Change of Basis and Coordinates

Linear Algebra MATH 2076

Coordinates and Coordinate Vectors

Let $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_k\}$ be a basis for a vector space \mathbb{V} . Then for each vector \vec{v} in \mathbb{V} , there are *unique* scalars c_1, c_2, \dots, c_k such that

$$\vec{v} = c_1 \vec{b}_1 + c_2 \vec{b}_2 + \dots + c_k \vec{b}_k = \sum_{i=1}^k c_i \vec{b}_i.$$

We call c_1, c_2, \ldots, c_k the \mathcal{B} -coordinates of \vec{v} and $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_k \end{bmatrix}$

Note that $[\vec{v}]_{\mathcal{B}}$ is a vector in \mathbb{R}^k .

Coordinates for Subspaces of \mathbb{R}^n

Suppose V is a vector subspace of \mathbb{R}^n .

In this setting, finding coord vectors $\left[\vec{v}\right]_{\mathcal{B}}$ (for \vec{v} in \mathbb{V}) is just the problem of solving $B\vec{x}=\vec{v}$ where $B=\left[\vec{b}_1\ \vec{b}_2\cdots\vec{b}_k\right]$.

Given a vector \vec{v} in \mathbb{V} , $[\vec{v}]_{\mathcal{B}}$ is the unique solution to $B\vec{x} = \vec{v}$. This holds because if $\vec{v} = B\vec{x} = x_1\vec{b}_1 + x_2\vec{b}_2 + \cdots + x_k\vec{b}_k$, then x_1, x_2, \ldots, x_k are the \mathcal{B} -coords of \vec{v} .

Again, while \vec{v} is a vector in \mathbb{R}^n , $[\vec{v}]_{\mathcal{B}}$ is a vector in \mathbb{R}^k .

Coordinate Mappings

Let $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_k\}$ be a basis for a vector space \mathbb{V} . Then each \vec{v} in \mathbb{V} $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_\ell \end{bmatrix}$ has an associated \mathcal{B} -coordinate vector $|\vec{v}|_{\mathcal{B}}$ where c_1, c_2, \ldots, c_k are the \mathcal{B} -coordinates of \vec{v} . Again, $[\vec{v}]_{R}$ is a vector in \mathbb{R}^{k} .

The \mathcal{B} -coordinate mapping is the LT $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^k$ given by the formula $\vec{\mathbf{v}} \mapsto \begin{bmatrix} \vec{\mathbf{v}} \end{bmatrix}_{\mathcal{B}}$.

The inverse of the \mathcal{B} -coordinate mapping is the linear transformation

 $\mathbb{R}^k \xrightarrow{T} \mathbb{V}$ given by the formula

given by the formula
$$T(\vec{x}) = x_1 \vec{b}_1 + x_2 \vec{b}_2 + \dots + x_k \vec{b}_k \quad \text{where} \quad \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_k \end{bmatrix}.$$

$$\mathbb{R}^k \text{ is mapped to } \vec{v} = T(\vec{x}) \text{ in } \mathbb{V} \text{ and}$$

Thus \vec{x} in \mathbb{R}^k is mapped to $\vec{v} = T(\vec{x})$ in \mathbb{V} and $[\vec{v}]_{R} = \vec{x}$. That is, $[T(\vec{x})]_{R} = \vec{x}$.

Two Bases

Suppose we have two bases, say ${\mathcal A}$ and ${\mathcal B}$ for a vector space ${\mathbb V}.$

How are the coordinate vectors $[\vec{v}]_{\mathcal{B}}$ and $[\vec{v}]_{\mathcal{A}}$ related to each other?

If we know one coordinate vector, how do we get the other?

How are the coordinate maps $\vec{v}\mapsto \left[\vec{v}\right]_{\mathcal{B}}$ and $\vec{v}\mapsto \left[\vec{v}\right]_{\mathcal{A}}$ related?

