Bases and Coordinates

Linear Algebra MATH 2076

Let $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ be a basis for a vector space \mathbb{V} .

Let $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ be a basis for a vector space \mathbb{V} . Then for each vector \vec{v} in \mathbb{V} , there are *unique* scalars c_1, c_2, \dots, c_p such that

Let $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ be a basis for a vector space \mathbb{V} . Then for each vector \vec{v} in \mathbb{V} , there are *unique* scalars c_1, c_2, \dots, c_p such that

$$\vec{v} = c_1 \vec{a}_1 + c_2 \vec{a}_2 + \dots + c_p \vec{a}_p = \sum_{i=1}^p c_i \vec{a}_i.$$

Let $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ be a basis for a vector space \mathbb{V} . Then for each vector \vec{v} in \mathbb{V} , there are *unique* scalars c_1, c_2, \dots, c_p such that

$$\vec{v} = c_1 \vec{a}_1 + c_2 \vec{a}_2 + \dots + c_p \vec{a}_p = \sum_{i=1}^p c_i \vec{a}_i.$$

We call c_1, c_2, \ldots, c_p the \mathcal{B} -coordinates of \vec{v}

Let $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ be a basis for a vector space \mathbb{V} . Then for each vector \vec{v} in \mathbb{V} , there are *unique* scalars c_1, c_2, \dots, c_p such that

$$\vec{v} = c_1 \vec{a}_1 + c_2 \vec{a}_2 + \dots + c_p \vec{a}_p = \sum_{i=1}^p c_i \vec{a}_i.$$

We call c_1, c_2, \ldots, c_p the \mathcal{B} -coordinates of \vec{v} and $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_p \end{bmatrix}$

Let $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ be a basis for a vector space \mathbb{V} . Then for each vector \vec{v} in \mathbb{V} , there are *unique* scalars c_1, c_2, \ldots, c_p such that

$$\vec{v} = c_1 \vec{a}_1 + c_2 \vec{a}_2 + \dots + c_p \vec{a}_p = \sum_{i=1}^p c_i \vec{a}_i.$$

We call c_1, c_2, \ldots, c_p the \mathcal{B} -coordinates of \vec{v} and $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \end{bmatrix}$

Note that $[\vec{v}]_{\mathcal{B}}$ is a vector in \mathbb{R}^p .

Let
$$\vec{a}_1 = \begin{bmatrix} 2 \\ 3 \\ -5 \end{bmatrix}$$
, $\vec{a}_2 = \begin{bmatrix} -4 \\ -5 \\ 8 \end{bmatrix}$, $\vec{u} = \begin{bmatrix} 8 \\ 2 \\ 4 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} -2 \\ -1 \\ -1 \end{bmatrix}$, $\mathcal{B} = \{\vec{a}_1, \vec{a}_2\}$ and $\mathbb{V} = \mathcal{S} pan \mathcal{B}$.

Is \vec{u} or \vec{v} in \mathbb{V} , and if so find its \mathcal{B} -coordinates.

Let
$$\vec{a}_1 = \begin{bmatrix} 2 \\ 3 \\ -5 \end{bmatrix}$$
, $\vec{a}_2 = \begin{bmatrix} -4 \\ -5 \\ 8 \end{bmatrix}$, $\vec{u} = \begin{bmatrix} 8 \\ 2 \\ 4 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} -2 \\ -1 \\ -1 \end{bmatrix}$, $\mathcal{B} = \{\vec{a}_1, \vec{a}_2\}$ and $\mathbb{V} = \mathcal{S} pan \mathcal{B}$.

Is \vec{u} or \vec{v} in \mathbb{V} , and if so find its \mathcal{B} -coordinates.

Can we write \vec{u} (or \vec{v}) as a LC of \vec{a}_1 and \vec{a}_2 ?

Section 4.4 Bases n Coords 1 March 2017

Let
$$\vec{a}_1 = \begin{bmatrix} 2 \\ 3 \\ -5 \end{bmatrix}$$
, $\vec{a}_2 = \begin{bmatrix} -4 \\ -5 \\ 8 \end{bmatrix}$, $\vec{u} = \begin{bmatrix} 8 \\ 2 \\ 4 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} -2 \\ -1 \\ -1 \end{bmatrix}$, $\mathcal{B} = \{\vec{a}_1, \vec{a}_2\}$ and $\mathbb{V} = \mathcal{S} \operatorname{pan} \mathcal{B}$.

Is \vec{u} or \vec{v} in \mathbb{V} , and if so find its \mathcal{B} -coordinates.

Can we write \vec{u} (or \vec{v}) as a LC of \vec{a}_1 and \vec{a}_2 ? Let $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 \end{bmatrix}$.

Section 4.4 Bases n Coords

Let
$$\vec{a}_1 = \begin{bmatrix} 2 \\ 3 \\ -5 \end{bmatrix}$$
, $\vec{a}_2 = \begin{bmatrix} -4 \\ -5 \\ 8 \end{bmatrix}$, $\vec{u} = \begin{bmatrix} 8 \\ 2 \\ 4 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} -2 \\ -1 \\ -1 \end{bmatrix}$, $\mathcal{B} = \{\vec{a}_1, \vec{a}_2\}$ and $\mathbb{V} = \mathcal{S} \operatorname{pan} \mathcal{B}$.

Is \vec{u} or \vec{v} in \mathbb{V} , and if so find its \mathcal{B} -coordinates.

Can we write \vec{u} (or \vec{v}) as a LC of $\vec{a_1}$ and $\vec{a_2}$? Let $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} \end{bmatrix}$. Can we solve $A\vec{x} = \vec{u}$ (or $A\vec{x} = \vec{v}$)?

Let
$$\vec{a}_1 = \begin{bmatrix} 2 \\ 3 \\ -5 \end{bmatrix}$$
, $\vec{a}_2 = \begin{bmatrix} -4 \\ -5 \\ 8 \end{bmatrix}$, $\vec{u} = \begin{bmatrix} 8 \\ 2 \\ 4 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} -2 \\ -1 \\ -1 \end{bmatrix}$, $\mathcal{B} = \{\vec{a}_1, \vec{a}_2\}$ and $\mathbb{V} = \mathcal{S} pan \mathcal{B}$.

Is \vec{u} or \vec{v} in \mathbb{V} , and if so find its \mathcal{B} -coordinates.

