Dimension, Rank, Nullity

Linear Algebra
MATH 2076

UNIVERSITY OF -K{

Cincinnati

Dim, Rank, Nullity TEEETE W



Basic Facts About Bases

Let V be a non-trivial vector space; so V # {0}. Then:
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@ any two bases for V contain the same number of vectors.
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Basic Facts About Bases

Let V be a non-trivial vector space; so V # {0}. Then:
@ V has a basis, and,

@ any two bases for V contain the same number of vectors.

Definition

If V has a finite basis, we call V finite dimensional,
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Basic Facts About Bases

Let V be a non-trivial vector space; so V # {0}. Then:
@ V has a basis, and,

@ any two bases for V contain the same number of vectors.

Definition

If V has a finite basis, we call V finite dimensional; otherwise, we say that
V is infinite dimensional.
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Basic Facts About Bases

Let V be a non-trivial vector space; so V # {0}. Then:
@ V has a basis, and,

@ any two bases for V contain the same number of vectors.

Definition

If V has a finite basis, we call V finite dimensional; otherwise, we say that
V is infinite dimensional.

Definition

| \

If V is finite dimensional, then the dimension of V is the number of vectors
in any basis for V;
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Basic Facts About Bases

Let V be a non-trivial vector space; so V # {0}. Then:
@ V has a basis, and,

@ any two bases for V contain the same number of vectors.

Definition

If V has a finite basis, we call V finite dimensional; otherwise, we say that
V is infinite dimensional.

Definition

| \

If V is finite dimensional, then the dimension of V is the number of vectors
in any basis for V; we write dim V for the dimension of V.
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Basic Facts About Bases

Let V be a non-trivial vector space; so V # {0}. Then:
@ V has a basis, and,

@ any two bases for V contain the same number of vectors.

Definition

If V has a finite basis, we call V finite dimensional; otherwise, we say that
V is infinite dimensional.

Definition

If V is finite dimensional, then the dimension of V is the number of vectors
in any basis for V; we write dim V for the dimension of V.

The dimension of the trivial vector space {0} is defined to be 0.
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Dimension Examples
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@ R” has dimension n,
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@ R” has dimension n, bcuz S = {é},..., €y} is a basis for R”
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Dimension Examples

@ R” has dimension n, bcuz S = {é},..., €y} is a basis for R”

o P, has dimension n+ 1, bcuz P = {1,¢t,t2, ..., t"} is a basis for P,
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Dimension Examples

Examples

@ R” has dimension n, bcuz S = {é},..., €y} is a basis for R”
o P, has dimension n+ 1, bcuz P = {1,¢t,t2, ..., t"} is a basis for P,

@ R is infinite dimensional
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Examples

@ R” has dimension n, bcuz S = {é},..., €y} is a basis for R”
o P, has dimension n+ 1, bcuz P = {1,¢t,t2, ..., t"} is a basis for P,
@ R is infinite dimensional

@ PP is infinite dimensional
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Dimension Examples

@ R” has dimension n, bcuz S = {é},..., €y} is a basis for R”

o P, has dimension n+ 1, bcuz P = {1,¢t,t2, ..., t"} is a basis for P,
@ R* is infinite dimensional

o P is infinite dimensional

o If {a1,...,ap} is a LI set of vectors in R”, then V = Span{ai,...,ap}
is a p-dimensional vector subspace of R”.
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Dimension Examples

@ R” has dimension n, bcuz S = {é},..., €y} is a basis for R”

o P, has dimension n+ 1, bcuz P = {1,¢t,t2, ..., t"} is a basis for P,
@ R* is infinite dimensional

o P is infinite dimensional

o If {a1,...,ap} is a LI set of vectors in R”, then V = Span{ai,...,ap}
is a p-dimensional vector subspace of R". We call V a p-plane in R".
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Examples

