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Coordinates and Coordinate Vectors

Let B = {~a1, . . . , ~ap} be a basis for a vector space V.

Then for each vector
~v in V, there are unique scalars c1, c2, . . . , cp such that

~v = c1~a1 + c2~a2 + · · ·+ cp~ap =

p∑
i=1

ci~ai .

We call c1, c2, . . . , cp the B-coordinates of ~v and
[
~v
]
B =


c1
c2
...
cp


is the B-coordinate vector for ~v .

Note that
[
~v
]
B is a vector in Rp.
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Example

Let ~a1 =

 2
3
−5

 , ~a2 =

−4
−5
8

 , ~u =

8
2
4

 , ~v =

−2
−1
−1

, B = {~a1, ~a2} and

V = SpanB.

Is ~u or ~v in V, and if so find its B-coordinates.

Can we write ~u (or ~v) as a LC of ~a1 and ~a2? Let A =
[
~a1 ~a2

]
.

Can we solve A~x = ~u (or A~x = ~v)? Look at

[
A
∣∣ ~u ~v

]
=

 2 −4 8 −2
3 −5 2 −1
−5 8 4 −1



∼

1 −2 4 −1
0 1 −10 2
0 0 −9 0

 ∼
1 0 ? 3

0 1 −10 2
0 0 −9 0


Using elem row ops, we find the indicated REF

and RREF for A.

A~x = ~u has no solutions; ~u not in V. A~x = ~v has a solution; ~v is in V.

In fact, A~x = ~v has the solution ~x =

[
3
2

]
, and we see that

[
~v
]
B =

[
3
2

]
,

that is, ~v = 3~a1 + 2~a2. Note that ~v is in R3 whereas
[
~v
]
B is in R2.
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Coordinates for Subspaces of Rn

Suppose B = {~a1, . . . , ~ap} is a LI set of vectors in Rn.
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Coordinate Mappings

Let B = {~a1, . . . , ~ap} be a basis for a vector space V.

Then each ~v in V

[
~v
]
B =


c1
c2
...
cp


has an associated B-coordinate vector

[
~v
]
B

where c1, c2, . . . , cp are the B-coordinates of ~v .
Again,

[
~v
]
B is a vector in Rp.

Now define V [·]B−−→ Rp by the formula ~v 7→
[
~v
]
B. This is a LT

called the B-coordinate mapping.

The inverse of the B-coordinate mapping is easier to understand. This is

the linear transformation Rp T−→ V given by the formula

T (~x) = x1~a1 + x2~a2 + · · ·+ xp~ap where ~x =


x1
x2
...
xp

 .

Thus ~x in Rp is associated to ~v = T (~x) in V and[
~v
]
B = ~x . That is,

[
T (~x)

]
B = ~x .

Can we write T as a matrix transformation?
What if V is a vector subspace of some Rn?

Section 4.4 Bases n Coords 1 March 2017 5 / 7



Coordinate Mappings

Let B = {~a1, . . . , ~ap} be a basis for a vector space V. Then each ~v in V

[
~v
]
B =


c1
c2
...
cp


has an associated B-coordinate vector

[
~v
]
B

where c1, c2, . . . , cp are the B-coordinates of ~v .

Again,
[
~v
]
B is a vector in Rp.

Now define V [·]B−−→ Rp by the formula ~v 7→
[
~v
]
B. This is a LT

called the B-coordinate mapping.

The inverse of the B-coordinate mapping is easier to understand. This is

the linear transformation Rp T−→ V given by the formula

T (~x) = x1~a1 + x2~a2 + · · ·+ xp~ap where ~x =


x1
x2
...
xp

 .

Thus ~x in Rp is associated to ~v = T (~x) in V and[
~v
]
B = ~x . That is,

[
T (~x)

]
B = ~x .

Can we write T as a matrix transformation?
What if V is a vector subspace of some Rn?

Section 4.4 Bases n Coords 1 March 2017 5 / 7



Coordinate Mappings

Let B = {~a1, . . . , ~ap} be a basis for a vector space V. Then each ~v in V

[
~v
]
B =


c1
c2
...
cp


has an associated B-coordinate vector

[
~v
]
B

where c1, c2, . . . , cp are the B-coordinates of ~v .
Again,

[
~v
]
B is a vector in Rp.

Now define V [·]B−−→ Rp by the formula ~v 7→
[
~v
]
B. This is a LT

called the B-coordinate mapping.

The inverse of the B-coordinate mapping is easier to understand. This is

the linear transformation Rp T−→ V given by the formula

T (~x) = x1~a1 + x2~a2 + · · ·+ xp~ap where ~x =


x1
x2
...
xp

 .

Thus ~x in Rp is associated to ~v = T (~x) in V and[
~v
]
B = ~x . That is,

[
T (~x)

]
B = ~x .

Can we write T as a matrix transformation?
What if V is a vector subspace of some Rn?