Example

$$\begin{split} \mathcal{B} &= \{\vec{b}_1, \vec{b}_2\} = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\} \text{ is a basis for } \mathbb{R}^2 \text{ and } \begin{bmatrix} 1 \\ 3 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \\ \text{so } \begin{bmatrix} 1 \\ 3 \end{bmatrix}_{\mathcal{B}} &= \begin{bmatrix} 2 \\ 1 \end{bmatrix}. \text{ What are the \mathcal{B}-coord vectors for } \begin{bmatrix} -4 \\ 2 \end{bmatrix}, \begin{bmatrix} -7 \\ 10 \end{bmatrix}, \begin{bmatrix} x \\ y \end{bmatrix}? \end{split}$$

We could just solve the appropriate SLEs, but is there a better way?

Remember,
$$\vec{x} = \begin{bmatrix} \vec{b}_1 \ \vec{b}_2 \end{bmatrix} \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$$
, right? Letting $P = \begin{bmatrix} \vec{b}_1 \ \vec{b}_2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ we have $\vec{x} = P \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$. We call P the \mathcal{B} to \mathcal{E} change of coordinates matrix, and write $P = P_{\mathcal{E}\mathcal{B}}$. Thus $\vec{x} = P_{\mathcal{E}\mathcal{B}} \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$.

Notice that P is invertible. Therefore, $P^{-1}\vec{x} = [\vec{x}]_{\mathcal{B}}$. Thus P^{-1} is the \mathcal{E} to \mathcal{B} change of coordinates matrix, that is, $P_{\mathcal{B}\mathcal{E}} = P_{\mathcal{E}\mathcal{B}}^{-1}$.

Example (continued)

For
$$\mathcal{B} = \{\vec{b}_1, \vec{b}_2\} = \{\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix}\}$$
, $P = P_{\mathcal{EB}} = \begin{bmatrix} \vec{b}_1 & \vec{b}_2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ is the \mathcal{B} to \mathcal{E} change of coordinates matrix and $P_{\mathcal{BS}} = P_{-1}^{-1} = P_{-1}^{-1}$ is the \mathcal{E} to \mathcal{B}

 $\mathcal B$ to $\mathcal E$ change of coordinates matrix and $P_{\mathcal B\mathcal E}=P_{\mathcal E\mathcal B}^{-1}=P^{-1}$ is the $\mathcal E$ to $\mathcal B$ change of coordinates matrix.

We find that
$$P^{-1} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$
, so
$$\begin{bmatrix} x \\ y \end{bmatrix}_{\mathcal{B}} = P_{\mathcal{B}\mathcal{E}} \begin{bmatrix} x \\ y \end{bmatrix} = P^{-1} \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{2} \begin{bmatrix} x+y \\ y-x \end{bmatrix}.$$

$$\mathcal{A} = \{\vec{a}_1, \vec{a}_2\} = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -3 \\ 4 \end{bmatrix} \right\}$$
 is also a basis for \mathbb{R}^2 .

What are the \mathcal{A} -coord vectors for $\begin{bmatrix} -4\\2 \end{bmatrix}$, $\begin{bmatrix} -7\\10 \end{bmatrix}$, $\begin{bmatrix} x\\y \end{bmatrix}$?

How do \mathcal{A} -coords and \mathcal{B} -coords compare?

Example (continued)

$$\begin{split} \mathcal{B} &= \{\vec{b}_1, \vec{b}_2\} = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\}, \mathcal{A} = \{\vec{a}_1, \vec{a}_2\} = \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -3 \\ 4 \end{bmatrix} \right\} \text{ bases of } \mathbb{R}^2 \\ P &= P_{\mathcal{EB}} = \begin{bmatrix} \vec{b}_1 \ \vec{b}_2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \text{ is the } \mathcal{B} \text{ to } \mathcal{E} \text{ change of coordinates matrix} \\ \text{and } P_{\mathcal{BE}} &= P_{\mathcal{EB}}^{-1} = P^{-1} \text{ is the } \mathcal{E} \text{ to } \mathcal{B} \text{ change of coordinates matrix}. \end{split}$$

$$Q = P_{\mathcal{E}\mathcal{A}} = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \end{bmatrix} = \begin{bmatrix} 1 & -3 \\ 2 & 4 \end{bmatrix}$$
 is the \mathcal{A} to \mathcal{E} change of coords matrix and $P_{\mathcal{A}\mathcal{E}} = P_{\mathcal{E}\mathcal{A}}^{-1} = Q^{-1} = \frac{1}{10} \begin{bmatrix} 4 & 3 \\ -2 & 1 \end{bmatrix}$ is the \mathcal{E} to \mathcal{A} change of coords matrix.