Let U?*2 and S?*2 be the spaces of all upper triangular and all symmetric
2 X 2 matrices, respectively. Let's find dim U?*? and dim S2*2.
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Let U?*2 and S?*2 be the spaces of all upper triangular and all symmetric

2 X 2 matrices, respectively. Let's find dim U?*? and dim S?*2. We just
need bases, right?
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Let U?*2 and S?*2 be the spaces of all upper triangular and all symmetric

2 X 2 matrices, respectively. Let's find dim U?*? and dim S?*2. We just
need bases, right?

First, what does an upper triangular 2 x 2 matrix look like?
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First, what does an upper triangular 2 x 2 matrix look like? Just [g b}
right? But
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Examples

Let U?*2 and S?*2 be the spaces of all upper triangular and all symmetric
2 X 2 matrices, respectively. Let's find dim U?*? and dim S?*2. We just
need bases, right?

First, what does an upper triangular 2 x 2 matrix look like? Just [a b}

0
right? But
[a b]:a[l O}er[o 1}+C[0 O}
0 ¢ 0 0 0 0 0 1

so the three matrices on the above right certainly span U?*2.
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Examples

Let U?*2 and S?*2 be the spaces of all upper triangular and all symmetric
2 X 2 matrices, respectively. Let's find dim U?*? and dim S?*2. We just
need bases, right?

First, what does an upper triangular 2 x 2 matrix look like? Just [g ﬂ
a b] : 1 0 L 0 1 te 0 0
0 c| “1l0 0 0 0 01

so the three matrices on the above right certainly span U?*2. It's not hard
to see that they are LI, so they form a basis. Therefore, dim U2x2 =
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Examples

Let U?*2 and S?*2 be the spaces of all upper triangular and all symmetric
2 X 2 matrices, respectively. Let's find dim U?*? and dim S?*2. We just
need bases, right?

First, what does an upper triangular 2 x 2 matrix look like? Just [g ﬂ
a b] : 1 0 L 0 1 te 0 0
0 c| “1l0 0 0 0 01

so the three matrices on the above right certainly span U?*2. It's not hard
to see that they are LI, so they form a basis. Therefore, dim U?*2 = 3.
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Examples

Let U?*2 and S?*2 be the spaces of all upper triangular and all symmetric

2 X 2 matrices, respectively. Let's find dim U?*? and dim S?*2. We just
need bases, right?

Next, what does a symmetric 2 X 2 matrix look like?
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Examples

Let U?*2 and S?*2 be the spaces of all upper triangular and all symmetric

2 X 2 matrices, respectively. Let's find dim U?*? and dim S?*2. We just
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Next, what does a symmetric 2 x 2 matrix look like? Just [Z [C)] right?
But
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Examples

Let U?*2 and S?*2 be the spaces of all upper triangular and all symmetric

2 X 2 matrices, respectively. Let's find dim U?*? and dim S?*2. We just
need bases, right?

Next, what does a symmetric 2 x 2 matrix look like? Just [Z [C)] right?

o =l ol ool o velo Y

so the three matrices on the above right certainly span S?*2.
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Examples

Let U?*2 and S?*2 be the spaces of all upper triangular and all symmetric
2 X 2 matrices, respectively. Let's find dim U?*? and dim S?*2. We just
need bases, right?

Next, what does a symmetric 2 x 2 matrix look like? Just [Z [C)] right?

a b| 10+b01+ 0 0

b c|~%0 0 1 0/ "0 1
so the three matrices on the above right certainly span S?*2. It's not hard
to see that they are LI, so they form a basis. Therefore, dim §2%2 —
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Examples

Let U?*2 and S?*2 be the spaces of all upper triangular and all symmetric
2 X 2 matrices, respectively. Let's find dim U?*? and dim S?*2. We just
need bases, right?