Section 4.4 Bases n Coords 1 March 2017 5 / 7



Coordinate Mappings

Let B = {~a1, . . . , ~ap} be a basis for a vector space V. Then each ~v in V

[
~v
]
B =


c1
c2
...
cp


has an associated B-coordinate vector

[
~v
]
B

where c1, c2, . . . , cp are the B-coordinates of ~v .
Again,

[
~v
]
B is a vector in Rp.

Now define V [·]B−−→ Rp by the formula ~v 7→
[
~v
]
B.

This is a LT
called the B-coordinate mapping.

The inverse of the B-coordinate mapping is easier to understand. This is

the linear transformation Rp T−→ V given by the formula

T (~x) = x1~a1 + x2~a2 + · · ·+ xp~ap where ~x =


x1
x2
...
xp

 .

Thus ~x in Rp is associated to ~v = T (~x) in V and[
~v
]
B = ~x . That is,

[
T (~x)

]
B = ~x .

Can we write T as a matrix transformation?
What if V is a vector subspace of some Rn?

Section 4.4 Bases n Coords 1 March 2017 5 / 7



Coordinate Mappings

Let B = {~a1, . . . , ~ap} be a basis for a vector space V. Then each ~v in V

[
~v
]
B =


c1
c2
...
cp


has an associated B-coordinate vector

[
~v
]
B

where c1, c2, . . . , cp are the B-coordinates of ~v .
Again,

[
~v
]
B is a vector in Rp.

Now define V [·]B−−→ Rp by the formula ~v 7→
[
~v
]
B. This is a LT

called the B-coordinate mapping.

The inverse of the B-coordinate mapping is easier to understand. This is

the linear transformation Rp T−→ V given by the formula

T (~x) = x1~a1 + x2~a2 + · · ·+ xp~ap where ~x =


x1
x2
...
xp

 .

Thus ~x in Rp is associated to ~v = T (~x) in V and[
~v
]
B = ~x . That is,

[
T (~x)

]
B = ~x .

Can we write T as a matrix transformation?
What if V is a vector subspace of some Rn?

Section 4.4 Bases n Coords 1 March 2017 5 / 7



Coordinate Mappings

Let B = {~a1, . . . , ~ap} be a basis for a vector space V. Then each ~v in V

[
~v
]
B =


c1
c2
...
cp


has an associated B-coordinate vector

[
~v
]
B

where c1, c2, . . . , cp are the B-coordinates of ~v .
Again,

[
~v
]
B is a vector in Rp.

Now define V [·]B−−→ Rp by the formula ~v 7→
[
~v
]
B. This is a LT

called the B-coordinate mapping.

The inverse of the B-coordinate mapping is easier to understand.

This is

the linear transformation Rp T−→ V given by the formula

T (~x) = x1~a1 + x2~a2 + · · ·+ xp~ap where ~x =


x1
x2
...
xp

 .

Thus ~x in Rp is associated to ~v = T (~x) in V and[
~v
]
B = ~x . That is,

[
T (~x)

]
B = ~x .

Can we write T as a matrix transformation?
What if V is a vector subspace of some Rn?

Section 4.4 Bases n Coords 1 March 2017 5 / 7



Coordinate Mappings

Let B = {~a1, . . . , ~ap} be a basis for a vector space V. Then each ~v in V

[
~v
]
B =


c1
c2
...
cp


has an associated B-coordinate vector

[
~v
]
B

where c1, c2, . . . , cp are the B-coordinates of ~v .
Again,

[
~v
]
B is a vector in Rp.

Now define V [·]B−−→ Rp by the formula ~v 7→
[
~v
]
B. This is a LT

called the B-coordinate mapping.

The inverse of the B-coordinate mapping is easier to understand. This is

the linear transformation Rp T−→ V given by the formula

T (~x) = x1~a1 + x2~a2 + · · ·+ xp~ap where ~x =


x1
x2
...
xp

 .

Thus ~x in Rp is associated to ~v = T (~x) in V and[
~v
]
B = ~x . That is,

[
T (~x)

]
B = ~x .

Can we write T as a matrix transformation?
What if V is a vector subspace of some Rn?

Section 4.4 Bases n Coords 1 March 2017 5 / 7



Coordinate Mappings

Let B = {~a1, . . . , ~ap} be a basis for a vector space V. Then each ~v in V

[
~v
]
B =


c1
c2
...
cp


has an associated B-coordinate vector

[
~v
]
B

where c1, c2, . . . , cp are the B-coordinates of ~v .
Again,

[
~v
]
B is a vector in Rp.

Now define V [·]B−−→ Rp by the formula ~v 7→
[
~v
]
B. This is a LT

called the B-coordinate mapping.

The inverse of the B-coordinate mapping is easier to understand. This is

the linear transformation Rp T−→ V given by the formula

T (~x) = x1~a1 + x2~a2 + · · ·+ xp~ap where ~x =


x1
x2
...
xp

 .

Thus ~x in Rp is associated to ~v = T (~x) in V and[
~v
]
B = ~x .