Can we write \vec{u} (or \vec{v}) as a LC of $\vec{a_1}$ and $\vec{a_2}$? Let $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} \end{bmatrix}$. Can we solve $A\vec{x} = \vec{u}$ (or $A\vec{x} = \vec{v}$)? Look at

$$[A \mid \vec{u} \vec{v}] = \begin{bmatrix} 2 & -4 & 8 & -2 \\ 3 & -5 & 2 & -1 \\ -5 & 8 & 4 & -1 \end{bmatrix}$$

3 / 7

Section 4.4 Bases n Coords 1 March 2017

$$\text{Let } \vec{a}_1 = \begin{bmatrix} 2 \\ 3 \\ -5 \end{bmatrix}, \vec{a}_2 = \begin{bmatrix} -4 \\ -5 \\ 8 \end{bmatrix}, \vec{u} = \begin{bmatrix} 8 \\ 2 \\ 4 \end{bmatrix}, \vec{v} = \begin{bmatrix} -2 \\ -1 \\ -1 \end{bmatrix}, \ \mathcal{B} = \{\vec{a}_1, \vec{a}_2\} \text{ and } \\ \mathbb{V} = \mathcal{S}\textit{pan}\,\mathcal{B}.$$

Is \vec{u} or \vec{v} in \mathbb{V} , and if so find its \mathcal{B} -coordinates.

Can we write \vec{u} (or \vec{v}) as a LC of $\vec{a_1}$ and $\vec{a_2}$? Let $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} \end{bmatrix}$. Can we solve $A\vec{x} = \vec{u}$ (or $A\vec{x} = \vec{v}$)? Look at

$$\begin{bmatrix} A \mid \vec{u} \vec{v} \end{bmatrix} = \begin{bmatrix} 2 & -4 & 8 & -2 \\ 3 & -5 & 2 & -1 \\ -5 & 8 & 4 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 4 & -1 \\ 0 & 1 & -10 & 2 \\ 0 & 0 & -9 & 0 \end{bmatrix}$$

Using elem row ops, we find the indicated REF

Section 4.4 Bases n Coords

3 / 7

$$\text{Let } \vec{a}_1 = \begin{bmatrix} 2 \\ 3 \\ -5 \end{bmatrix}, \vec{a}_2 = \begin{bmatrix} -4 \\ -5 \\ 8 \end{bmatrix}, \vec{u} = \begin{bmatrix} 8 \\ 2 \\ 4 \end{bmatrix}, \vec{v} = \begin{bmatrix} -2 \\ -1 \\ -1 \end{bmatrix}, \ \mathcal{B} = \{\vec{a}_1, \vec{a}_2\} \text{ and } \\ \mathbb{V} = \mathcal{S}\textit{pan}\,\mathcal{B}.$$

Is \vec{u} or \vec{v} in \mathbb{V} , and if so find its \mathcal{B} -coordinates.

Can we write \vec{u} (or \vec{v}) as a LC of $\vec{a_1}$ and $\vec{a_2}$? Let $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} \end{bmatrix}$. Can we solve $A\vec{x} = \vec{u}$ (or $A\vec{x} = \vec{v}$)? Look at

$$[A \mid \vec{u} \vec{v}] = \begin{bmatrix} 2 & -4 & 8 & -2 \\ 3 & -5 & 2 & -1 \\ -5 & 8 & 4 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 4 & -1 \\ 0 & 1 & -10 & 2 \\ 0 & 0 & -9 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & ? & 3 \\ 0 & 1 & -10 & 2 \\ 0 & 0 & -9 & 0 \end{bmatrix}$$

Using elem row ops, we find the indicated REF and RREF for A.

3 / 7

Section 4.4 Bases n Coords 1 March 2017

$$\text{Let } \vec{a}_1 = \begin{bmatrix} 2 \\ 3 \\ -5 \end{bmatrix}, \vec{a}_2 = \begin{bmatrix} -4 \\ -5 \\ 8 \end{bmatrix}, \vec{u} = \begin{bmatrix} 8 \\ 2 \\ 4 \end{bmatrix}, \vec{v} = \begin{bmatrix} -2 \\ -1 \\ -1 \end{bmatrix}, \ \mathcal{B} = \{\vec{a}_1, \vec{a}_2\} \text{ and } \\ \mathbb{V} = \mathcal{S}\textit{pan}\,\mathcal{B}.$$

Is \vec{u} or \vec{v} in \mathbb{V} , and if so find its \mathcal{B} -coordinates.

Can we write \vec{u} (or \vec{v}) as a LC of $\vec{a_1}$ and $\vec{a_2}$? Let $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} \end{bmatrix}$. Can we solve $A\vec{x} = \vec{u}$ (or $A\vec{x} = \vec{v}$)? Look at

$$[A \mid \vec{u} \vec{v}] = \begin{bmatrix} 2 & -4 & 8 & -2 \\ 3 & -5 & 2 & -1 \\ -5 & 8 & 4 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 4 & -1 \\ 0 & 1 & -10 & 2 \\ 0 & 0 & -9 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & ? & 3 \\ 0 & 1 & -10 & 2 \\ 0 & 0 & -9 & 0 \end{bmatrix}$$

Using elem row ops, we find the indicated REF and RREF for A. $A\vec{x} = \vec{u}$ has no solutions; \vec{u} not in \mathbb{V} .

Section 4.4 Bases n Coords 1 March 2017 3 / 7

$$\text{Let } \vec{a}_1 = \begin{bmatrix} 2 \\ 3 \\ -5 \end{bmatrix}, \vec{a}_2 = \begin{bmatrix} -4 \\ -5 \\ 8 \end{bmatrix}, \vec{u} = \begin{bmatrix} 8 \\ 2 \\ 4 \end{bmatrix}, \vec{v} = \begin{bmatrix} -2 \\ -1 \\ -1 \end{bmatrix}, \ \mathcal{B} = \{\vec{a}_1, \vec{a}_2\} \text{ and } \\ \mathbb{V} = \mathcal{S}\textit{pan}\,\mathcal{B}.$$

Is \vec{u} or \vec{v} in \mathbb{V} , and if so find its \mathcal{B} -coordinates.