Next, what does a symmetric 2 x 2 matrix look like? Just [Z [C)] right?

a b| 10+b01+ 0 0

I B 1070 1
so the three matrices on the above right certainly span S?*2. It's not hard
to see that they are LI, so they form a basis. Therefore, dim S?%2 = 3.
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Examples

Let U?*2 and S?*2 be the spaces of all upper triangular and all symmetric
2 X 2 matrices, respectively. Let's find dim U?*? and dim S?*2. We just
need bases, right?

Next, what does a symmetric 2 x 2 matrix look like? Just [Z lg] right?
a b| 5 10 i 0 1 . 0 0
b c| 7|0 0 1 0 0 1

so the three matrices on the above right certainly span S?*2. It's not hard
to see that they are LI, so they form a basis. Therefore, dim S?%2 = 3.

What about upper triangular and symmetric n X n matrices?
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- . T . . >
. dp] an m x n matrix and R” — R™ is T(xX) = AX

Il
L1
gl

NS(A)={x| Ax=0} and
CS(A) = Span{ai, a,...,an}
= {binR" ‘ AX = b has a solution}
=CS(A) =Rng(T)

CS(A)|=Rng(T)

NS(A)

R" R™



= [_’1 a ... é’n] an m x n matrix and R” - R™ is T(x) = AX
NS(A) = { | Ax=0} and
CS(A) = Span{ai, a,...,an}
= {binR™ | AX = b has a solution}
=CS(A) =Rng(T)
7= T(X) CS(A)|=Rng(T)
NS(A)
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= [_’1 a ... é’n] an m x n matrix and R” - R™ is T(x) = AX
NS(A) = { | Ax=0} and
CS(A) = Span{ai, a,...,an}
= {binR™ | AX = b has a solution}
=CS(A) =Rng(T)
_ _ A= T
; 7= T® CS(A)|=Rog(T)
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R" RM



= [_’1 a ... é’n] an m x n matrix and R” - R™ is T(x) = AX
NS(A) = { | Ax=0} and
CS(A) = Span{ai, a,...,an}
= {Ein RrR™ ‘ AX = b has a solution}
=CS(A) =Rng(T)
/,’ — s A — T
5 7= T® CS(A)|=Rog(T)
/,,, y:A)_(’ E: T(p_’)
NS(A)

R" RM



= [_’1 a ... 5’,7] an m x n matrix and R” - R™ is T(x) = AX
NS(A) = { | Ax=0} and
CS(A) = Span{ay, &, ..., an}
= {Ein RrR™ ‘ AX = b has a solution}
=CS(A) =Rng(T)
{x| AX=b}| .7 L A= T
Sl 7= T® CS(A)|= Rog(T)
/,,, y:A)_(’ E: T(ﬁ)
NS(A)

R" RM
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Dimensions of Null Space and Column Space

Gotta find bases for the null space N'S(A) and column space CS(A) of A.
Just:
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@ row reduce A to E, a REF (or RREF) for A

@ columns of E with row leaders correspond to pivot columns of A
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Dimensions of Null Space and Column Space

Gotta find bases for the null space N'S(A) and column space CS(A) of A.
Just:

@ row reduce A to E, a REF (or RREF) for A
@ columns of E with row leaders correspond to pivot columns of A

o the pivot columns of A are LI and span CS(A), so form a basis
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Dimensions of Null Space and Column Space

Gotta find bases for the null space N'S(A) and column space CS(A) of A.
Just:
@ row reduce A to E, a REF (or RREF) for A

@ columns of E with row leaders correspond to pivot columns of A
o the pivot columns of A are LI and span CS(A), so form a basis

o write the SS for AX = 0 in parametric vector form
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Dimensions of Null Space and Column Space

Gotta find bases for the null space N'S(A) and column space CS(A) of A.
Just:

@ row reduce A to E, a REF (or RREF) for A

@ columns of E with row leaders correspond to pivot columns of A
o the pivot columns of A are LI and span CS(A), so form a basis
o write the SS for AX = 0 in parametric vector form

o identify LI vectors that span N'S(A), these form a basis
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Dimensions of Null Space and Column Space

