Bases and Coordinates

Linear Algebra MATH 2076

4 0 8

E k K

Let $\mathcal{B} = \{\vec{a}_1, \ldots, \vec{a}_p\}$ be a basis for a vector space \mathbb{V} .

4 0 8 4

化高 的人

Let $\mathcal{B} = \{\vec{a}_1, \ldots, \vec{a}_p\}$ be a basis for a vector space \mathbb{V} . Then for each vector \vec{v} in \mathbb{V} , there are *unique* scalars c_1, c_2, \ldots, c_p such that

Let $\mathcal{B} = \{\vec{a}_1, \ldots, \vec{a}_p\}$ be a basis for a vector space \mathbb{V} . Then for each vector \vec{v} in \mathbb{V} , there are *unique* scalars c_1, c_2, \ldots, c_p such that

$$
\vec{v} = c_1 \vec{a}_1 + c_2 \vec{a}_2 + \cdots + c_p \vec{a}_p = \sum_{i=1}^p c_i \vec{a}_i.
$$

つへへ

Let $\mathcal{B} = \{\vec{a}_1, \ldots, \vec{a}_p\}$ be a basis for a vector space \mathbb{V} . Then for each vector \vec{v} in \mathbb{V} , there are *unique* scalars c_1, c_2, \ldots, c_p such that

$$
\vec{v} = c_1 \vec{a}_1 + c_2 \vec{a}_2 + \cdots + c_p \vec{a}_p = \sum_{i=1}^p c_i \vec{a}_i.
$$

We call c_1, c_2, \ldots, c_p the *B*-coordinates of \vec{v}

つひつ

Let $\mathcal{B} = \{\vec{a}_1, \ldots, \vec{a}_p\}$ be a basis for a vector space \mathbb{V} . Then for each vector \vec{v} in \mathbb{V} , there are *unique* scalars c_1, c_2, \ldots, c_p such that

$$
\vec{v} = c_1 \vec{a}_1 + c_2 \vec{a}_2 + \cdots + c_p \vec{a}_p = \sum_{i=1}^p c_i \vec{a}_i.
$$

We call c_1, c_2, \ldots, c_p the *B-coordinates of* \vec{v} *and* $[\vec{v}]_B =$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $c₂$. . . c_p We call $c_1, c_2, ..., c_p$ the *B-coordinates of* \vec{v} and $[\vec{v}]_B = \begin{bmatrix} c_2 \\ \vdots \end{bmatrix}$ is the *B-coordinate vector for* \vec{v} .

 $\sqrt{ }$

 $c₁$

Let $\mathcal{B} = \{\vec{a}_1, \ldots, \vec{a}_p\}$ be a basis for a vector space \mathbb{V} . Then for each vector \vec{v} in \mathbb{V} , there are *unique* scalars c_1, c_2, \ldots, c_p such that

$$
\vec{v} = c_1 \vec{a}_1 + c_2 \vec{a}_2 + \cdots + c_p \vec{a}_p = \sum_{i=1}^p c_i \vec{a}_i.
$$

We call c_1, c_2, \ldots, c_p the *B-coordinates of* \vec{v} *and* $[\vec{v}]_B =$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $c₂$. . . c_p We call $c_1, c_2, ..., c_p$ the *B-coordinates of* \vec{v} and $[\vec{v}]_B = \begin{bmatrix} c_2 \\ \vdots \end{bmatrix}$ is the *B-coordinate vector for* \vec{v} .

Note that $\left[\vec{v}\right]_{\mathcal{B}}$ is a vector in \mathbb{R}^p .

 $\sqrt{ }$

 $c₁$

$$
\text{Let } \vec{a}_1 = \begin{bmatrix} 2 \\ 3 \\ -5 \end{bmatrix}, \vec{a}_2 = \begin{bmatrix} -4 \\ -5 \\ 8 \end{bmatrix}, \vec{u} = \begin{bmatrix} 8 \\ 2 \\ 4 \end{bmatrix}, \vec{v} = \begin{bmatrix} -2 \\ -1 \\ -1 \end{bmatrix}, \ \mathcal{B} = \{\vec{a}_1, \vec{a}_2\} \text{ and } \mathbb{V} = \mathcal{S} \text{pan } \mathcal{B}.
$$

Is \vec{u} or \vec{v} in \mathbb{V} , and if so find its β -coordinates.

