Coordinate Vectors and the Coordinate Mapping

Linear Algebra MATH 2076

0				
5	60	\mathbf{n}	14	- 4
)	5			

.∃ →

A D > A P > A B > A

$\mathcal B\text{-}\mathsf{Coordinate}$ Vectors and the $\mathcal B\text{-}\mathsf{Coordinate}$ Mapping

Let
$$\mathcal{B} = \{\vec{v_1}, \vec{v_2}\}$$
 where $\vec{v_1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\vec{v_2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

(日) (同) (三) (三)

Let
$$\mathcal{B} = \{\vec{v_1}, \vec{v_2}\}$$
 where $\vec{v_1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\vec{v_2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Since $\vec{v_1} \not\parallel \vec{v_2}$, they are LI; therefore \mathcal{B} is a basis for \mathbb{R}^2 .

Let
$$\mathcal{B} = \{\vec{v_1}, \vec{v_2}\}$$
 where $\vec{v_1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\vec{v_2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Since $\vec{v_1} \not\parallel \vec{v_2}$, they are LI; therefore \mathcal{B} is a basis for \mathbb{R}^2 .

Suppose $\vec{x} = c_1 \vec{v_1} + c_2 \vec{v_2}$.

Let
$$\mathcal{B} = \{\vec{v_1}, \vec{v_2}\}$$
 where $\vec{v_1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\vec{v_2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Since $\vec{v_1} \not\parallel \vec{v_2}$, they are LI; therefore \mathcal{B} is a basis for \mathbb{R}^2 .

Suppose $\vec{x} = c_1 \vec{v_1} + c_2 \vec{v_2}$. Then c_1, c_2 are the *B*-coordinates for \vec{x} , and

Let
$$\mathcal{B} = \{\vec{v_1}, \vec{v_2}\}$$
 where $\vec{v_1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\vec{v_2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Since $\vec{v_1} \not\parallel \vec{v_2}$, they are LI; therefore \mathcal{B} is a basis for \mathbb{R}^2 .

Suppose $\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2$. Then c_1, c_2 are the *B*-coordinates for \vec{x} , and $\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$ is the *B*-coordinate vector for \vec{x} .

Let
$$\mathcal{B} = \{\vec{v_1}, \vec{v_2}\}$$
 where $\vec{v_1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\vec{v_2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Since $\vec{v_1} \not\parallel \vec{v_2}$, they are LI; therefore \mathcal{B} is a basis for \mathbb{R}^2 .

Suppose $\vec{x} = c_1 \vec{v_1} + c_2 \vec{v_2}$. Then c_1, c_2 are the *B*-coordinates for \vec{x} , and $\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$ is the *B*-coordinate vector for \vec{x} . The *B*-coordinate mapping is the LT $\mathbb{R}^2 \xrightarrow{[:]_{\mathcal{B}}} \mathbb{R}^2$ given by $\vec{x} \mapsto \vec{c} = \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$.

Let
$$\mathcal{B} = \{\vec{v_1}, \vec{v_2}\}$$
 where $\vec{v_1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\vec{v_2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Since $\vec{v_1} \not\parallel \vec{v_2}$, they are LI; therefore \mathcal{B} is a basis for \mathbb{R}^2 .

Suppose $\vec{x} = c_1 \vec{v_1} + c_2 \vec{v_2}$. Then c_1, c_2 are the *B*-coordinates for \vec{x} , and $\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$ is the *B*-coordinate vector for \vec{x} . The *B*-coordinate mapping is the LT $\mathbb{R}^2 \xrightarrow{[:]_{\mathcal{B}}} \mathbb{R}^2$ given by $\vec{x} \mapsto \vec{c} = \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$. The *inverse* of this map is given by

Let
$$\mathcal{B} = \{\vec{v_1}, \vec{v_2}\}$$
 where $\vec{v_1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\vec{v_2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Since $\vec{v_1} \not\parallel \vec{v_2}$, they are LI; therefore \mathcal{B} is a basis for \mathbb{R}^2 .

Suppose $\vec{x} = c_1 \vec{v_1} + c_2 \vec{v_2}$. Then c_1, c_2 are the *B*-coordinates for \vec{x} , and $\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$ is the *B*-coordinate vector for \vec{x} . The *B*-coordinate mapping is the LT $\mathbb{R}^2 \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^2$ given by $\vec{x} \mapsto \vec{c} = \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$. The inverse of this map is given by

 $\vec{c} \mapsto \vec{x}$

Let
$$\mathcal{B} = \{\vec{v_1}, \vec{v_2}\}$$
 where $\vec{v_1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\vec{v_2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Since $\vec{v_1} \not\parallel \vec{v_2}$, they are LI; therefore \mathcal{B} is a basis for \mathbb{R}^2 .