Gotta find bases for the null space N'S(A) and column space CS(A) of A.
Just:

@ row reduce A to E, a REF (or RREF) for A

@ columns of E with row leaders correspond to pivot columns of A
o the pivot columns of A are LI and span CS(A), so form a basis
o write the SS for AX = 0 in parametric vector form

o identify LI vectors that span N'S(A), these form a basis
So,
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Dimensions of Null Space and Column Space

Gotta find bases for the null space N'S(A) and column space CS(A) of A.
Just:

@ row reduce A to E, a REF (or RREF) for A

@ columns of E with row leaders correspond to pivot columns of A
o the pivot columns of A are LI and span CS(A), so form a basis
o write the SS for AX = 0 in parametric vector form

o identify LI vectors that span N'S(A), these form a basis
So,

dim CS(A) = # of pivot cols of A
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Dimensions of Null Space and Column Space

Gotta find bases for the null space N'S(A) and column space CS(A) of A.
Just:

@ row reduce A to E, a REF (or RREF) for A

@ columns of E with row leaders correspond to pivot columns of A
o the pivot columns of A are LI and span CS(A), so form a basis
o write the SS for AX = 0 in parametric vector form

o identify LI vectors that span N'S(A), these form a basis
So,

dim CS(A) = # of pivot cols of A
= # of row leaders in E
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Dimensions of Null Space and Column Space

Gotta find bases for the null space N'S(A) and column space CS(A) of A.
Just:

@ row reduce A to E, a REF (or RREF) for A

@ columns of E with row leaders correspond to pivot columns of A
o the pivot columns of A are LI and span CS(A), so form a basis
o write the SS for AX = 0 in parametric vector form

o identify LI vectors that span N'S(A), these form a basis
So,

dim CS(A) = # of pivot cols of A
= # of row leaders in E

= # of non-zero rows in E

Dim, Rank, Nullity TEEETE O



Dimensions of Null Space and Column Space

Gotta find bases for the null space N'S(A) and column space CS(A) of A.
Just:

@ row reduce A to E, a REF (or RREF) for A

@ columns of E with row leaders correspond to pivot columns of A
o the pivot columns of A are LI and span CS(A), so form a basis
o write the SS for AX = 0 in parametric vector form

o identify LI vectors that span N'S(A), these form a basis
So,
dim CS(A) = # of pivot cols of A
= # of row leaders in E
= # of non-zero rows in E
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Dimensions of Null Space and Column Space

Gotta find bases for the null space N'S(A) and column space CS(A) of A.
Just:

@ row reduce A to E, a REF (or RREF) for A

@ columns of E with row leaders correspond to pivot columns of A
o the pivot columns of A are LI and span CS(A), so form a basis
o write the SS for AX = 0 in parametric vector form

o identify LI vectors that span N'S(A), these form a basis
So,
dim CS(A) = # of pivot cols of A and
= # of row leaders in E
= # of non-zero rows in E

=r
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Dimensions of Null Space and Column Space

Gotta find bases for the null space N'S(A) and column space CS(A) of A.
Just:

@ row reduce A to E, a REF (or RREF) for A

@ columns of E with row leaders correspond to pivot columns of A
o the pivot columns of A are LI and span CS(A), so form a basis
o write the SS for AX = 0 in parametric vector form

o identify LI vectors that span N'S(A), these form a basis
So,

dim CS(A) = # of pivot cols of A and

= # of row leaders in E dim NS(A) = # of free variables
= # of non-zero rows in E

=r
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Dimensions of Null Space and Column Space

Gotta find bases for the null space N'S(A) and column space CS(A) of A.
Just:

@ row reduce A to E, a REF (or RREF) for A

@ columns of E with row leaders correspond to pivot columns of A
o the pivot columns of A are LI and span CS(A), so form a basis
o write the SS for AX = 0 in parametric vector form

o identify LI vectors that span N'S(A), these form a basis
So,

dim CS(A) = # of pivot cols of A and
= # of row leaders in E dim NS(A) = # of free variables
= # of non-zero rows in E =# of colsof A—r