≮ロト ⊀月

4 B K 4

 $2QQ$

Let
$$
\vec{a}_1 = \begin{bmatrix} 2 \\ 3 \\ -5 \end{bmatrix}
$$
, $\vec{a}_2 = \begin{bmatrix} -4 \\ -5 \\ 8 \end{bmatrix}$, $\vec{u} = \begin{bmatrix} 8 \\ 2 \\ 4 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} -2 \\ -1 \\ -1 \end{bmatrix}$, $\mathcal{B} = \{\vec{a}_1, \vec{a}_2\}$ and $\mathbb{V} = \text{Span } \mathcal{B}$.

Is \vec{u} or \vec{v} in \mathbb{V} , and if so find its β -coordinates.

Can we write \vec{u} (or \vec{v}) as a LC of \vec{a}_1 and \vec{a}_2 ?

 \leftarrow

Let
$$
\vec{a}_1 = \begin{bmatrix} 2 \\ 3 \\ -5 \end{bmatrix}
$$
, $\vec{a}_2 = \begin{bmatrix} -4 \\ -5 \\ 8 \end{bmatrix}$, $\vec{u} = \begin{bmatrix} 8 \\ 2 \\ 4 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} -2 \\ -1 \\ -1 \end{bmatrix}$, $\mathcal{B} = \{\vec{a}_1, \vec{a}_2\}$ and $\mathbb{V} = \text{Span } \mathcal{B}$.

Is \vec{u} or \vec{v} in \mathbb{V} , and if so find its β -coordinates.

Can we write \vec{u} (or \vec{v}) as a LC of \vec{a}_1 and \vec{a}_2 ? Let $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 \end{bmatrix}$.

 \leftarrow

 $2QQ$

Let
$$
\vec{a}_1 = \begin{bmatrix} 2 \\ 3 \\ -5 \end{bmatrix}
$$
, $\vec{a}_2 = \begin{bmatrix} -4 \\ -5 \\ 8 \end{bmatrix}$, $\vec{u} = \begin{bmatrix} 8 \\ 2 \\ 4 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} -2 \\ -1 \\ -1 \end{bmatrix}$, $\mathcal{B} = \{\vec{a}_1, \vec{a}_2\}$ and $\mathbb{V} = \text{Span } \mathcal{B}$.

Is \vec{u} or \vec{v} in \mathbb{V} , and if so find its β -coordinates.

Can we write \vec{u} (or \vec{v}) as a LC of \vec{a}_1 and \vec{a}_2 ? Let $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 \end{bmatrix}$. Can we solve $A\vec{x} = \vec{u}$ (or $A\vec{x} = \vec{v}$)?

 \leftarrow

Let
$$
\vec{a}_1 = \begin{bmatrix} 2 \\ 3 \\ -5 \end{bmatrix}
$$
, $\vec{a}_2 = \begin{bmatrix} -4 \\ -5 \\ 8 \end{bmatrix}$, $\vec{u} = \begin{bmatrix} 8 \\ 2 \\ 4 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} -2 \\ -1 \\ -1 \end{bmatrix}$, $\mathcal{B} = \{\vec{a}_1, \vec{a}_2\}$ and $\mathbb{V} = \text{Span } \mathcal{B}$.

Is \vec{u} or \vec{v} in \mathbb{V} , and if so find its β -coordinates.

Can we write \vec{u} (or \vec{v}) as a LC of \vec{a}_1 and \vec{a}_2 ? Let $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 \end{bmatrix}$. Can we solve $A\vec{x} = \vec{u}$ (or $A\vec{x} = \vec{v}$)? Look at

$$
[A \mid \vec{u} \ \vec{v}] = \begin{bmatrix} 2 & -4 & 8 & -2 \\ 3 & -5 & 2 & -1 \\ -5 & 8 & 4 & -1 \end{bmatrix}
$$

 \leftarrow

Let
$$
\vec{a}_1 = \begin{bmatrix} 2 \\ 3 \\ -5 \end{bmatrix}
$$
, $\vec{a}_2 = \begin{bmatrix} -4 \\ -5 \\ 8 \end{bmatrix}$, $\vec{u} = \begin{bmatrix} 8 \\ 2 \\ 4 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} -2 \\ -1 \\ -1 \end{bmatrix}$, $\mathcal{B} = \{\vec{a}_1, \vec{a}_2\}$ and $\mathbb{V} = \text{Span } \mathcal{B}$.

