bmatrix}$.
Thus

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}_{\mathcal{B}} = P_{\mathcal{B}\mathcal{E}} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 & -2 & 1 \\ -2 & 2 & -1 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3x - 2y + z \\ -2x + 2y - z \\ x - y + z \end{bmatrix}$$

or example,
$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix}.$$

F