Can we write \vec{u} (or \vec{v}) as a LC of $\vec{a_1}$ and $\vec{a_2}$? Let $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} \end{bmatrix}$. Can we solve $A\vec{x} = \vec{u}$ (or $A\vec{x} = \vec{v}$)? Look at

$$[A \mid \vec{u} \vec{v}] = \begin{bmatrix} 2 & -4 & 8 & -2 \\ 3 & -5 & 2 & -1 \\ -5 & 8 & 4 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 4 & -1 \\ 0 & 1 & -10 & 2 \\ 0 & 0 & -9 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & ? & 3 \\ 0 & 1 & -10 & 2 \\ 0 & 0 & -9 & 0 \end{bmatrix}$$

Using elem row ops, we find the indicated REF and RREF for A. $A\vec{x} = \vec{u}$ has no solutions; \vec{u} not in \mathbb{V} . $A\vec{x} = \vec{v}$ has a solution; \vec{v} is in \mathbb{V} .

3 / 7

Section 4.4 Bases n Coords 1 March 2017

$$\text{Let } \vec{a}_1 = \begin{bmatrix} 2 \\ 3 \\ -5 \end{bmatrix}, \vec{a}_2 = \begin{bmatrix} -4 \\ -5 \\ 8 \end{bmatrix}, \vec{u} = \begin{bmatrix} 8 \\ 2 \\ 4 \end{bmatrix}, \vec{v} = \begin{bmatrix} -2 \\ -1 \\ -1 \end{bmatrix}, \ \mathcal{B} = \{\vec{a}_1, \vec{a}_2\} \text{ and } \\ \mathbb{V} = \mathcal{S}\textit{pan}\,\mathcal{B}.$$

Is \vec{u} or \vec{v} in \mathbb{V} , and if so find its \mathcal{B} -coordinates.

Can we write \vec{u} (or \vec{v}) as a LC of $\vec{a_1}$ and $\vec{a_2}$? Let $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} \end{bmatrix}$. Can we solve $A\vec{x} = \vec{u}$ (or $A\vec{x} = \vec{v}$)? Look at

$$[A \mid \vec{u} \vec{v}] = \begin{bmatrix} 2 & -4 & 8 & -2 \\ 3 & -5 & 2 & -1 \\ -5 & 8 & 4 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 4 & -1 \\ 0 & 1 & -10 & 2 \\ 0 & 0 & -9 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & ? & 3 \\ 0 & 1 & -10 & 2 \\ 0 & 0 & -9 & 0 \end{bmatrix}$$

Using elem row ops, we find the indicated REF and RREF for A.

 $A\vec{x} = \vec{u}$ has no solutions; \vec{u} not in \mathbb{V} . $A\vec{x} = \vec{v}$ has a solution; \vec{v} is in \mathbb{V} .

In fact,
$$A\vec{x} = \vec{v}$$
 has the solution $\vec{x} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$,

$$\text{Let } \vec{\textit{a}}_1 = \begin{bmatrix} 2 \\ 3 \\ -5 \end{bmatrix}, \vec{\textit{a}}_2 = \begin{bmatrix} -4 \\ -5 \\ 8 \end{bmatrix}, \vec{\textit{u}} = \begin{bmatrix} 8 \\ 2 \\ 4 \end{bmatrix}, \vec{\textit{v}} = \begin{bmatrix} -2 \\ -1 \\ -1 \end{bmatrix}, \; \mathcal{B} = \{\vec{\textit{a}}_1, \vec{\textit{a}}_2\} \text{ and } \\ \mathbb{V} = \mathcal{S}\textit{pan}\,\mathcal{B}.$$

Is \vec{u} or \vec{v} in \mathbb{V} , and if so find its \mathcal{B} -coordinates.

Can we write \vec{u} (or \vec{v}) as a LC of $\vec{a_1}$ and $\vec{a_2}$? Let $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} \end{bmatrix}$. Can we solve $A\vec{x} = \vec{u}$ (or $A\vec{x} = \vec{v}$)? Look at

$$[A \mid \vec{u} \vec{v}] = \begin{bmatrix} 2 & -4 & 8 & -2 \\ 3 & -5 & 2 & -1 \\ -5 & 8 & 4 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 4 & -1 \\ 0 & 1 & -10 & 2 \\ 0 & 0 & -9 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & ? & 3 \\ 0 & 1 & -10 & 2 \\ 0 & 0 & -9 & 0 \end{bmatrix}$$

Using elem row ops, we find the indicated REF and RREF for A.

 $A\vec{x} = \vec{u}$ has no solutions; \vec{u} not in \mathbb{V} . $A\vec{x} = \vec{v}$ has a solution; \vec{v} is in \mathbb{V} .

In fact, $A\vec{x} = \vec{v}$ has the solution $\vec{x} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, and we see that $[\vec{v}]_{\mathcal{B}} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$,

3 / 7

$$\text{Let } \vec{\textit{a}}_1 = \begin{bmatrix} 2 \\ 3 \\ -5 \end{bmatrix}, \vec{\textit{a}}_2 = \begin{bmatrix} -4 \\ -5 \\ 8 \end{bmatrix}, \vec{\textit{u}} = \begin{bmatrix} 8 \\ 2 \\ 4 \end{bmatrix}, \vec{\textit{v}} = \begin{bmatrix} -2 \\ -1 \\ -1 \end{bmatrix}, \; \mathcal{B} = \{\vec{\textit{a}}_1, \vec{\textit{a}}_2\} \text{ and } \\ \mathbb{V} = \mathcal{S}\textit{pan}\,\mathcal{B}.$$

Is \vec{u} or \vec{v} in \mathbb{V} , and if so find its \mathcal{B} -coordinates.

Can we write \vec{u} (or \vec{v}) as a LC of \vec{a}_1 and \vec{a}_2 ? Let $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 \end{bmatrix}$. Can we solve $A\vec{x} = \vec{u}$ (or $A\vec{x} = \vec{v}$)? Look at

$$[A \mid \vec{u} \vec{v}] = \begin{bmatrix} 2 & -4 & 8 & -2 \\ 3 & -5 & 2 & -1 \\ -5 & 8 & 4 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 4 & -1 \\ 0 & 1 & -10 & 2 \\ 0 & 0 & -9 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & ? & 3 \\ 0 & 1 & -10 & 2 \\ 0 & 0 & -9 & 0 \end{bmatrix}$$

Using elem row ops, we find the indicated REF and RREF for A.

 $A\vec{x} = \vec{u}$ has no solutions; \vec{u} not in \mathbb{V} . $A\vec{x} = \vec{v}$ has a solution; \vec{v} is in \mathbb{V} .