Is \vec{u} or \vec{v} in \vec{v} , and if so find its β -coordinates.

Can we write \vec{u} (or \vec{v}) as a LC of \vec{a}_1 and \vec{a}_2 ? Let $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 \end{bmatrix}$. Can we solve $A\vec{x} = \vec{u}$ (or $A\vec{x} = \vec{v}$)? Look at

$$
[A \mid \vec{u} \ \vec{v}] = \begin{bmatrix} 2 & -4 & 8 & -2 \\ 3 & -5 & 2 & -1 \\ -5 & 8 & 4 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 4 & -1 \\ 0 & 1 & -10 & 2 \\ 0 & 0 & -9 & 0 \end{bmatrix}
$$

Using elem row ops, we find the indicated REF

Let
$$
\vec{a}_1 = \begin{bmatrix} 2 \\ 3 \\ -5 \end{bmatrix}
$$
, $\vec{a}_2 = \begin{bmatrix} -4 \\ -5 \\ 8 \end{bmatrix}$, $\vec{u} = \begin{bmatrix} 8 \\ 2 \\ 4 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} -2 \\ -1 \\ -1 \end{bmatrix}$, $\mathcal{B} = \{\vec{a}_1, \vec{a}_2\}$ and $\mathbb{V} = \text{Span}\,\mathcal{B}$.

Is \vec{u} or \vec{v} in \vec{v} , and if so find its β -coordinates.

Can we write \vec{u} (or \vec{v}) as a LC of \vec{a}_1 and \vec{a}_2 ? Let $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 \end{bmatrix}$. Can we solve $A\vec{x} = \vec{u}$ (or $A\vec{x} = \vec{v}$)? Look at

$$
[A \mid \vec{u} \ \vec{v}] = \begin{bmatrix} 2 & -4 & 8 & -2 \\ 3 & -5 & 2 & -1 \\ -5 & 8 & 4 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 4 & -1 \\ 0 & 1 & -10 & 2 \\ 0 & 0 & -9 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -10 & 2 \\ 0 & 0 & -9 & 0 \end{bmatrix}
$$

Using elem row ops, we find the indicated REF and RREF for A.

Let
$$
\vec{a}_1 = \begin{bmatrix} 2 \\ 3 \\ -5 \end{bmatrix}
$$
, $\vec{a}_2 = \begin{bmatrix} -4 \\ -5 \\ 8 \end{bmatrix}$, $\vec{u} = \begin{bmatrix} 8 \\ 2 \\ 4 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} -2 \\ -1 \\ -1 \end{bmatrix}$, $\mathcal{B} = \{\vec{a}_1, \vec{a}_2\}$ and $\mathbb{V} = \text{Span}\,\mathcal{B}$.

Is \vec{u} or \vec{v} in \vec{v} , and if so find its β -coordinates.

Can we write \vec{u} (or \vec{v}) as a LC of \vec{a}_1 and \vec{a}_2 ? Let $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 \end{bmatrix}$. Can we solve $A\vec{x} = \vec{u}$ (or $A\vec{x} = \vec{v}$)? Look at

$$
\begin{bmatrix} A & \vec{u} & \vec{v} \end{bmatrix} = \begin{bmatrix} 2 & -4 & 8 & -2 \\ 3 & -5 & 2 & -1 \\ -5 & 8 & 4 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 4 & -1 \\ 0 & 1 & -10 & 2 \\ 0 & 0 & -9 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -10 & 2 \\ 0 & 0 & -9 & 0 \end{bmatrix}
$$

Using elem row ops, we find the indicated REF and RREF for A. $A\vec{x} = \vec{u}$ has no solutions; \vec{u} not in V.

Let
$$
\vec{a}_1 = \begin{bmatrix} 2 \\ 3 \\ -5 \end{bmatrix}
$$
, $\vec{a}_2 = \begin{bmatrix} -4 \\ -5 \\ 8 \end{bmatrix}$, $\vec{u} = \begin{bmatrix} 8 \\ 2 \\ 4 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} -2 \\ -1 \\ -1 \end{bmatrix}$, $\mathcal{B} = \{\vec{a}_1, \vec{a}_2\}$ and $\mathbb{V} = \text{Span}\,\mathcal{B}$.

