The Dimension of a Vector Space

Linear Algebra MATH 2076

Section 4.5 Dimension 1 March 2017 1 / 5

Let $\mathbb V$ be a vector space.

Definition

A bunch of vectors $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_p\}$ is called a *basis* for \mathbb{V} if and only if

2 / 5

Let $\mathbb V$ be a vector space.

Definition

A bunch of vectors $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_p\}$ is called a *basis* for \mathbb{V} if and only if

ullet is linearly independent, and

2 / 5

Section 4.5 Dimension 1 March 2017

Let $\mathbb V$ be a vector space.

Definition

A bunch of vectors $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_p\}$ is called a *basis* for \mathbb{V} if and only if

- ullet is linearly independent, and
- ullet spans $\mathbb V$ (i.e., $\mathbb V=\mathcal S\mathit{pan}(\mathcal B)$).

2 / 5

Let $\mathbb V$ be a vector space.

Definition

A bunch of vectors $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_p\}$ is called a *basis* for \mathbb{V} if and only if

- ullet is linearly independent, and
- ullet spans $\mathbb V$ (i.e., $\mathbb V=\mathcal S\mathit{pan}(\mathcal B)$).

Example (Standard Basis for \mathbb{R}^n)

The set $S = \{\vec{e}_1, \dots, \vec{e}_n\}$ is the standard basis for \mathbb{R}^n .

Section 4.5 Dimension

2 / 5

Let $\mathbb V$ be a vector space.

Definition

A bunch of vectors $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_p\}$ is called a *basis* for \mathbb{V} if and only if

- ullet is linearly independent, and
- ullet spans $\mathbb V$ (i.e., $\mathbb V=\mathcal S\mathit{pan}(\mathcal B)$).

Example (Standard Basis for \mathbb{R}^n)

The set $S = \{\vec{e}_1, \dots, \vec{e}_n\}$ is the *standard basis* for \mathbb{R}^n .

Example (Standard Basis for \mathbb{P}_n)

The set $\mathcal{P} = \{1, t, t^2, \dots, t^n\}$ is the *standard basis* for \mathbb{P}_n .

2 / 5

Section 4.5 Dimension 1 March 2017

Let $\mathbb V$ be a vector space.

Definition

A bunch of vectors $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_p\}$ is called a *basis* for \mathbb{V} if and only if

- ullet is linearly independent, and
- ullet spans $\mathbb V$ (i.e., $\mathbb V=\mathcal Span(\mathcal B)$).

Example (Standard Basis for \mathbb{R}^n)

The set $S = \{\vec{e}_1, \dots, \vec{e}_n\}$ is the *standard basis* for \mathbb{R}^n .

Example (Standard Basis for \mathbb{P}_n)

The set $\mathcal{P} = \{1, t, t^2, \dots, t^n\}$ is the *standard basis* for \mathbb{P}_n .

Here t^i denotes the function that satisfies

for all numbers
$$t$$
, $t^{i}(t) = t^{i}$.

Section 4.5 Dimension 1 March 2017 2 / 5

Let $\ensuremath{\mathbb{V}}$ be a vector space.

Section 4.5

Let $\ensuremath{\mathbb{V}}$ be a vector space. The following are equivalent:

Let $\mathbb V$ be a vector space. The following are equivalent:

ullet B is a basis for \mathbb{V} .

Let V be a vector space. The following are equivalent:

- ullet is a basis for \mathbb{V} .
- ullet is a maximal linearly independent set in $\mathbb V.$

Let V be a vector space. The following are equivalent:

- \mathcal{B} is a basis for \mathbb{V} .
- ullet is a maximal linearly independent set in $\mathbb V.$
- ullet is a minimal spanning set for \mathbb{V} .

Section 4.5

Let $\ensuremath{\mathbb{V}}$ be a vector space. Then:

1 March 2017

Let \mathbb{V} be a vector space. Then:

Let \mathbb{V} be a vector space. Then:

- ▼ has a basis, and,
- ullet any two bases for $\mathbb V$ contain the same number of vectors.

Let \mathbb{V} be a vector space. Then:

- ▼ has a basis, and,
- ullet any two bases for ${\mathbb V}$ contain the same number of vectors.

Definition

If V has a finite basis, we call V *finite dimensional*;

Let \mathbb{V} be a vector space. Then:

- ▼ has a basis, and,
- ullet any two bases for ${\mathbb V}$ contain the same number of vectors.

Definition

If $\mathbb V$ has a finite basis, we call $\mathbb V$ *finite dimensional*; otherwise, we say that $\mathbb V$ is *infinite dimensional*.

Let \mathbb{V} be a vector space. Then:

- ▼ has a basis, and,
- ullet any two bases for ${\mathbb V}$ contain the same number of vectors.

