An Example Using Bases and Coordinates

Linear Algebra MATH 2076

 \leftarrow

 2990

Let $\mathcal{B} = {\vec{v_1}, \dots, \vec{v_p}}$ be a basis for a vector space V.

4 **D** F

 \rightarrow \rightarrow \equiv \rightarrow

Let $\mathcal{B} = \{\vec{v}_1, \ldots, \vec{v}_p\}$ be a basis for a vector space \mathbb{V} . Then for each vector \vec{x} in \mathbb{V} , there are *unique* scalars c_1, c_2, \ldots, c_p such that

Let $\mathcal{B} = \{\vec{v}_1, \ldots, \vec{v}_p\}$ be a basis for a vector space \mathbb{V} . Then for each vector \vec{x} in \mathbb{V} , there are *unique* scalars c_1, c_2, \ldots, c_p such that

$$
\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_p \vec{v}_p \quad \left(\text{more compactly}, \ \vec{x} = \sum_{i=1}^p c_i \vec{v}_i\right).
$$

Let $\mathcal{B} = \{\vec{v}_1, \ldots, \vec{v}_p\}$ be a basis for a vector space \mathbb{V} . Then for each vector \vec{x} in V, there are *unique* scalars c_1, c_2, \ldots, c_p such that

$$
\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_p \vec{v}_p \quad \left(\text{more compactly}, \ \vec{x} = \sum_{i=1}^p c_i \vec{v}_i\right).
$$

Definition

We call c_1, c_2, \ldots, c_p the *coordinates of* \vec{x} *relative to B*.

 Ω

Let $\mathcal{B} = \{\vec{v}_1, \ldots, \vec{v}_p\}$ be a basis for a vector space \mathbb{V} . Then for each vector \vec{x} in \mathbb{V} , there are *unique* scalars c_1, c_2, \ldots, c_p such that

$$
\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_p \vec{v}_p \quad \left(\text{more compactly}, \ \vec{x} = \sum_{i=1}^p c_i \vec{v}_i\right).
$$

Definition

We call c_1, c_2, \ldots, c_p the *coordinates of* \vec{x} *relative to B*.

We also call c_1, c_2, \ldots, c_p the *B*-coordinates of \vec{x}

 Ω

Let $\mathcal{B} = \{\vec{v}_1, \ldots, \vec{v}_p\}$ be a basis for a vector space \mathbb{V} . Then for each vector \vec{x} in \mathbb{V} , there are *unique* scalars c_1, c_2, \ldots, c_p such that

$$
\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_p \vec{v}_p \quad \left(\text{more compactly}, \ \vec{x} = \sum_{i=1}^p c_i \vec{v}_i\right).
$$

Definition

We call c_1, c_2, \ldots, c_p the coordinates of \vec{x} relative to β .

We also call c_1, c_2, \ldots, c_p the *B-coordinates of* \vec{x} and $\left[\vec{x}\right]_{\mathcal{B}} =$ We also call $c_1, c_2, ..., c_p$ the *B-coordinates of* \vec{x} and $[\vec{x}]_B = \begin{bmatrix} c_2 \\ \vdots \end{bmatrix}$
is the *B-coordinate vector for* \vec{x} .

つひつ

 $\sqrt{ }$

 c_1 $c₂$. . . c_p 1

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$

Let $\mathcal{B} = \{\vec{v}_1, \ldots, \vec{v}_p\}$ be a basis for a vector space V. Then for each vector \vec{x} in \mathbb{V} , there are *unique* scalars c_1, c_2, \ldots, c_p such that

$$
\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_p \vec{v}_p \quad \left(\text{more compactly}, \ \vec{x} = \sum_{i=1}^p c_i \vec{v}_i\right).
$$

Definition

We call c_1, c_2, \ldots, c_p the *coordinates of* \vec{x} *relative to B*.