Is \vec{u} or \vec{v} in \vec{v} , and if so find its β -coordinates.

Can we write \vec{u} (or \vec{v}) as a LC of \vec{a}_1 and \vec{a}_2 ? Let $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 \end{bmatrix}$. Can we solve $A\vec{x} = \vec{u}$ (or $A\vec{x} = \vec{v}$)? Look at

$$
\begin{bmatrix} A & \vec{u} & \vec{v} \end{bmatrix} = \begin{bmatrix} 2 & -4 & 8 & -2 \\ 3 & -5 & 2 & -1 \\ -5 & 8 & 4 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 4 & -1 \\ 0 & 1 & -10 & 2 \\ 0 & 0 & -9 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -10 & 2 \\ 0 & 0 & -9 & 0 \end{bmatrix}
$$

Using elem row ops, we find the indicated REF and RREF for A. $A\vec{x} = \vec{u}$ has no solutions; \vec{u} not in V. $A\vec{x} = \vec{v}$ has a solution; \vec{v} is in V.

Let
$$
\vec{a}_1 = \begin{bmatrix} 2 \\ 3 \\ -5 \end{bmatrix}
$$
, $\vec{a}_2 = \begin{bmatrix} -4 \\ -5 \\ 8 \end{bmatrix}$, $\vec{u} = \begin{bmatrix} 8 \\ 2 \\ 4 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} -2 \\ -1 \\ -1 \end{bmatrix}$, $\mathcal{B} = \{\vec{a}_1, \vec{a}_2\}$ and $\mathbb{V} = \text{Span}\,\mathcal{B}$.

Is \vec{u} or \vec{v} in \mathbb{V} , and if so find its B-coordinates.

Can we write \vec{u} (or \vec{v}) as a LC of \vec{a}_1 and \vec{a}_2 ? Let $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 \end{bmatrix}$. Can we solve $A\vec{x} = \vec{u}$ (or $A\vec{x} = \vec{v}$)? Look at

$$
\begin{bmatrix} A & \vec{u} & \vec{v} \end{bmatrix} = \begin{bmatrix} 2 & -4 & 8 & -2 \\ 3 & -5 & 2 & -1 \\ -5 & 8 & 4 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 4 & -1 \\ 0 & 1 & -10 & 2 \\ 0 & 0 & -9 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -10 & 2 \\ 0 & 0 & -9 & 0 \end{bmatrix}
$$

Using elem row ops, we find the indicated REF and RREF for A. $A\vec{x} = \vec{u}$ has no solutions; \vec{u} not in V. $A\vec{x} = \vec{v}$ has a solution; \vec{v} is in V. In fact, $A\vec{x} = \vec{v}$ has the solution $\vec{x} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ 2 ,

Let
$$
\vec{a}_1 = \begin{bmatrix} 2 \\ 3 \\ -5 \end{bmatrix}
$$
, $\vec{a}_2 = \begin{bmatrix} -4 \\ -5 \\ 8 \end{bmatrix}$, $\vec{u} = \begin{bmatrix} 8 \\ 2 \\ 4 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} -2 \\ -1 \\ -1 \end{bmatrix}$, $\mathcal{B} = \{\vec{a}_1, \vec{a}_2\}$ and $\mathbb{V} = \text{Span}\,\mathcal{B}$.

Is \vec{u} or \vec{v} in \mathbb{V} , and if so find its β -coordinates.

Can we write \vec{u} (or \vec{v}) as a LC of \vec{a}_1 and \vec{a}_2 ? Let $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 \end{bmatrix}$. Can we solve $A\vec{x} = \vec{u}$ (or $A\vec{x} = \vec{v}$)? Look at

$$
[A \mid \vec{u} \ \vec{v}] = \begin{bmatrix} 2 & -4 & 8 & -2 \\ 3 & -5 & 2 & -1 \\ -5 & 8 & 4 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 4 & -1 \\ 0 & 1 & -10 & 2 \\ 0 & 0 & -9 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 7 & 3 \\ 0 & 1 & -10 & 2 \\ 0 & 0 & -9 & 0 \end{bmatrix}
$$