We compute
$$\begin{bmatrix} -4 \\ 2 \end{bmatrix}_{\mathcal{A}}$$
 in two different ways. First (as above):
$$\begin{bmatrix} -4 \\ 2 \end{bmatrix}_{\mathcal{A}} = P_{\mathcal{A}\mathcal{E}} \begin{bmatrix} -4 \\ 2 \end{bmatrix} = Q^{-1} \begin{bmatrix} -4 \\ 2 \end{bmatrix} = \frac{1}{10} \begin{bmatrix} 4 & 3 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} -4 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

Example—second way to compute $\begin{bmatrix} -4 \\ 2 \end{bmatrix}_{\mathcal{A}}$

$$P = P_{\mathcal{EB}} = \begin{bmatrix} \vec{b}_1 \ \vec{b}_2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$
 and $P_{\mathcal{BE}} = P_{\mathcal{EB}}^{-1} = P^{-1} = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$ are the \mathcal{B} to \mathcal{E} and \mathcal{E} to \mathcal{B} change of coords matrices.

$$Q = P_{\mathcal{E}\mathcal{A}} = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \end{bmatrix} = \begin{bmatrix} 1 & -3 \\ 2 & 4 \end{bmatrix}$$
 and $P_{\mathcal{A}\mathcal{E}} = P_{\mathcal{E}\mathcal{A}}^{-1} = Q^{-1} = \frac{1}{10} \begin{bmatrix} 4 & 3 \\ -2 & 1 \end{bmatrix}$ are the \mathcal{A} to \mathcal{E} and \mathcal{E} to \mathcal{A} change of coords matrices.

We find that
$$\begin{bmatrix} -4 \\ 2 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$
. Next, the \mathcal{B} to \mathcal{A} change of coords matrix

is
$$P_{\mathcal{AB}} = P_{\mathcal{AE}}P_{\mathcal{EB}} = Q^{-1}P = \frac{1}{10}\begin{bmatrix} 4 & 3\\ -2 & 1 \end{bmatrix}\begin{bmatrix} 1 & -1\\ 1 & 1 \end{bmatrix} = \frac{1}{10}\begin{bmatrix} 7 & -1\\ -1 & 3 \end{bmatrix}$$
.

$$\begin{bmatrix} -4 \\ 2 \end{bmatrix}_{\mathcal{A}} = P_{\mathcal{A}\mathcal{B}} \begin{bmatrix} -4 \\ 2 \end{bmatrix}_{\mathcal{B}} = \frac{1}{10} \begin{bmatrix} 7 & -1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} -1 \\ 3 \end{bmatrix} = \frac{1}{10} \begin{bmatrix} -10 \\ 10 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

The \mathcal{B} to \mathcal{A} Change of Coordinates Matrix

Let \mathcal{A} and \mathcal{B} be bases for a vector space \mathbb{V} . Suppose $\mathcal{B} = \{\vec{b_1}, \dots, \vec{b_k}\}$.

Then each \vec{v} in \mathbb{V} has an associated \mathcal{B} -coordinate vector $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ where c_1, c_2, \ldots, c_k are the \mathcal{B} -coordinates of \vec{v} .

So,
$$\vec{v} = \sum_{i=1}^k c_i \vec{b}_i$$
.

It follows that

are the *B-coordinates of
$$\vec{v}$$*.
$$[\vec{v}]_{\mathcal{A}} = \left[\sum_{i=1}^{k} c_{i} \vec{b}_{i}\right]_{\mathcal{A}} = \sum_{i=1}^{k} c_{i} [\vec{b}_{i}]_{\mathcal{A}}$$

$$[\vec{v}]_{\mathcal{B}} = \begin{bmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{k} \end{bmatrix}$$

$$= \left[[\vec{b}_{1}]_{\mathcal{A}} \dots [\vec{b}_{k}]_{\mathcal{A}} \right] \begin{bmatrix} c_{1} \\ \vdots \\ c_{k} \end{bmatrix}$$

$$= P[\vec{v}]_{\mathcal{B}};$$

here $P = \left| \begin{bmatrix} \vec{b}_1 \end{bmatrix}_{\mathcal{A}} \dots \begin{bmatrix} \vec{b}_k \end{bmatrix}_{\mathcal{A}} \right|$ is the \mathcal{B} to \mathcal{A} change of coordinates matrix.