In fact, $A\vec{x} = \vec{v}$ has the solution $\vec{x} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, and we see that $[\vec{v}]_{\mathcal{B}} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$,

that is, $\vec{v} = 3\vec{a}_1 + 2\vec{a}_2$.

◆ロト ◆個ト ◆量ト ◆量ト ■ 釣りぐ

3 / 7

Section 4.4 Bases n Coords 1 March 2017

$$\text{Let } \vec{a}_1 = \begin{bmatrix} 2 \\ 3 \\ -5 \end{bmatrix}, \vec{a}_2 = \begin{bmatrix} -4 \\ -5 \\ 8 \end{bmatrix}, \vec{u} = \begin{bmatrix} 8 \\ 2 \\ 4 \end{bmatrix}, \vec{v} = \begin{bmatrix} -2 \\ -1 \\ -1 \end{bmatrix}, \ \mathcal{B} = \{\vec{a}_1, \vec{a}_2\} \text{ and } \\ \mathbb{V} = \mathcal{S}\textit{pan}\,\mathcal{B}.$$

Is \vec{u} or \vec{v} in \mathbb{V} , and if so find its \mathcal{B} -coordinates.

Can we write \vec{u} (or \vec{v}) as a LC of $\vec{a_1}$ and $\vec{a_2}$? Let $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} \end{bmatrix}$. Can we solve $A\vec{x} = \vec{u}$ (or $A\vec{x} = \vec{v}$)? Look at

$$[A \mid \vec{u} \vec{v}] = \begin{bmatrix} 2 & -4 & 8 & -2 \\ 3 & -5 & 2 & -1 \\ -5 & 8 & 4 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 4 & -1 \\ 0 & 1 & -10 & 2 \\ 0 & 0 & -9 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & ? & 3 \\ 0 & 1 & -10 & 2 \\ 0 & 0 & -9 & 0 \end{bmatrix}$$

Using elem row ops, we find the indicated REF and RREF for A.

 $A\vec{x} = \vec{u}$ has no solutions; \vec{u} not in \mathbb{V} . $A\vec{x} = \vec{v}$ has a solution; \vec{v} is in \mathbb{V} .

In fact, $A\vec{x} = \vec{v}$ has the solution $\vec{x} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, and we see that $[\vec{v}]_{\mathcal{B}} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$, that is, $\vec{v} = 3\vec{a}_1 + 2\vec{a}_2$. Note that \vec{v} is in \mathbb{R}^3 whereas $[\vec{v}]_{\mathcal{B}}$ is in \mathbb{R}^2 .

Section 4.4 Bases n Coords 1 March 2017

Suppose $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ is a LI set of vectors in \mathbb{R}^n .

Suppose $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ is a LI set of vectors in \mathbb{R}^n . Let $\mathbb{V} = \mathcal{S}pan\mathcal{B}$.

Suppose $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ is a LI set of vectors in \mathbb{R}^n . Let $\mathbb{V} = \mathcal{S}pan\mathcal{B}$. Then \mathcal{B} is a basis for \mathbb{V} .

Suppose $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ is a LI set of vectors in \mathbb{R}^n . Let $\mathbb{V} = \mathcal{S}pan\mathcal{B}$. Then \mathcal{B} is a basis for \mathbb{V} .

In this setting, finding coord vectors $[\vec{v}]_{\mathcal{B}}$ (for \vec{v} in \mathbb{V}) is just the problem of solving $A\vec{x} = \vec{v}$ where $A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \cdots \vec{a}_p \end{bmatrix}$.

Suppose $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ is a LI set of vectors in \mathbb{R}^n . Let $\mathbb{V} = \mathcal{S}pan\mathcal{B}$. Then \mathcal{B} is a basis for \mathbb{V} .

In this setting, finding coord vectors $[\vec{v}]_{\mathcal{B}}$ (for \vec{v} in \mathbb{V}) is just the problem of solving $A\vec{x} = \vec{v}$ where $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 \cdots \vec{a}_p \end{bmatrix}$.

That is, given a vector \vec{v} in \mathbb{V} , $[\vec{v}]_{\mathcal{B}}$ is just the unique solution to $A\vec{x} = \vec{v}$.

Suppose $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ is a LI set of vectors in \mathbb{R}^n . Let $\mathbb{V} = \mathcal{S}pan\mathcal{B}$. Then \mathcal{B} is a basis for \mathbb{V} .

In this setting, finding coord vectors $[\vec{v}]_{\mathcal{B}}$ (for \vec{v} in \mathbb{V}) is just the problem of solving $A\vec{x} = \vec{v}$ where $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 \cdots \vec{a}_p \end{bmatrix}$.

That is, given a vector \vec{v} in \mathbb{V} , $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ is just the unique solution to $A\vec{x} = \vec{v}$. This is just because if we have $\vec{v} = A\vec{x} = x_1\vec{a}_1 + x_2\vec{a}_2 + \cdots + x_p\vec{a}_p$,

Suppose $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ is a LI set of vectors in \mathbb{R}^n . Let $\mathbb{V} = \mathcal{S}pan\mathcal{B}$. Then \mathcal{B} is a basis for \mathbb{V} .

In this setting, finding coord vectors $[\vec{v}]_{\mathcal{B}}$ (for \vec{v} in \mathbb{V}) is just the problem of solving $A\vec{x} = \vec{v}$ where $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 \cdots \vec{a}_p \end{bmatrix}$.

That is, given a vector \vec{v} in \mathbb{V} , $\left[\vec{v}\right]_{\mathcal{B}}$ is just the unique solution to $A\vec{x}=\vec{v}$. This is just because if we have $\vec{v}=A\vec{x}=x_1\vec{a}_1+x_2\vec{a}_2+\cdots+x_p\vec{a}_p$, then x_1,x_2,\ldots,x_p are the \mathcal{B} -coords of \vec{v} .

Suppose $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ is a LI set of vectors in \mathbb{R}^n . Let $\mathbb{V} = \mathcal{S}pan\mathcal{B}$. Then \mathcal{B} is a basis for \mathbb{V} .

In this setting, finding coord vectors $[\vec{v}]_{\mathcal{B}}$ (for \vec{v} in \mathbb{V}) is just the problem of solving $A\vec{x} = \vec{v}$ where $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 \cdots \vec{a}_p \end{bmatrix}$.