Using elem row ops, we find the indicated REF and RREF for A. $A\vec{x} = \vec{u}$ has no solutions; \vec{u} not in V. $A\vec{x} = \vec{v}$ has a solution; \vec{v} is in V. In fact, $A\vec{x} = \vec{v}$ has the solution $\vec{x} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ 2 $\Big]$, and we see that $\big[\vec{v}\big]_\mathcal{B} = \Big[\begin{matrix} 3 \ 2 \end{matrix} \Big]$ 2 ,

つのい

Let
$$
\vec{a}_1 = \begin{bmatrix} 2 \\ 3 \\ -5 \end{bmatrix}
$$
, $\vec{a}_2 = \begin{bmatrix} -4 \\ -5 \\ 8 \end{bmatrix}$, $\vec{u} = \begin{bmatrix} 8 \\ 2 \\ 4 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} -2 \\ -1 \\ -1 \end{bmatrix}$, $\mathcal{B} = \{\vec{a}_1, \vec{a}_2\}$ and $\mathbb{V} = \text{Span}\,\mathcal{B}$.

Is \vec{u} or \vec{v} in \mathbb{V} , and if so find its β -coordinates.

Can we write \vec{u} (or \vec{v}) as a LC of \vec{a}_1 and \vec{a}_2 ? Let $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 \end{bmatrix}$. Can we solve $A\vec{x} = \vec{u}$ (or $A\vec{x} = \vec{v}$)? Look at

$$
[A \mid \vec{u} \ \vec{v}] = \begin{bmatrix} 2 & -4 & 8 & -2 \\ 3 & -5 & 2 & -1 \\ -5 & 8 & 4 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 4 & -1 \\ 0 & 1 & -10 & 2 \\ 0 & 0 & -9 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 7 & 3 \\ 0 & 1 & -10 & 2 \\ 0 & 0 & -9 & 0 \end{bmatrix}
$$

Using elem row ops, we find the indicated REF and RREF for A. $A\vec{x} = \vec{u}$ has no solutions; \vec{u} not in V. $A\vec{x} = \vec{v}$ has a solution; \vec{v} is in V. In fact, $A\vec{x} = \vec{v}$ has the solution $\vec{x} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ $\Big]$, and we see that $\big[\vec{v}\big]_\mathcal{B} = \Big[\begin{matrix} 3 \ 2 \end{matrix} \Big]$, 2 2 that is, $\vec{v} = 3\vec{a}_1 + 2\vec{a}_2$. Ω

Let
$$
\vec{a}_1 = \begin{bmatrix} 2 \\ 3 \\ -5 \end{bmatrix}
$$
, $\vec{a}_2 = \begin{bmatrix} -4 \\ -5 \\ 8 \end{bmatrix}$, $\vec{u} = \begin{bmatrix} 8 \\ 2 \\ 4 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} -2 \\ -1 \\ -1 \end{bmatrix}$, $\mathcal{B} = \{\vec{a}_1, \vec{a}_2\}$ and $\mathbb{V} = \text{Span}\,\mathcal{B}$.

Is \vec{u} or \vec{v} in \mathbb{V} , and if so find its β -coordinates.

Can we write \vec{u} (or \vec{v}) as a LC of \vec{a}_1 and \vec{a}_2 ? Let $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 \end{bmatrix}$. Can we solve $A\vec{x} = \vec{u}$ (or $A\vec{x} = \vec{v}$)? Look at

$$
[A \mid \vec{u} \ \vec{v}] = \begin{bmatrix} 2 & -4 & 8 & -2 \\ 3 & -5 & 2 & -1 \\ -5 & 8 & 4 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 4 & -1 \\ 0 & 1 & -10 & 2 \\ 0 & 0 & -9 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 7 & 3 \\ 0 & 1 & -10 & 2 \\ 0 & 0 & -9 & 0 \end{bmatrix}
$$