That is,
[
T (~x)

]
B = ~x .

Can we write T as a matrix transformation?
What if V is a vector subspace of some Rn?

Section 4.4 Bases n Coords 1 March 2017 5 / 7



Coordinate Mappings

Let B = {~a1, . . . , ~ap} be a basis for a vector space V. Then each ~v in V

[
~v
]
B =


c1
c2
...
cp


has an associated B-coordinate vector

[
~v
]
B

where c1, c2, . . . , cp are the B-coordinates of ~v .
Again,

[
~v
]
B is a vector in Rp.

Now define V [·]B−−→ Rp by the formula ~v 7→
[
~v
]
B. This is a LT

called the B-coordinate mapping.

The inverse of the B-coordinate mapping is easier to understand. This is

the linear transformation Rp T−→ V given by the formula

T (~x) = x1~a1 + x2~a2 + · · ·+ xp~ap where ~x =


x1
x2
...
xp

 .

Thus ~x in Rp is associated to ~v = T (~x) in V and[
~v
]
B = ~x . That is,

[
T (~x)

]
B = ~x .

Can we write T as a matrix transformation?
What if V is a vector subspace of some Rn?

Section 4.4 Bases n Coords 1 March 2017 5 / 7



Coordinate Mappings

Let B = {~a1, . . . , ~ap} be a basis for a vector space V. Then each ~v in V

[
~v
]
B =


c1
c2
...
cp


has an associated B-coordinate vector

[
~v
]
B

where c1, c2, . . . , cp are the B-coordinates of ~v .
Again,

[
~v
]
B is a vector in Rp.

Now define V [·]B−−→ Rp by the formula ~v 7→
[
~v
]
B. This is a LT

called the B-coordinate mapping.

The inverse of the B-coordinate mapping is easier to understand. This is

the linear transformation Rp T−→ V given by the formula

T (~x) = x1~a1 + x2~a2 + · · ·+ xp~ap where ~x =


x1
x2
...
xp

 .

Thus ~x in Rp is associated to ~v = T (~x) in V and[
~v
]
B = ~x . That is,

[
T (~x)

]
B = ~x .

Can we write T as a matrix transformation?

What if V is a vector subspace of some Rn?

Section 4.4 Bases n Coords 1 March 2017 5 / 7



Coordinate Mappings

Let B = {~a1, . . . , ~ap} be a basis for a vector space V. Then each ~v in V

[
~v
]
B =


c1
c2
...
cp


has an associated B-coordinate vector

[
~v
]
B

where c1, c2, . . . , cp are the B-coordinates of ~v .
Again,

[
~v
]
B is a vector in Rp.

Now define V [·]B−−→ Rp by the formula ~v 7→
[
~v
]
B. This is a LT

called the B-coordinate mapping.

The inverse of the B-coordinate mapping is easier to understand. This is

the linear transformation Rp T−→ V given by the formula

T (~x) = x1~a1 + x2~a2 + · · ·+ xp~ap where ~x =


x1
x2
...
xp

 .

Thus ~x in Rp is associated to ~v = T (~x) in V and[
~v
]
B = ~x . That is,

[
T (~x)

]
B = ~x .

Can we write T as a matrix transformation?
What if V is a vector subspace of some Rn?

Section 4.4 Bases n Coords 1 March 2017 5 / 7



Coordinate Mappings for Subspaces of Rn

Suppose B = {~a1, . . . , ~ap} is a LI set of vectors in Rn.

Let V = SpanB.
Then B is a basis for V.

In this setting, finding coord vectors
[
~v
]
B (for ~v in V) is just the problem

of solving A~x = ~v where A =
[
~a1 ~a2 · · · ~ap

]
.

Given ~v in V,
[
~v
]
B is the unique solution to A~x = ~v .

Look at the LT Rp T−→ Rn given by T (~x) = A~x . Since V = SpanB, it
follows that Rng(T ) = V. Notice that

[
T (~x)

]
B = ~x . Right?

Since B is LI, A~x = ~0 iff ~x = ~0, so Ker(T ) = {~0}. This means T is

one-to-one, which says that Rp T−→ Rng(T ) = V has an inverse.

The inverse of Rp T−→ Rng(T ) = V is the B-coord mapping V [·]B−−→ Rp.
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Properties of Coordinate Vectors

Again, let B = {~a1, . . . , ~ap} be a basis for a vector space V. Then:

for all ~v , ~w in V,
[
~v + ~w

]
B =

[
~v
]
B +

[
~w
]
B

for all scalars s and all ~v in V,
[
s~v
]
B = s

[
~v
]
B

This means that for any vectors ~v1, . . . , ~vq in V,

the B-coord vector for
any LC of the ~vi ’s if the same LC of the B-coord vectors;

that is,[ q∑
i=1

si~vi

]
B

=

q∑
i=1

si
[
~vi
]
B.

This is also what tells us that the B-coord mapping V [·]B−−→ Rp is a linear
transformation.
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