That is, given a vector \vec{v} in \mathbb{V} , $\left[\vec{v}\right]_{\mathcal{B}}$ is just the unique solution to $A\vec{x}=\vec{v}$. This is just because if we have $\vec{v}=A\vec{x}=x_1\vec{a}_1+x_2\vec{a}_2+\cdots+x_p\vec{a}_p$, then x_1,x_2,\ldots,x_p are the \mathcal{B} -coords of \vec{v} .

Again, while \vec{v} is a vector in \mathbb{R}^n , $[\vec{v}]_{\mathcal{B}}$ is a vector in \mathbb{R}^p .

Let $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ be a basis for a vector space \mathbb{V} .

Let $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ be a basis for a vector space \mathbb{V} . Then each \vec{v} in \mathbb{V} has an associated \mathcal{B} -coordinate vector $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ where c_1, c_2, \dots, c_p are the \mathcal{B} -coordinates of \vec{v} . $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_p \end{bmatrix}$

Let $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ be a basis for a vector space \mathbb{V} . Then each \vec{v} in \mathbb{V} has an associated \mathcal{B} -coordinate vector $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ where c_1, c_2, \dots, c_p are the \mathcal{B} -coordinates of \vec{v} . Again, $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ is a vector in \mathbb{R}^p . $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$

Let $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ be a basis for a vector space \mathbb{V} . Then each \vec{v} in \mathbb{V} has an associated \mathcal{B} -coordinate vector $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ where c_1, c_2, \dots, c_p are the \mathcal{B} -coordinates of \vec{v} . Again, $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ is a vector in \mathbb{R}^p . $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$

Now define $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^p$ by the formula $\vec{v} \mapsto [\vec{v}]_{\mathcal{B}}$.

Let $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ be a basis for a vector space \mathbb{V} . Then each \vec{v} in \mathbb{V} has an associated \mathcal{B} -coordinate vector $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ where c_1, c_2, \dots, c_p are the \mathcal{B} -coordinates of \vec{v} . Again, $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ is a vector in \mathbb{R}^p .

Now define $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^p$ by the formula $\vec{v} \mapsto [\vec{v}]_{\mathcal{B}}$. This is a LT called the \mathcal{B} -coordinate mapping.

Let $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ be a basis for a vector space \mathbb{V} . Then each \vec{v} in \mathbb{V} has an associated \mathcal{B} -coordinate vector $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ where c_1, c_2, \dots, c_p are the \mathcal{B} -coordinates of \vec{v} . Again, $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ is a vector in \mathbb{R}^p . $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_p \end{bmatrix}$

Now define $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^p$ by the formula $\vec{v} \mapsto [\vec{v}]_{\mathcal{B}}$. This is a LT called the \mathcal{B} -coordinate mapping.

The inverse of the \mathcal{B} -coordinate mapping is easier to understand.

Let $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ be a basis for a vector space \mathbb{V} . Then each \vec{v} in \mathbb{V} $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$ has an associated \mathcal{B} -coordinate vector $[\vec{v}]_{\mathcal{B}}$ where c_1, c_2, \ldots, c_p are the \mathcal{B} -coordinates of \vec{v} . Again, $[\vec{v}]_{\mathcal{B}}$ is a vector in \mathbb{R}^p .

Now define $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^p$ by the formula $\vec{v} \mapsto [\vec{v}]_{\mathcal{B}}$. This is a LT called the *B-coordinate mapping*.

The inverse of the \mathcal{B} -coordinate mapping is easier to understand. This is

The inverse of the
$$\mathcal{B}$$
-coordinate mapping is easier to understand. the linear transformation $\mathbb{R}^p \xrightarrow{\mathcal{T}} \mathbb{V}$ given by the formula
$$T(\vec{x}) = x_1 \vec{a}_1 + x_2 \vec{a}_2 + \dots + x_p \vec{a}_p \quad \text{where} \quad \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix}.$$

Let $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ be a basis for a vector space \mathbb{V} . Then each \vec{v} in \mathbb{V} has an associated \mathcal{B} -coordinate vector $[\vec{v}]_{\mathcal{R}}$ $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$ where c_1, c_2, \ldots, c_p are the \mathcal{B} -coordinates of \vec{v} . Again, $[\vec{v}]_{\mathcal{B}}$ is a vector in \mathbb{R}^p .

Now define $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^p$ by the formula $\vec{v} \mapsto [\vec{v}]_{\mathcal{B}}$. This is a LT called the *B-coordinate mapping*.

The inverse of the \mathcal{B} -coordinate mapping is easier to understand. This is

The inverse of the
$$\mathcal{B}$$
-coordinate mapping is easier to understand. the linear transformation $\mathbb{R}^p \xrightarrow{T} \mathbb{V}$ given by the formula
$$T(\vec{x}) = x_1 \vec{a}_1 + x_2 \vec{a}_2 + \dots + x_p \vec{a}_p \quad \text{where} \quad \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix}.$$
Thus \vec{x} in \mathbb{R}^p is associated to $\vec{y} = T(\vec{x})$ in \mathbb{V} and

Thus \vec{x} in \mathbb{R}^p is associated to $\vec{v} = T(\vec{x})$ in \mathbb{V} and $[\vec{v}]_{R} = \vec{x}$.

Coordinate Mappings

Let $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ be a basis for a vector space \mathbb{V} . Then each \vec{v} in \mathbb{V} $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$ has an associated \mathcal{B} -coordinate vector $[\vec{v}]_{\mathcal{R}}$ where c_1, c_2, \ldots, c_p are the \mathcal{B} -coordinates of \vec{v} . Again, $[\vec{v}]_{\mathcal{B}}$ is a vector in \mathbb{R}^p .

Now define $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^p$ by the formula $\vec{v} \mapsto [\vec{v}]_{\mathcal{B}}$. This is a LT called the *B-coordinate mapping*.

The inverse of the \mathcal{B} -coordinate mapping is easier to understand. This is

The inverse of the
$$\mathcal{B}$$
-coordinate mapping is easier to understand. the linear transformation $\mathbb{R}^p \xrightarrow{\mathcal{T}} \mathbb{V}$ given by the formula
$$T(\vec{x}) = x_1 \vec{a}_1 + x_2 \vec{a}_2 + \dots + x_p \vec{a}_p \quad \text{where} \quad \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix}.$$
 Thus \vec{x} in \mathbb{R}^p is associated to $\vec{x} = T(\vec{x})$ in \mathbb{V} and

Thus \vec{x} in \mathbb{R}^p is associated to $\vec{v} = T(\vec{x})$ in \mathbb{V} and $[\vec{v}]_{R} = \vec{x}$. That is, $[T(\vec{x})]_{R} = \vec{x}$.