=r
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Dimensions of Null Space and Column Space

Gotta find bases for the null space N'S(A) and column space CS(A) of A.
Just:

@ row reduce A to E, a REF (or RREF) for A

@ columns of E with row leaders correspond to pivot columns of A
o the pivot columns of A are LI and span CS(A), so form a basis
o write the SS for AX = 0 in parametric vector form

o identify LI vectors that span N'S(A), these form a basis
So,

dim CS(A) = # of pivot cols of A and
= # of row leaders in E dim NS(A) = # of free variables
= # of non-zero rows in E =# of colsof A—r

=r =n—r=q.
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Dimensions of Null Space and Column Space

Gotta find bases for the null space N'S(A) and column space CS(A) of A.
Just:

@ row reduce A to E, a REF (or RREF) for A

@ columns of E with row leaders correspond to pivot columns of A
o the pivot columns of A are LI and span CS(A), so form a basis
o write the SS for AX = 0 in parametric vector form

o identify LI vectors that span N'S(A), these form a basis
So,
dim CS(A) = # of pivot cols of A and
= # of row leaders in E dim NS(A) = # of free variables
= # of non-zero rows in E = # of cols of A—r
=r =n—r=q.

Notice that r + g = n = # of columns of A.
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Example—Null Space and Column Space

Find the dimensions of the null space and column space of

1 2 3 4 5
0111 O
A= 36 9 2 -5
2 4 61 —4
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Example—Null Space and Column Space

Find the dimensions of the null space and column space of

1234 5 123 45
A_ 00111 0 01110
“ 136 92 -5/ T loo o012
2 46 1 -4 00000

Using elem row ops, we find the indicated REF
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Example—Null Space and Column Space

Find the dimensions of the null space and column space of

1234 5 12345 1010 1
A_ 00111 0 01110 0110 -2
“ 136 92 -5/ 7looo12 Tlooo0o1 2

2 46 1 -4 00000 0000 O

Using elem row ops, we find the indicated REF and RREF for A.
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Example—Null Space and Column Space

Find the dimensions of the null space and column space of

1234 5 12345 1010 1
A_ 00111 0 01110 0110 -2
“ 136 92 -5/ 7looo12 Tlooo0o1 2
2 46 1 -4 00000 0000 O

Using elem row ops, we find the indicated REF and RREF for A.

Thus columns 1,2,4 are pivot columns for A,
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Example—Null Space and Column Space

Find the dimensions of the null space and column space of

1234 5 12345 1010 1
A_ 00111 0 01110 0110 -2
“ 136 92 -5/ 7looo12 Tlooo0o1 2
2 46 1 -4 00000 0000 O

Using elem row ops, we find the indicated REF and RREF for A.

Thus columns 1,2,4 are pivot columns for A, so dim CS(A) = 3.
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Example—Null Space and Column Space

Find the dimensions of the null space and column space of

1234 5 12345 1010 1
A_ 00111 0 01110 0110 -2
“ 136 92 -5/ 7looo12 Tlooo0o1 2
2 46 1 -4 00000 0000 O

Using elem row ops, we find the indicated REF and RREF for A.
Thus columns 1,2,4 are pivot columns for A, so dim CS(A) = 3.

There are two free variables (x3 and xs), so
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Example—Null Space and Column Space

Find the dimensions of the null space and column space of

1234 5 12345 1010 1
A_ 00111 0 01110 0110 -2
“ 136 92 -5/ 7looo12 Tlooo0o1 2
2 46 1 -4 00000 0000 O

Using elem row ops, we find the indicated REF and RREF for A.
Thus columns 1,2,4 are pivot columns for A, so dim CS(A) = 3.