$$\left[ec{v}
ight]_{\mathcal{A}}=P_{\mathcal{A}\mathcal{B}}\left[ec{v}
ight]_{\mathcal{B}}$$
 and

Writing
$$P = P_{\mathcal{A}\mathcal{B}}$$
 get $\left[\vec{v} \right]_{\mathcal{A}} = P_{\mathcal{A}\mathcal{B}} \left[\vec{v} \right]_{\mathcal{B}}$ and $\left[P_{\mathcal{A}\mathcal{B}} = \left[\left[\vec{b}_1 \right]_{\mathcal{A}} \dots \left[\vec{b}_k \right]_{\mathcal{A}} \right] \right]$.

Picturing Change of Coordinates

Let \mathcal{A} and \mathcal{B} be bases for a vector space \mathbb{V} . Consider the \mathcal{B} and \mathcal{A} coordinate mappings from \mathbb{V} to \mathbb{R}^k . Given \vec{v} in \mathbb{V} , let

$$\vec{x} = [\vec{v}]_{\mathcal{B}}$$
 and $\vec{y} = [\vec{v}]_{\mathcal{A}}$.

Consider the LT $\mathbb{R}^k \to \mathbb{R}^k$ given by $\vec{x} \mapsto \vec{y}$.

This is the linear transformation given by $\vec{y} = [\vec{v}]_{\mathcal{A}} = P[\vec{v}]_{\mathcal{B}} = P\vec{x}$ where $P = P_{AB}$.

$$\vec{x} = \begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}} \longmapsto \vec{y} = \begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{A}}$$

Example

Find
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}_{\mathcal{B}}$$
 where $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \vec{b}_3\} = \{\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} \}$ is a basis for \mathbb{R}^3 .
$$P = \begin{bmatrix} \vec{b}_1 \ \vec{b}_2 \ \vec{b}_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix} = P_{\mathcal{EB}}, \text{ so } P_{\mathcal{BE}} = P^{-1} = \begin{bmatrix} 3 & -2 & 1 \\ -2 & 2 & -1 \\ 1 & -1 & 1 \end{bmatrix}.$$

Thus

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}_{\mathcal{B}} = P_{\mathcal{B}\mathcal{E}} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 & -2 & 1 \\ -2 & 2 & -1 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3x - 2y + z \\ -2x + 2y - z \\ x - y + z \end{bmatrix}$$

For example,
$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 2 \\ -1 \\ 2 \end{bmatrix}$$
.

Example

$$\mathcal{A} = \{\vec{a}_1, \vec{a}_2, \vec{a}_3\} = \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}, \ \mathcal{B} = \{\vec{b}_1, \vec{b}_2, \vec{b}_3\} = \left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\2 \end{bmatrix} \right\}$$
 are bases for \mathbb{R}^3 . Find P_{AB} .

Since $P_{\mathcal{A}\mathcal{B}} = \left[\left[\vec{b}_1 \right]_{\mathcal{A}} \left[\vec{b}_2 \right]_{\mathcal{A}} \left[\vec{b}_3 \right]_{\mathcal{A}} \right]$, we could just find the \mathcal{A} -coord vectors for each of \vec{b}_1 , \vec{b}_2 , \vec{b}_3 ; this is one way to proceed.

Alternatively,
$$P_{\mathcal{AB}} = P_{\mathcal{AE}}P_{\mathcal{EB}}$$
, where $P_{\mathcal{EB}} = \begin{bmatrix} \vec{b}_1 & \vec{b}_2 & \vec{b}_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix}$, and

$$P_{\mathcal{A}\mathcal{E}} = P_{\mathcal{E}\mathcal{A}}^{-1} = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \vec{a}_3 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}.$$

Thus

$$P_{\mathcal{AB}} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ -1 & -1 & 1 \end{bmatrix}.$$