Coordinate Mappings

Let $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ be a basis for a vector space \mathbb{V} . Then each \vec{v} in \mathbb{V} $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$ has an associated \mathcal{B} -coordinate vector $[\vec{v}]_{\mathcal{R}}$ where c_1, c_2, \ldots, c_p are the \mathcal{B} -coordinates of \vec{v} . Again, $[\vec{v}]_{\mathcal{B}}$ is a vector in \mathbb{R}^p .

Now define $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^p$ by the formula $\vec{v} \mapsto [\vec{v}]_{\mathcal{B}}$. This is a LT called the *B-coordinate mapping*.

The inverse of the \mathcal{B} -coordinate mapping is easier to understand. This is

The inverse of the
$$\mathcal{B}$$
-coordinate mapping is easier to understand. the linear transformation $\mathbb{R}^p \xrightarrow{T} \mathbb{V}$ given by the formula
$$T(\vec{x}) = x_1 \vec{a}_1 + x_2 \vec{a}_2 + \dots + x_p \vec{a}_p \quad \text{where} \quad \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix}.$$
 Thus \vec{x} in \mathbb{R}^p is associated to $\vec{v} = T(\vec{x})$ in \mathbb{V} and

Thus \vec{x} in \mathbb{R}^p is associated to $\vec{v} = T(\vec{x})$ in \mathbb{V} and $[\vec{v}]_{\mathcal{B}} = \vec{x}$. That is, $[T(\vec{x})]_{\mathcal{B}} = \vec{x}$. Can we write T as a matrix transformation?

Section 4.4 Bases n Coords 1 March 2017

Coordinate Mappings

Let $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ be a basis for a vector space \mathbb{V} . Then each \vec{v} in \mathbb{V} $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$ has an associated \mathcal{B} -coordinate vector $[\vec{v}]_{\mathcal{R}}$ where c_1, c_2, \ldots, c_p are the \mathcal{B} -coordinates of \vec{v} . Again, $[\vec{v}]_{\mathcal{B}}$ is a vector in \mathbb{R}^p .

Now define $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^p$ by the formula $\vec{v} \mapsto [\vec{v}]_{\mathcal{B}}$. This is a LT called the *B-coordinate mapping*.

The inverse of the \mathcal{B} -coordinate mapping is easier to understand. This is

The inverse of the
$$\mathcal{B}$$
-coordinate mapping is easier to understand. the linear transformation $\mathbb{R}^p \xrightarrow{T} \mathbb{V}$ given by the formula
$$T(\vec{x}) = x_1 \vec{a}_1 + x_2 \vec{a}_2 + \dots + x_p \vec{a}_p \quad \text{where} \quad \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix}.$$
 Thus \vec{x} in \mathbb{R}^p is associated to $\vec{v} = T(\vec{x})$ in \mathbb{V} and

Thus \vec{x} in \mathbb{R}^p is associated to $\vec{v} = T(\vec{x})$ in \mathbb{V} and $[\vec{v}]_{\mathcal{B}} = \vec{x}$. That is, $[T(\vec{x})]_{\mathcal{B}} = \vec{x}$. Can we write T as a matrix transformation? What if \mathbb{V} is a vector subspace of some \mathbb{R}^n ?

Suppose $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ is a LI set of vectors in \mathbb{R}^n .

Suppose $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ is a LI set of vectors in \mathbb{R}^n . Let $\mathbb{V} = \mathcal{S}pan\mathcal{B}$.

Suppose $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ is a LI set of vectors in \mathbb{R}^n . Let $\mathbb{V} = \mathcal{S}pan\mathcal{B}$. Then \mathcal{B} is a basis for \mathbb{V} .

Suppose $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ is a LI set of vectors in \mathbb{R}^n . Let $\mathbb{V} = \mathcal{S}pan\mathcal{B}$. Then \mathcal{B} is a basis for \mathbb{V} .

In this setting, finding coord vectors $[\vec{v}]_{\mathcal{B}}$ (for \vec{v} in \mathbb{V}) is just the problem of solving $A\vec{x} = \vec{v}$ where $A = [\vec{a}_1 \ \vec{a}_2 \cdots \vec{a}_p]$.

6 / 7

Suppose $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ is a LI set of vectors in \mathbb{R}^n . Let $\mathbb{V} = \mathcal{S}pan\mathcal{B}$. Then \mathcal{B} is a basis for \mathbb{V} .

In this setting, finding coord vectors $[\vec{v}]_{\mathcal{B}}$ (for \vec{v} in \mathbb{V}) is just the problem of solving $A\vec{x} = \vec{v}$ where $A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \cdots \vec{a}_p \end{bmatrix}$.

Given \vec{v} in \mathbb{V} , $[\vec{v}]_{\mathcal{B}}$ is the unique solution to $A\vec{x} = \vec{v}$.

Suppose $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ is a LI set of vectors in \mathbb{R}^n . Let $\mathbb{V} = \mathcal{S}pan\mathcal{B}$. Then \mathcal{B} is a basis for \mathbb{V} .

In this setting, finding coord vectors $\left[\vec{v}\right]_{\mathcal{B}}$ (for \vec{v} in \mathbb{V}) is just the problem of solving $A\vec{x}=\vec{v}$ where $A=\left[\vec{a_1}\ \vec{a_2}\cdots\vec{a_p}\right]$.

Given \vec{v} in \mathbb{V} , $[\vec{v}]_{\mathcal{B}}$ is the unique solution to $A\vec{x} = \vec{v}$.

Look at the LT $\mathbb{R}^p \xrightarrow{T} \mathbb{R}^n$ given by $T(\vec{x}) = A\vec{x}$.

Suppose $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ is a LI set of vectors in \mathbb{R}^n . Let $\mathbb{V} = \mathcal{S}pan\mathcal{B}$. Then \mathcal{B} is a basis for \mathbb{V} .

In this setting, finding coord vectors $[\vec{v}]_{\mathcal{B}}$ (for \vec{v} in \mathbb{V}) is just the problem of solving $A\vec{x} = \vec{v}$ where $A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \cdots \vec{a}_p \end{bmatrix}$.