Using elem row ops, we find the indicated REF and RREF for A. $A\vec{x} = \vec{u}$ has no solutions; \vec{u} not in V. $A\vec{x} = \vec{v}$ has a solution; \vec{v} is in V. In fact, $A\vec{x} = \vec{v}$ has the solution $\vec{x} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ 2 $\Big]$, and we see that $\big[\vec{v}\big]_\mathcal{B} = \Big[\begin{matrix} 3 \ 2 \end{matrix} \Big]$ 2 , that [i](#page-0-0)s, $\vec{v} = 3\vec{a}_1 + 2\vec{a_2}$ $\vec{v} = 3\vec{a}_1 + 2\vec{a_2}$ $\vec{v} = 3\vec{a}_1 + 2\vec{a_2}$ [.](#page-58-0) Note that \vec{v} i[s i](#page-58-0)[n](#page-0-0) \mathbb{R}^3 \mathbb{R}^3 \mathbb{R}^3 wh[ere](#page-18-0)[as](#page-20-0) $\left[\vec{v}\right]_{\mathcal{B}_i}$ $\left[\vec{v}\right]_{\mathcal{B}_i}$ $\left[\vec{v}\right]_{\mathcal{B}_i}$ is in \mathbb{R}^2 .

Suppose $\mathcal{B} = \{\vec{a}_1, \ldots, \vec{a}_p\}$ is a LI set of vectors in \mathbb{R}^n .

 \leftarrow

Suppose $\mathcal{B} = \{\vec{a}_1, \ldots, \vec{a}_p\}$ is a LI set of vectors in \mathbb{R}^n . Let $\mathbb{V} = \mathcal{S}$ pan \mathcal{B} .

 \leftarrow

Suppose $\mathcal{B} = \{\vec{a}_1, \ldots, \vec{a}_p\}$ is a LI set of vectors in \mathbb{R}^n . Let $\mathbb{V} = \mathcal{S}$ pan \mathcal{B} . Then β is a basis for V .

 \leftarrow

In this setting, finding coord vectors $\left[\vec{v}\right]_{\mathcal{B}}$ (for \vec{v} in $\mathbb{V})$ is just the problem of solving $A\vec{x} = \vec{v}$ where $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_p \end{bmatrix}$.

つひつ

In this setting, finding coord vectors $\left[\vec{v}\right]_{\mathcal{B}}$ (for \vec{v} in $\mathbb{V})$ is just the problem of solving $A\vec{x} = \vec{v}$ where $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_p \end{bmatrix}$.

That is, given a vector \vec{v} in \mathbb{V} , $\left[\vec{v}\right]_{\mathcal{B}}$ is just the unique solution to $A\vec{x}=\vec{v}$.

つくい

In this setting, finding coord vectors $\left[\vec{v}\right]_{\mathcal{B}}$ (for \vec{v} in $\mathbb{V})$ is just the problem of solving $A\vec{x} = \vec{v}$ where $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_p \end{bmatrix}$.

That is, given a vector \vec{v} in \mathbb{V} , $\left[\vec{v}\right]_{\mathcal{B}}$ is just the unique solution to $A\vec{x}=\vec{v}$. This is just because if we have $\vec{v} = A\vec{x} = x_1\vec{a}_1 + x_2\vec{a}_2 + \cdots + x_p\vec{a}_p$,

In this setting, finding coord vectors $\left[\vec{v}\right]_{\mathcal{B}}$ (for \vec{v} in $\mathbb{V})$ is just the problem of solving $A\vec{x} = \vec{v}$ where $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_p \end{bmatrix}$.

That is, given a vector \vec{v} in \mathbb{V} , $\left[\vec{v}\right]_{\mathcal{B}}$ is just the unique solution to $A\vec{x}=\vec{v}$. This is just because if we have $\vec{v} = A\vec{x} = x_1\vec{a}_1 + x_2\vec{a}_2 + \cdots + x_n\vec{a}_n$, then x_1, x_2, \ldots, x_p are the *B*-coords of \vec{v} .

In this setting, finding coord vectors $\left[\vec{v}\right]_{\mathcal{B}}$ (for \vec{v} in $\mathbb{V})$ is just the problem of solving $A\vec{x} = \vec{v}$ where $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_p \end{bmatrix}$.

That is, given a vector \vec{v} in \mathbb{V} , $\left[\vec{v}\right]_{\mathcal{B}}$ is just the unique solution to $A\vec{x}=\vec{v}$. This is just because if we have $\vec{v} = A\vec{x} = x_1\vec{a}_1 + x_2\vec{a}_2 + \cdots + x_n\vec{a}_n$, then x_1, x_2, \ldots, x_p are the *B*-coords of \vec{v} .