Suppose $\vec{x} = c_1 \vec{v_1} + c_2 \vec{v_2}$. Then c_1, c_2 are the *B*-coordinates for \vec{x} , and $\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$ is the *B*-coordinate vector for \vec{x} . The *B*-coordinate mapping is the LT $\mathbb{R}^2 \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^2$ given by $\vec{x} \mapsto \vec{c} = \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$. The inverse of this map is given by

 $\vec{c}\mapsto\vec{x}=c_1\vec{v}_1+c_2\vec{v}_2$

Let
$$\mathcal{B} = \{\vec{v_1}, \vec{v_2}\}$$
 where $\vec{v_1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\vec{v_2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Since $\vec{v_1} \not\parallel \vec{v_2}$, they are LI; therefore \mathcal{B} is a basis for \mathbb{R}^2 .

Suppose $\vec{x} = c_1 \vec{v_1} + c_2 \vec{v_2}$. Then c_1, c_2 are the *B*-coordinates for \vec{x} , and $\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$ is the *B*-coordinate vector for \vec{x} . The *B*-coordinate mapping is the LT $\mathbb{R}^2 \xrightarrow{[:]_{\mathcal{B}}} \mathbb{R}^2$ given by $\vec{x} \mapsto \vec{c} = \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$. The *inverse* of this map is given by

$$\vec{c} \mapsto \vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2 = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$

Let
$$\mathcal{B} = \{\vec{v_1}, \vec{v_2}\}$$
 where $\vec{v_1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\vec{v_2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Since $\vec{v_1} \not\parallel \vec{v_2}$, they are LI; therefore \mathcal{B} is a basis for \mathbb{R}^2 .

Suppose $\vec{x} = c_1 \vec{v_1} + c_2 \vec{v_2}$. Then c_1, c_2 are the *B*-coordinates for \vec{x} , and $\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$ is the *B*-coordinate vector for \vec{x} . The *B*-coordinate mapping is the LT $\mathbb{R}^2 \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^2$ given by $\vec{x} \mapsto \vec{c} = \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$. The inverse of this map is given by

$$\vec{c} \mapsto \vec{x} = c_1 \vec{v_1} + c_2 \vec{v_2} = \begin{bmatrix} \vec{v_1} & \vec{v_2} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = P\vec{c} \text{ where } P = \begin{bmatrix} \vec{v_1} & \vec{v_2} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}.$$

Let
$$\mathcal{B} = \{\vec{v_1}, \vec{v_2}\}$$
 where $\vec{v_1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\vec{v_2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Since $\vec{v_1} \not\parallel \vec{v_2}$, they are LI; therefore \mathcal{B} is a basis for \mathbb{R}^2 .

Suppose $\vec{x} = c_1 \vec{v_1} + c_2 \vec{v_2}$. Then c_1, c_2 are the *B*-coordinates for \vec{x} , and $\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$ is the *B*-coordinate vector for \vec{x} . The *B*-coordinate mapping is the LT $\mathbb{R}^2 \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^2$ given by $\vec{x} \mapsto \vec{c} = \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$. The *inverse* of this map is given by

$$ec{c} \mapsto ec{x} = c_1 ec{v}_1 + c_2 ec{v}_2 = \begin{bmatrix} ec{v}_1 & ec{v}_2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = P ec{c} \quad \text{where } P = \begin{bmatrix} ec{v}_1 & ec{v}_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}.$$

Thus we have $\vec{x} = P\vec{c} = P[\vec{x}]_{\mathcal{B}}$,

Let
$$\mathcal{B} = \{\vec{v_1}, \vec{v_2}\}$$
 where $\vec{v_1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\vec{v_2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Since $\vec{v_1} \not\parallel \vec{v_2}$, they are LI; therefore \mathcal{B} is a basis for \mathbb{R}^2 .

Suppose $\vec{x} = c_1 \vec{v_1} + c_2 \vec{v_2}$. Then c_1, c_2 are the *B*-coordinates for \vec{x} , and $\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$ is the *B*-coordinate vector for \vec{x} . The *B*-coordinate mapping is the LT $\mathbb{R}^2 \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^2$ given by $\vec{x} \mapsto \vec{c} = \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$. The *inverse* of this map is given by

$$\vec{c} \mapsto \vec{x} = c_1 \vec{v_1} + c_2 \vec{v_2} = \begin{bmatrix} \vec{v_1} & \vec{v_2} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = P\vec{c}$$
 where $P = \begin{bmatrix} \vec{v_1} & \vec{v_2} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}$.