There are two free variables (x3 and xs), so dim N'S(A) = 2.
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Example—Null Space and Column Space

Find the dimensions of the null space and column space of

1234 5 12345 1010 1
A_ 00111 0 01110 0110 -2
“ 136 92 -5/ 7looo12 Tlooo0o1 2
2 46 1 -4 00000 0000 O

Using elem row ops, we find the indicated REF and RREF for A.
Thus columns 1,2,4 are pivot columns for A, so dim CS(A) = 3.
There are two free variables (x3 and xs), so dim N'S(A) = 2.

Notice that 3 +2 =5 = # of columns of A.
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Rank and Nullity

Let A be an m X n matrix.
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Rank and Nullity

Let A be an m X n matrix.

The dimension of CS(A) is called the rank of A;
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Let A be an m X n matrix.

The dimension of CS(A) is called the rank of A; rank(A) = dim CS(A).
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Rank and Nullity
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The dimension of CS(A) is called the rank of A; rank(A) = dim CS(A).

The dimension of N'S(A) is called the nullity of A;
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Rank and Nullity

Let A be an m X n matrix.

The dimension of CS(A) is called the rank of A; rank(A) = dim CS(A).

The dimension of N'S(A) is called the nullity of A; null(A) = dim NS(A).
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Rank and Nullity

Let A be an m X n matrix.
The dimension of CS(A) is called the rank of A; rank(A) = dim CS(A).

The dimension of N'S(A) is called the nullity of A; null(A) = dim NS(A).
So,
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Rank and Nullity

Let A be an m X n matrix.
The dimension of CS(A) is called the rank of A; rank(A) = dim CS(A).

The dimension of N'S(A) is called the nullity of A; null(A) = dim NS(A).
So,

r = rank(A) = dim CS(A) = # of pivot columns of A,
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Rank and Nullity

Let A be an m X n matrix.
The dimension of CS(A) is called the rank of A; rank(A) = dim CS(A).

The dimension of N'S(A) is called the nullity of A; null(A) = dim NS(A).
So,

r = rank(A) = dim CS(A) = # of pivot columns of A,
g = null(A) = dim N'S(A) = # of free variables
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Rank and Nullity

Let A be an m X n matrix.
The dimension of CS(A) is called the rank of A; rank(A) = dim CS(A).

The dimension of N'S(A) is called the nullity of A; null(A) = dim NS(A).
So,

r = rank(A) = dim CS(A) = # of pivot columns of A,
g = null(A) = dim N'S(A) = # of free variables

and

rank(A) + null(A) = r 4+ g = n = # of columns of A.
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Rank and Nullity

Let A be an m X n matrix.
The dimension of CS(A) is called the rank of A; rank(A) = dim CS(A).

The dimension of N'S(A) is called the nullity of A; null(A) = dim NS(A).
So,

r = rank(A) = dim CS(A) = # of pivot columns of A,
g = null(A) = dim N'S(A) = # of free variables

and

rank(A) + null(A) = r 4+ g = n = # of columns of A.

This last fact is called the Rank-Nullity Theorem.
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Having the Right Number of Vectors

Let V be a vector space.
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Having the Right Number of Vectors

Let V be a vector space. Recall that B is a basis for V iff both B is LI and
V = SpanB.
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Having the Right Number of Vectors

Let V be a vector space. Recall that B is a basis for V iff both B is LI and
V = SpanB.

Suppose we know that dim V = p.
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Having the Right Number of Vectors

Let V be a vector space. Recall that B is a basis for V iff both B is LI and
V = SpanB.

Suppose we know that dim V = p. Let vj, v, ..., V, be any vectors in V.
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Having the Right Number of Vectors

Let V be a vector space. Recall that B is a basis for V iff both B is LI and
V = SpanB.

Suppose we know that dim V = p. Let vj, v, ..., V, be any vectors in V.
The following are equivalent:
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Having the Right Number of Vectors

Let V be a vector space. Recall that B is a basis for V iff both B is LI and
V = SpanB.