We also call c_1, c_2, \ldots, c_p the *B-coordinates of* \vec{x} and $\left[\vec{x}\right]_{\mathcal{B}} =$ We also call $c_1, c_2, ..., c_p$ the *B-coordinates of* \vec{x} and $[\vec{x}]_B = \begin{bmatrix} c_2 \\ \vdots \end{bmatrix}$
is the *B-coordinate vector for* \vec{x} .

```
Note that \left[\vec{x}\right]_{\mathcal{B}} is a vector in \mathbb{R}^p.
```
つのい

 $\sqrt{ }$

 c_1 $c₂$. . . c_p 1

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$

Let's find a basis for the plane $\mathbb W$ in $\mathbb R^3$ given by $x-y+z=0.$

4 ロ ▶ 4 母 ▶ 4

Let's find a basis for the plane $\mathbb W$ in $\mathbb R^3$ given by $x-y+z=0.$ One way to do this is to recognize that $\mathbb{W} = \mathcal{NS}(\left[1-1\; 1\right])$ and proceed "as usual".

Let's find a basis for the plane $\mathbb W$ in $\mathbb R^3$ given by $x-y+z=0.$ One way to do this is to recognize that $\mathbb{W} = \mathcal{NS}(\left[1-1\; 1\right])$ and proceed "as usual". However, it is pretty darn easy to find two LI vectors in W, and any two such vectors will form a basis for W.

つのい

Let's find a basis for the plane $\mathbb W$ in $\mathbb R^3$ given by $x-y+z=0.$ One way to do this is to recognize that $\mathbb{W} = \mathcal{NS}(\left[1-1\; 1\right])$ and proceed "as usual". However, it is pretty darn easy to find two LI vectors in W, and any two such vectors will form a basis for W.

How can we find *one non-zero* vector in W; i.e., one *non-zero* solution to $x - y + z = 0$? (We did this sort of thing on the first day of class!)

つのい

Let's find a basis for the plane $\mathbb W$ in $\mathbb R^3$ given by $x-y+z=0.$ One way to do this is to recognize that $\mathbb{W} = \mathcal{NS}(\left[1-1\; 1\right])$ and proceed "as usual". However, it is pretty darn easy to find two LI vectors in W, and any two such vectors will form a basis for W.

How can we find *one non-zero* vector in W; i.e., one *non-zero* solution to $x - y + z = 0$? (We did this sort of thing on the first day of class!) Notice that there are two free variables. Right?

 Ω

Let's find a basis for the plane $\mathbb W$ in $\mathbb R^3$ given by $x-y+z=0.$ One way to do this is to recognize that $\mathbb{W} = \mathcal{NS}(\left[1-1\; 1\right])$ and proceed "as usual". However, it is pretty darn easy to find two LI vectors in W, and any two such vectors will form a basis for W.

How can we find *one non-zero* vector in W; i.e., one *non-zero* solution to $x - y + z = 0$? (We did this sort of thing on the first day of class!) Notice that there are two free variables. Right? So, we can just take any

values for, say y and z , and then solve for x .

 Ω

Let's find a basis for the plane $\mathbb W$ in $\mathbb R^3$ given by $x-y+z=0.$ One way to do this is to recognize that $\mathbb{W} = \mathcal{NS}(\left[1-1\; 1\right])$ and proceed "as usual". However, it is pretty darn easy to find two LI vectors in W, and any two such vectors will form a basis for W.

How can we find *one non-zero* vector in W; i.e., one *non-zero* solution to $x - y + z = 0$? (We did this sort of thing on the first day of class!) Notice that there are two free variables. Right? So, we can just take any values for, say y and z , and then solve for x .

With $y = 0$ and $z = 1$ we get $x = -1$.

Let's find a basis for the plane $\mathbb W$ in $\mathbb R^3$ given by $x-y+z=0.$ One way to do this is to recognize that $\mathbb{W} = \mathcal{NS}(\left[1-1\; 1\right])$ and proceed "as usual". However, it is pretty darn easy to find two LI vectors in W, and any two such vectors will form a basis for W.

How can we find *one non-zero* vector in W; i.e., one *non-zero* solution to $x - y + z = 0$? (We did this sort of thing on the first day of class!) Notice that there are two free variables. Right? So, we can just take any values for, say y and z , and then solve for x .

With y = 0 and z = 1 we get $x = -1$. With y = 2, z = 1 we get $x = 1$.