Given \vec{v} in \mathbb{V} , $[\vec{v}]_{\mathcal{B}}$ is the unique solution to $A\vec{x} = \vec{v}$.

Look at the LT $\mathbb{R}^p \xrightarrow{\mathcal{T}} \mathbb{R}^n$ given by $T(\vec{x}) = A\vec{x}$. Since $\mathbb{V} = \mathcal{S}pan\mathcal{B}$, it follows that $\mathcal{R}ng(T) = \mathbb{V}$.

6 / 7

Suppose $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ is a LI set of vectors in \mathbb{R}^n . Let $\mathbb{V} = \mathcal{S}pan\mathcal{B}$. Then \mathcal{B} is a basis for \mathbb{V} .

In this setting, finding coord vectors $[\vec{v}]_{\mathcal{B}}$ (for \vec{v} in \mathbb{V}) is just the problem of solving $A\vec{x} = \vec{v}$ where $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 \cdots \vec{a}_p \end{bmatrix}$.

Given \vec{v} in \mathbb{V} , $[\vec{v}]_{\mathcal{B}}$ is the unique solution to $A\vec{x} = \vec{v}$.

Look at the LT $\mathbb{R}^p \xrightarrow{T} \mathbb{R}^n$ given by $T(\vec{x}) = A\vec{x}$. Since $\mathbb{V} = Span \mathcal{B}$, it follows that $\mathcal{R}ng(T) = \mathbb{V}$. Notice that $\left[T(\vec{x})\right]_{\mathcal{B}} = \vec{x}$.

Suppose $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ is a LI set of vectors in \mathbb{R}^n . Let $\mathbb{V} = \mathcal{S}pan\mathcal{B}$. Then \mathcal{B} is a basis for \mathbb{V} .

In this setting, finding coord vectors $[\vec{v}]_{\mathcal{B}}$ (for \vec{v} in \mathbb{V}) is just the problem of solving $A\vec{x} = \vec{v}$ where $A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \cdots \vec{a}_p \end{bmatrix}$.

Given \vec{v} in \mathbb{V} , $[\vec{v}]_{\mathcal{B}}$ is the unique solution to $A\vec{x} = \vec{v}$.

Look at the LT $\mathbb{R}^p \xrightarrow{T} \mathbb{R}^n$ given by $T(\vec{x}) = A\vec{x}$. Since $\mathbb{V} = Span \mathcal{B}$, it follows that $\mathcal{R}ng(T) = \mathbb{V}$. Notice that $\left[T(\vec{x})\right]_{\mathcal{B}} = \vec{x}$. Right?

Suppose $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ is a LI set of vectors in \mathbb{R}^n . Let $\mathbb{V} = \mathcal{S}pan\mathcal{B}$. Then \mathcal{B} is a basis for \mathbb{V} .

In this setting, finding coord vectors $[\vec{v}]_{\mathcal{B}}$ (for \vec{v} in \mathbb{V}) is just the problem of solving $A\vec{x} = \vec{v}$ where $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 \cdots \vec{a}_p \end{bmatrix}$.

Given \vec{v} in \mathbb{V} , $[\vec{v}]_{\mathcal{B}}$ is the unique solution to $A\vec{x} = \vec{v}$.

Look at the LT $\mathbb{R}^p \xrightarrow{\mathcal{T}} \mathbb{R}^n$ given by $T(\vec{x}) = A\vec{x}$. Since $\mathbb{V} = \mathcal{S}pan\mathcal{B}$, it follows that $\mathcal{R}ng(\mathcal{T}) = \mathbb{V}$. Notice that $\left[T(\vec{x})\right]_{\mathcal{B}} = \vec{x}$. Right?

Since \mathcal{B} is LI, $A\vec{x} = \vec{0}$ iff $\vec{x} = \vec{0}$,

Suppose $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ is a LI set of vectors in \mathbb{R}^n . Let $\mathbb{V} = \mathcal{S}pan\mathcal{B}$. Then \mathcal{B} is a basis for \mathbb{V} .

In this setting, finding coord vectors $[\vec{v}]_{\mathcal{B}}$ (for \vec{v} in \mathbb{V}) is just the problem of solving $A\vec{x} = \vec{v}$ where $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 \cdots \vec{a}_p \end{bmatrix}$.

Given \vec{v} in \mathbb{V} , $[\vec{v}]_{\mathcal{B}}$ is the unique solution to $A\vec{x} = \vec{v}$.

Look at the LT $\mathbb{R}^p \xrightarrow{T} \mathbb{R}^n$ given by $T(\vec{x}) = A\vec{x}$. Since $\mathbb{V} = Span \mathcal{B}$, it follows that $\mathcal{R}ng(T) = \mathbb{V}$. Notice that $[T(\vec{x})]_{\mathcal{B}} = \vec{x}$. Right?

Since \mathcal{B} is LI, $A\vec{x} = \vec{0}$ iff $\vec{x} = \vec{0}$, so $\mathcal{K}er(T) = {\vec{0}}$.

Suppose $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ is a LI set of vectors in \mathbb{R}^n . Let $\mathbb{V} = \mathcal{S}pan\mathcal{B}$. Then \mathcal{B} is a basis for \mathbb{V} .

In this setting, finding coord vectors $[\vec{v}]_{\mathcal{B}}$ (for \vec{v} in \mathbb{V}) is just the problem of solving $A\vec{x} = \vec{v}$ where $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 \cdots \vec{a}_p \end{bmatrix}$.

Given \vec{v} in \mathbb{V} , $[\vec{v}]_{\mathcal{B}}$ is the unique solution to $A\vec{x} = \vec{v}$.

Look at the LT $\mathbb{R}^p \xrightarrow{T} \mathbb{R}^n$ given by $T(\vec{x}) = A\vec{x}$. Since $\mathbb{V} = Span \mathcal{B}$, it follows that $\mathcal{R}ng(T) = \mathbb{V}$. Notice that $[T(\vec{x})]_{\mathcal{B}} = \vec{x}$. Right?

Since \mathcal{B} is LI, $A\vec{x} = \vec{0}$ iff $\vec{x} = \vec{0}$, so $\mathcal{K}er(T) = \{\vec{0}\}$. This means T is one-to-one, which says that $\mathbb{R}^p \xrightarrow{T} \mathcal{R}ng(T) = \mathbb{V}$ has an inverse.