Definition

If $\mathbb V$ has a finite basis, we call $\mathbb V$ *finite dimensional*; otherwise, we say that $\mathbb V$ is *infinite dimensional*.

Definition

If $\mathbb V$ is *finite dimensional*, then the *dimension of* $\mathbb V$ is the number of vectors in any basis for $\mathbb V$;

Section 4.5

Let \mathbb{V} be a vector space. Then:

- ▼ has a basis, and,
- ullet any two bases for ${\mathbb V}$ contain the same number of vectors.

Definition

If $\mathbb V$ has a finite basis, we call $\mathbb V$ *finite dimensional*; otherwise, we say that $\mathbb V$ is *infinite dimensional*.

Definition

If $\mathbb V$ is *finite dimensional*, then the *dimension of* $\mathbb V$ is the number of vectors in any basis for $\mathbb V$; we write $\dim \mathbb V$ for the dimension of $\mathbb V$.

Examples

• \mathbb{R}^n has dimension n,

Examples

ullet \mathbb{R}^n has dimension n, bcuz $\mathcal{S} = \{ec{e}_1, \ldots, ec{e}_n\}$ is a basis for \mathbb{R}^n

Examples

- ullet \mathbb{R}^n has dimension n, bcuz $\mathcal{S} = \{ ec{e}_1, \ldots, ec{e}_n \}$ is a basis for \mathbb{R}^n
- \mathbb{P}_n has dimension

Examples

- ullet \mathbb{R}^n has dimension n, bcuz $\mathcal{S} = \{ ec{e}_1, \ldots, ec{e}_n \}$ is a basis for \mathbb{R}^n
- ullet \mathbb{P}_n has dimension n+1, bcuz $\mathcal{P}=\{1,t,t^2,\ldots,t^n\}$ is a basis for \mathbb{P}_n

5 / 5

Section 4.5 Dimension 1 March 2017

Examples

- ullet \mathbb{R}^n has dimension n, bcuz $\mathcal{S} = \{ ec{e}_1, \ldots, ec{e}_n \}$ is a basis for \mathbb{R}^n
- ullet \mathbb{P}_n has dimension n+1, bcuz $\mathcal{P}=\{m{1},m{t},m{t^2},\ldots,m{t^n}\}$ is a basis for \mathbb{P}_n
- ullet R $^{\infty}$ is infinite dimensional

Examples

- ullet \mathbb{R}^n has dimension n, bcuz $\mathcal{S} = \{ec{e}_1, \ldots, ec{e}_n\}$ is a basis for \mathbb{R}^n
- ullet \mathbb{P}_n has dimension n+1, bcuz $\mathcal{P}=\{1,t,t^2,\ldots,t^n\}$ is a basis for \mathbb{P}_n
- ullet \mathbb{R}^{∞} is infinite dimensional
- P is infinite dimensional

Section 4.5

Examples

- ullet \mathbb{R}^n has dimension n, bcuz $\mathcal{S} = \{ ec{e}_1, \ldots, ec{e}_n \}$ is a basis for \mathbb{R}^n
- ullet \mathbb{P}_n has dimension n+1, bcuz $\mathcal{P}=\{1,oldsymbol{t},oldsymbol{t}^2,\ldots,oldsymbol{t}^n\}$ is a basis for \mathbb{P}_n
- ullet \mathbb{R}^{∞} is infinite dimensional
- P is infinite dimensional
- If $\{\vec{a}_1,\ldots,\vec{a}_p\}$ is a LI set of vectors in \mathbb{R}^n , then $\mathbb{V}=\mathcal{S}pan\{\vec{a}_1,\ldots,\vec{a}_p\}$ is a p-dimensional vector subspace of \mathbb{R}^n .

5 / 5

Section 4.5 Dimension 1 March 2017

Examples

- ullet \mathbb{R}^n has dimension n, bcuz $\mathcal{S} = \{ ec{e}_1, \ldots, ec{e}_n \}$ is a basis for \mathbb{R}^n
- ullet \mathbb{P}_n has dimension n+1, bcuz $\mathcal{P}=\{1,t,t^2,\ldots,t^n\}$ is a basis for \mathbb{P}_n
- \bullet \mathbb{R}^{∞} is infinite dimensional
- P is infinite dimensional
- If $\{\vec{a}_1,\ldots,\vec{a}_p\}$ is a LI set of vectors in \mathbb{R}^n , then $\mathbb{V}=\mathcal{S}pan\{\vec{a}_1,\ldots,\vec{a}_p\}$ is a p-dimensional vector subspace of \mathbb{R}^n . We call \mathbb{V} a p-plane in \mathbb{R}^n .

5 / 5

Section 4.5 Dimension 1 March 2017