Suppose we know that dim V = p. Let vj, v, ..., V, be any vectors in V.
The following are equivalent:

o {Vi,vh,...,Vp} is a basis for V
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Having the Right Number of Vectors

Let V be a vector space. Recall that B is a basis for V iff both B is LI and
V = SpanB.

Suppose we know that dim V = p. Let vj, v, ..., V, be any vectors in V.
The following are equivalent:

o {Vi,vh,...,Vp} is a basis for V

o {71,\72,...,\7;,} is LI
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Having the Right Number of Vectors

Let V be a vector space. Recall that B is a basis for V iff both B is LI and
V = SpanB.

Suppose we know that dim V = p. Let vj, v, ..., V, be any vectors in V.
The following are equivalent:

o {Vi,vh,...,Vp} is a basis for V

o {71,\72,...,\7;,} is LI

o V= _S8pan{in,ih,...,V,}
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Having the Right Number of Vectors

Let V be a vector space. Recall that B is a basis for V iff both B is LI and
V = SpanB.

Suppose we know that dim V = p. Let vj, v, ..., V, be any vectors in V.
The following are equivalent:

o {Vi,vh,...,Vp} is a basis for V
o {V,v,...,V,}is LI

o V=3Span{vi,vb,...,Vp}

If we know the dimension ahead of time, it is easier to find a basis.
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Having the Right Number of Vectors

Let V be a vector space. Recall that B is a basis for V iff both B is LI and
V = SpanB.

Suppose we know that dim V = p. Let vj, v, ..., V, be any vectors in V.
The following are equivalent:

o {Vi,vh,...,Vp} is a basis for V

o {71,\72,...,\7;,} is LI

o V=3Span{vi,vb,...,Vp}
If we know the dimension ahead of time, it is easier to find a basis.

The Rank-Nullity Theorem helps here!
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Example

Suppose A is a 20 x 17 matrix.
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Example

Suppose A is a 20 x 17 matrix. What can we say about AxX = b?
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Example

Suppose A is a 20 x 17 matrix. What can we say about Ax = b?

Recall that N'S(A) is a subspace of R'” and CS(A) is a subspace of R%.
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Example

Suppose A is a 20 x 17 matrix. What can we say about Ax = b?

Recall that N'S(A) is a subspace of R'” and CS(A) is a subspace of R%.

Since rank(A) + null(A) = 17,
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Example

Suppose A is a 20 x 17 matrix. What can we say about Ax = b?
Recall that N'S(A) is a subspace of R'” and CS(A) is a subspace of R%.

Since rank(A) + null(A) = 17, dim CS(A) = rank(A) < 17 < 20.
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Example

Suppose A is a 20 x 17 matrix. What can we say about Ax = b?
Recall that N'S(A) is a subspace of R'” and CS(A) is a subspace of R%.

Since rank(A) + null(A) = 17, dim CS(A) = rank(A) < 17 < 20.
Therefore, CS(A) # R0,
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Example

Suppose A is a 20 x 17 matrix. What can we say about Ax = b?
Recall that N'S(A) is a subspace of R'” and CS(A) is a subspace of R%.

Since rank(A) + null(A) = 17, dim CS(A) = rank(A) < 17 < 20.
Therefore, CS(A) # R0,

This means that there is some vector b in R0 that is not in CS(A).
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Example

Suppose A is a 20 x 17 matrix. What can we say about Ax = b?
Recall that N'S(A) is a subspace of R'” and CS(A) is a subspace of R%.

Since rank(A) + null(A) = 17, dim CS(A) = rank(A) < 17 < 20.
Therefore, CS(A) # R0,

This means that there is some vector b in R0 that is not in CS(A).
But, b not in CS(A) means that
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Example

Suppose A is a 20 x 17 matrix. What can we say about Ax = b?
Recall that N'S(A) is a subspace of R'” and CS(A) is a subspace of R%.