Suppose $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ is a LI set of vectors in \mathbb{R}^n . Let $\mathbb{V} = \mathcal{S}pan\mathcal{B}$. Then \mathcal{B} is a basis for \mathbb{V} .

In this setting, finding coord vectors $[\vec{v}]_{\mathcal{B}}$ (for \vec{v} in \mathbb{V}) is just the problem of solving $A\vec{x} = \vec{v}$ where $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 \cdots \vec{a}_p \end{bmatrix}$.

Given \vec{v} in \mathbb{V} , $[\vec{v}]_{\mathcal{B}}$ is the unique solution to $A\vec{x} = \vec{v}$.

Look at the LT $\mathbb{R}^p \xrightarrow{T} \mathbb{R}^n$ given by $T(\vec{x}) = A\vec{x}$. Since $\mathbb{V} = \mathcal{S}pan\,\mathcal{B}$, it follows that $\mathcal{R}ng(T) = \mathbb{V}$. Notice that $\left[T(\vec{x})\right]_{\mathcal{B}} = \vec{x}$. Right? Since \mathcal{B} is LI, $A\vec{x} = \vec{0}$ iff $\vec{x} = \vec{0}$, so $\mathcal{K}er(T) = \{\vec{0}\}$. This means T is one-to-one, which says that $\mathbb{R}^p \xrightarrow{T} \mathcal{R}ng(T) = \mathbb{V}$ has an inverse.

The inverse of $\mathbb{R}^p \xrightarrow{T} \mathcal{R}ng(T) = \mathbb{V}$ is the \mathcal{B} -coord mapping $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^p$.

←□▶ ←□▶ ←□▶ ←□▶ □ ● ♥

6 / 7

Section 4.4 Bases n Coords 1 March 2017

Again, let $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ be a basis for a vector space \mathbb{V} . Then:

Again, let $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ be a basis for a vector space \mathbb{V} . Then:

ullet for all $ec{v},ec{w}$ in \mathbb{V} , $\left[ec{v}+ec{w}
ight]_{\mathcal{B}}=\left[ec{v}
ight]_{\mathcal{B}}+\left[ec{w}
ight]_{\mathcal{B}}$

Again, let $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ be a basis for a vector space \mathbb{V} . Then:

- ullet for all $ec{v},ec{w}$ in \mathbb{V} , $\left[ec{v}+ec{w}
 ight]_{\mathcal{B}}=\left[ec{v}
 ight]_{\mathcal{B}}+\left[ec{w}
 ight]_{\mathcal{B}}$
- ullet for all scalars s and all $ec{v}$ in \mathbb{V} , $ig[sec{v}ig]_{\mathcal{B}}=sig[ec{v}ig]_{\mathcal{B}}$

Again, let $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ be a basis for a vector space \mathbb{V} . Then:

- ullet for all $ec{v},ec{w}$ in \mathbb{V} , $\left[ec{v}+ec{w}
 ight]_{\mathcal{B}}=\left[ec{v}
 ight]_{\mathcal{B}}+\left[ec{w}
 ight]_{\mathcal{B}}$
- ullet for all scalars s and all $ec{v}$ in \mathbb{V} , $ig[sec{v}ig]_{\mathcal{B}}=sig[ec{v}ig]_{\mathcal{B}}$

This means that for any vectors $\vec{v}_1, \ldots, \vec{v}_q$ in \mathbb{V} ,

Again, let $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ be a basis for a vector space \mathbb{V} . Then:

- ullet for all $ec{v},ec{w}$ in \mathbb{V} , $\left[ec{v}+ec{w}
 ight]_{\mathcal{B}}=\left[ec{v}
 ight]_{\mathcal{B}}+\left[ec{w}
 ight]_{\mathcal{B}}$
- ullet for all scalars s and all $ec{v}$ in \mathbb{V} , $ig[sec{v}ig]_{\mathcal{B}}=sig[ec{v}ig]_{\mathcal{B}}$

This means that for any vectors $\vec{v}_1, \ldots, \vec{v}_q$ in \mathbb{V} , the \mathcal{B} -coord vector for any LC of the \vec{v}_i 's if the same LC of the \mathcal{B} -coord vectors;

Again, let $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ be a basis for a vector space \mathbb{V} . Then:

- ullet for all $ec{v},ec{w}$ in \mathbb{V} , $\left[ec{v}+ec{w}
 ight]_{\mathcal{B}}=\left[ec{v}
 ight]_{\mathcal{B}}+\left[ec{w}
 ight]_{\mathcal{B}}$
- ullet for all scalars s and all $ec{v}$ in \mathbb{V} , $ig[sec{v}ig]_{\mathcal{B}}=sig[ec{v}ig]_{\mathcal{B}}$

This means that for any vectors $\vec{v}_1, \ldots, \vec{v}_q$ in \mathbb{V} , the \mathcal{B} -coord vector for any LC of the \vec{v}_i 's if the same LC of the \mathcal{B} -coord vectors; that is,

$$\left[\sum_{i=1}^q s_i \vec{v}_i\right]_{\mathcal{B}} = \sum_{i=1}^q s_i \left[\vec{v}_i\right]_{\mathcal{B}}.$$

Section 4.4 Bases n Coords

Again, let $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ be a basis for a vector space \mathbb{V} . Then:

- ullet for all $ec{v},ec{w}$ in \mathbb{V} , $\left[ec{v}+ec{w}
 ight]_{\mathcal{B}}=\left[ec{v}
 ight]_{\mathcal{B}}+\left[ec{w}
 ight]_{\mathcal{B}}$
- ullet for all scalars s and all $ec{v}$ in \mathbb{V} , $ig[sec{v}ig]_{\mathcal{B}}=sig[ec{v}ig]_{\mathcal{B}}$

This means that for any vectors $\vec{v}_1, \ldots, \vec{v}_q$ in \mathbb{V} , the \mathcal{B} -coord vector for any LC of the \vec{v}_i 's if the same LC of the \mathcal{B} -coord vectors; that is,

$$\left[\sum_{i=1}^{q} s_i \vec{v}_i\right]_{\mathcal{B}} = \sum_{i=1}^{q} s_i \left[\vec{v}_i\right]_{\mathcal{B}}.$$

This is also what tells us that the \mathcal{B} -coord mapping $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^p$ is a linear transformation.

- 4 ロ ト 4 @ ト 4 き ト 4 き - か 9 C C