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Coordinates Relative to a Basis

Let B = {~v1, . . . , ~vp} be a basis for a vector space V.

Then for each vector
~x in V, there are unique scalars c1, c2, . . . , cp such that

~x = c1~v1 + c2~v2 + · · ·+ cp~vp
(

more compactly , ~x =

p∑
i=1

ci~vi

)
.

Definition

We call c1, c2, . . . , cp the coordinates of ~x relative to B.

We also call c1, c2, . . . , cp the B-coordinates of ~x and
[
~x
]
B =


c1
c2
...
cp


is the B-coordinate vector for ~x .

Note that
[
~x
]
B is a vector in Rp.
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Example

Let’s find a basis for the plane W in R3 given by x − y + z = 0.

One way
to do this is to recognize that W = NS

(
[1 −1 1]

)
and proceed “as usual”.

However, it is pretty darn easy to find two LI vectors in W, and any two
such vectors will form a basis for W.

How can we find one non-zero vector in W; i.e., one non-zero solution to
x − y + z = 0? (We did this sort of thing on the first day of class!)

Notice that there are two free variables. Right? So, we can just take any
values for, say y and z , and then solve for x .

With y = 0 and z = 1 we get x = −1. With y = 2, z = 1 we get x = 1.

So, the vectors

−1
0
1

 and

1
2
1

 both lie in W, and these two vectors form

a basis for W.
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Example

We’re finding a basis for the plane W in R3 given by x − y + z = 0.

The vectors

−1
0
1

 and

1
2
1

 both lie in W, and form a basis for W.

To draw a nice picture (with geogebra), it is convenient to use shorter
vectors; we use the following basis for W,

B = {~v , ~w} where ~v =

−1/2
0
−1/2

 , ~w =

1/2
1

1/2

 .

Recall that W = Span{~v , ~w}, so W is exactly all LCs s~v + t ~w , and then
s, t are the B-coordinates of the vector s~v + t ~w .
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