Since rank(A) + null(A) = 17, dim CS(A) = rank(A) < 17 < 20.
Therefore, CS(A) # R0,

This means that there is some vector b in R0 that is not in CS(A).
But, b not in CS(A) means that AX = b has no solution.
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Example

Let A be a 19 x 56 matrix. Suppose that AX = b always has a solution.
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Example

Let A be a 19 x 56 matrix. Suppose that AX = b always has a solution.
What can we say about the solution spaces to AX = b?
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Example

Let A be a 19 x 56 matrix. Suppose that AX = b always has a solution.
What can we say about the solution spaces to AX = b?

Recall that A'S(A) is a subspace of R%® and CS(A) is a subspace of R1°.
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Example

Let A be a 19 x 56 matrix. Suppose that AX = b always has a solution.
What can we say about the solution spaces to AX = b?

Recall that A'S(A) is a subspace of R%® and CS(A) is a subspace of R1°.

To say that AX = b always has a solution means that CS(A) = R, so
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Example

Let A be a 19 x 56 matrix. Suppose that AX = b always has a solution.
What can we say about the solution spaces to AX = b?

Recall that A'S(A) is a subspace of R%® and CS(A) is a subspace of R1°.

To say that AX = b always has a solution means that CS(A) = R, so
rank(A) = dim CS(A) = 19.
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Example

Let A be a 19 x 56 matrix. Suppose that AX = b always has a solution.
What can we say about the solution spaces to AX = b?

Recall that A'S(A) is a subspace of R%® and CS(A) is a subspace of R1°.

To say that AX = b always has a solution means that CS(A) = R, so
rank(A) = dim CS(A) = 19.

Also, rank(A) + null(A) = 56, so

Dim, Rank, Nullity e PR i iy



Example

Let A be a 19 x 56 matrix. Suppose that AX = b always has a solution.
What can we say about the solution spaces to AX = b?

Recall that A'S(A) is a subspace of R%® and CS(A) is a subspace of R1°.

To say that AX = b always has a solution means that CS(A) = R, so
rank(A) = dim CS(A) = 19.

Also, rank(A) 4 null(A) = 56, so dim N'S(A) = null(A) = 56 — 19 = 37.
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Example

Let A be a 19 x 56 matrix. Suppose that AX = b always has a solution.
What can we say about the solution spaces to AX = b?

Recall that A'S(A) is a subspace of R%® and CS(A) is a subspace of R1°.

To say that AX = b always has a solution means that CS(A) = R, so
rank(A) = dim CS(A) = 19.

Also, rank(A) 4 null(A) = 56, so dim N'S(A) = null(A) = 56 — 19 = 37.

Thus N'S(A) is a 37-plane in R,
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Example

Let A be a 19 x 56 matrix. Suppose that AX = b always has a solution.
What can we say about the solution spaces to AX = b?

Recall that A'S(A) is a subspace of R%® and CS(A) is a subspace of R1°.

To say that AX = b always has a solution means that CS(A) = R, so
rank(A) = dim CS(A) = 19.

Also, rank(A) 4 null(A) = 56, so dim N'S(A) = null(A) = 56 — 19 = 37.

Thus N'S(A) is a 37-plane in R%. Remember, the solution spaces to
AX = b are all just translates of N'S(A).
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Example

Let A be a 19 x 56 matrix. Suppose that AX = b always has a solution.
What can we say about the solution spaces to AX = b?

Recall that A'S(A) is a subspace of R%® and CS(A) is a subspace of R1°.

To say that AX = b always has a solution means that CS(A) = R, so
rank(A) = dim CS(A) = 19.

Also, rank(A) 4 null(A) = 56, so dim N'S(A) = null(A) = 56 — 19 = 37.
Thus N'S(A) is a 37-plane in R%. Remember, the solution spaces to

A% = b are all just translates of N'S(A). Thus every solution space to
AX = b is an affine 37-plane in R>°.
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