Let's find a basis for the plane $\mathbb W$ in $\mathbb R^3$ given by $x-y+z=0.$ One way to do this is to recognize that $\mathbb{W} = \mathcal{NS}(\left[1-1\; 1\right])$ and proceed "as usual". However, it is pretty darn easy to find two LI vectors in W, and any two such vectors will form a basis for W.

How can we find *one non-zero* vector in W; i.e., one *non-zero* solution to $x - y + z = 0$? (We did this sort of thing on the first day of class!) Notice that there are two free variables. Right? So, we can just take any values for, say y and z , and then solve for x .

With y = 0 and z = 1 we get $x = -1$. With y = 2, z = 1 we get $x = 1$. So, the vectors $\sqrt{ }$ $\overline{1}$ -1 0 1 1 | and $\sqrt{ }$ $\overline{1}$ 1 2 1 1 both lie in ^W, and these two vectors form a basis for W.

 QQQ

We're finding a basis for the plane $\mathbb W$ in $\mathbb R^3$ given by $x-y+z=0.$

4 ロ ▶ (母

 $|b| = 4$

 $2Q$

We're finding a basis for the plane $\mathbb W$ in $\mathbb R^3$ given by $x-y+z=0.$ The vectors $\sqrt{ }$ $\overline{}$ −1 0 1 1 | and $\sqrt{ }$ $\overline{1}$ 1 2 1 1 both lie in ^W, and form a basis for ^W.

 299

We're finding a basis for the plane $\mathbb W$ in $\mathbb R^3$ given by $x-y+z=0.$ The vectors $\sqrt{ }$ $\overline{}$ −1 0 1 1 | and $\sqrt{ }$ $\overline{1}$ 1 2 1 1 both lie in ^W, and form a basis for ^W.

To draw a nice picture (with geogebra), it is convenient to use shorter vectors; we use the following basis for W,

$$
\mathcal{B} = \{\vec{v}, \vec{w}\} \quad \text{where} \quad \vec{v} = \begin{bmatrix} -1/2 \\ 0 \\ -1/2 \end{bmatrix}, \quad \vec{w} = \begin{bmatrix} 1/2 \\ 1 \\ 1/2 \end{bmatrix}.
$$

We're finding a basis for the plane $\mathbb W$ in $\mathbb R^3$ given by $x-y+z=0.$ The vectors $\sqrt{ }$ $\overline{}$ −1 0 1 1 | and $\sqrt{ }$ $\overline{1}$ 1 2 1 1 both lie in ^W, and form a basis for ^W.

To draw a nice picture (with geogebra), it is convenient to use shorter vectors; we use the following basis for W,

$$
\mathcal{B} = \{\vec{v}, \vec{w}\} \text{ where } \vec{v} = \begin{bmatrix} -1/2 \\ 0 \\ -1/2 \end{bmatrix}, \ \vec{w} = \begin{bmatrix} 1/2 \\ 1 \\ 1/2 \end{bmatrix}.
$$

Recall that $\mathbb{W} = \mathcal{S}$ pan $\{\vec{v}, \vec{w}\}\$, so $\mathbb W$ is exactly all LCs $s\vec{v} + t\vec{w}$,

We're finding a basis for the plane $\mathbb W$ in $\mathbb R^3$ given by $x-y+z=0.$ The vectors $\sqrt{ }$ $\overline{}$ −1 0 1 1 | and $\sqrt{ }$ $\overline{1}$ 1 2 1 1 both lie in ^W, and form a basis for ^W.

To draw a nice picture (with geogebra), it is convenient to use shorter vectors; we use the following basis for W,

$$
\mathcal{B} = \{\vec{v}, \vec{w}\} \quad \text{where} \quad \vec{v} = \begin{bmatrix} -1/2 \\ 0 \\ -1/2 \end{bmatrix}, \quad \vec{w} = \begin{bmatrix} 1/2 \\ 1 \\ 1/2 \end{bmatrix}.
$$

Recall that $\mathbb{W} = \mathcal{S}$ pan $\{\vec{v}, \vec{w}\}$, so $\mathbb W$ is exactly all LCs $s\vec{v} + t\vec{w}$, and then s, t are the B-coordinates of the vector $s\vec{v} + t\vec{w}$.