Thus we have $\vec{x} = P\vec{c} = P[\vec{x}]_{\mathcal{B}}$, so $P = P_{\mathcal{EB}} = [\vec{v}_1 \ \vec{v}_2]$

▶ ▲圖▶ ▲글▶ ▲글▶ - 글

Let
$$\mathcal{B} = \{\vec{v_1}, \vec{v_2}\}$$
 where $\vec{v_1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\vec{v_2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Since $\vec{v_1} \not\parallel \vec{v_2}$, they are LI; therefore \mathcal{B} is a basis for \mathbb{R}^2 .

Suppose $\vec{x} = c_1 \vec{v_1} + c_2 \vec{v_2}$. Then c_1, c_2 are the *B*-coordinates for \vec{x} , and $[\vec{x}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$ is the *B*-coordinate vector for \vec{x} . The *B*-coordinate mapping is the LT $\mathbb{R}^2 \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^2$ given by $\vec{x} \mapsto \vec{c} = [\vec{x}]_{\mathcal{B}}$. The *inverse* of this map is given by

$$\vec{c} \mapsto \vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2 = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = P\vec{c}$$
 where $P = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}$

Thus we have $\vec{x} = P\vec{c} = P[\vec{x}]_{\mathcal{B}}$, so $P = P_{\mathcal{EB}} = [\vec{v}_1 \ \vec{v}_2]$ is the \mathcal{B} to \mathcal{E} change of coordinates matrix.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let
$$\mathcal{B} = \{\vec{v_1}, \vec{v_2}\}$$
 where $\vec{v_1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\vec{v_2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Since $\vec{v_1} \not\parallel \vec{v_2}$, they are LI; therefore \mathcal{B} is a basis for \mathbb{R}^2 .

Suppose $\vec{x} = c_1 \vec{v_1} + c_2 \vec{v_2}$. Then c_1, c_2 are the *B*-coordinates for \vec{x} , and $\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$ is the *B*-coordinate vector for \vec{x} . The *B*-coordinate mapping is the LT $\mathbb{R}^2 \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^2$ given by $\vec{x} \mapsto \vec{c} = \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$. The inverse of this map is given by

$$\vec{c} \mapsto \vec{x} = c_1 \vec{v_1} + c_2 \vec{v_2} = \begin{bmatrix} \vec{v_1} & \vec{v_2} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = P\vec{c}$$
 where $P = \begin{bmatrix} \vec{v_1} & \vec{v_2} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}$

Thus we have $\vec{x} = P\vec{c} = P[\vec{x}]_{\mathcal{B}}$, so $P = P_{\mathcal{EB}} = [\vec{v}_1 \ \vec{v}_2]$ is the \mathcal{B} to \mathcal{E} change of coordinates matrix. We now see that the \mathcal{B} -coordinate mapping is just $\vec{x} \mapsto \vec{c} = [\vec{x}]_{\mathcal{B}} = P^{-1}\vec{x}$;

Let
$$\mathcal{B} = \{\vec{v_1}, \vec{v_2}\}$$
 where $\vec{v_1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\vec{v_2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Since $\vec{v_1} \not\parallel \vec{v_2}$, they are LI; therefore \mathcal{B} is a basis for \mathbb{R}^2 .

Suppose $\vec{x} = c_1 \vec{v_1} + c_2 \vec{v_2}$. Then c_1, c_2 are the *B*-coordinates for \vec{x} , and $\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$ is the *B*-coordinate vector for \vec{x} . The *B*-coordinate mapping is the LT $\mathbb{R}^2 \xrightarrow{[:]_{\mathcal{B}}} \mathbb{R}^2$ given by $\vec{x} \mapsto \vec{c} = \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$. The inverse of this map is given by

$$\vec{c} \mapsto \vec{x} = c_1 \vec{v_1} + c_2 \vec{v_2} = \begin{bmatrix} \vec{v_1} & \vec{v_2} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = P\vec{c}$$
 where $P = \begin{bmatrix} \vec{v_1} & \vec{v_2} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}$

Thus we have $\vec{x} = P\vec{c} = P[\vec{x}]_{\mathcal{B}}$, so $P = P_{\mathcal{EB}} = [\vec{v}_1 \ \vec{v}_2]$ is the \mathcal{B} to \mathcal{E} change of coordinates matrix. We now see that the \mathcal{B} -coordinate mapping is just $\vec{x} \mapsto \vec{c} = [\vec{x}]_{\mathcal{B}} = P^{-1}\vec{x}$; here $P^{-1} = P_{\mathcal{BE}}$.

(日) (部) (注) (注) (注)

- E

(日) (部) (王) (王)

(日) (部) (王) (王)

æ

(日) (部) (王) (王)

(日) (部) (王) (王)

- E

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

$$P = P_{\mathcal{EB}} =$$

$$P = P_{\mathcal{EB}} = \left[\vec{v_1} \ \vec{v_2} \right] =$$