Again, while \vec{v} is a vector in \mathbb{R}^n , $\left[\vec{v}\right]_{\mathcal{B}}$ is a vector in \mathbb{R}^p .

Let $B = \{\vec{a}_1, \ldots, \vec{a}_p\}$ be a basis for a vector space \mathbb{V} .

 $A \equiv 1$

(□) (f

 $2QQ$

Let $B = \{\vec{a}_1, \ldots, \vec{a}_p\}$ be a basis for a vector space V. Then each \vec{v} in V $\left[\vec{v}\right]_{\mathcal{B}}=$ $\sqrt{ }$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $c₁$ $c₂$. . . 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ has an associated *B-coordinate vector* $\left[\vec{v}\right]_{\mathcal{B}}$ where c_1, c_2, \ldots, c_p are the *B*-coordinates of \vec{v} .

つひつ

Let $B = \{\vec{a}_1, \ldots, \vec{a}_p\}$ be a basis for a vector space V. Then each \vec{v} in V $\left[\vec{v}\right]_{\mathcal{B}}=$ $\sqrt{ }$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $c₁$ $c₂$. . . 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ has an associated *B-coordinate vector* $\left[\vec{v}\right]_{\mathcal{B}}$ where c_1, c_2, \ldots, c_p are the *B*-coordinates of \vec{v} . Again, $\left[\vec{v}\right]_{\mathcal{B}}$ is a vector in \mathbb{R}^p .

つひつ

Let $B = \{\vec{a}_1, \ldots, \vec{a}_p\}$ be a basis for a vector space V. Then each \vec{v} in V $\left[\vec{v}\right]_{\mathcal{B}}=$ $\sqrt{ }$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $c₁$ $c₂$. . . 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ has an associated *B-coordinate vector* $\left[\vec{v}\right]_{\mathcal{B}}$ where c_1, c_2, \ldots, c_p are the *B*-coordinates of \vec{v} . Again, $\left[\vec{v}\right]_{\mathcal{B}}$ is a vector in \mathbb{R}^p .

Now define $\mathbb{V} \xrightarrow{[\cdot]_{{\cal B}}} \mathbb{R}^p$ by the formula $\vec{v} \mapsto \begin{bmatrix} \vec{v} \end{bmatrix}_{{\cal B}}.$

Let $B = \{\vec{a}_1, \ldots, \vec{a}_p\}$ be a basis for a vector space V. Then each \vec{v} in V $\left[\vec{v}\right]_{\mathcal{B}}=$ $\sqrt{ }$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $c₁$ $c₂$. . . 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ has an associated *B-coordinate vector* $\left[\vec{v}\right]_{\mathcal{B}}$ where c_1, c_2, \ldots, c_p are the *B*-coordinates of \vec{v} . Again, $\left[\vec{v}\right]_{\mathcal{B}}$ is a vector in \mathbb{R}^p .

Now define $\mathbb{V} \xrightarrow{[\cdot]_B} \mathbb{R}^p$ by the formula $\vec{v} \mapsto [\vec{v}]_B$. This is a LT called the B -coordinate mapping.

Let $B = \{\vec{a}_1, \ldots, \vec{a}_p\}$ be a basis for a vector space V. Then each \vec{v} in V $\left[\vec{v}\right]_{\mathcal{B}}=$ $\sqrt{ }$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $c₁$ $c₂$. . . 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ has an associated *B-coordinate vector* $\left[\vec{v}\right]_{\mathcal{B}}$ where c_1, c_2, \ldots, c_p are the *B*-coordinates of \vec{v} . Again, $\left[\vec{v}\right]_{\mathcal{B}}$ is a vector in \mathbb{R}^p .

Now define $\mathbb{V} \xrightarrow{[\cdot]_B} \mathbb{R}^p$ by the formula $\vec{v} \mapsto [\vec{v}]_B$. This is a LT called the B -coordinate mapping.

The inverse of the β -coordinate mapping is easier to understand.

Let $B = \{\vec{a}_1, \ldots, \vec{a}_p\}$ be a basis for a vector space V. Then each \vec{v} in V $\left[\vec{v}\right]_{\mathcal{B}}=$ $\sqrt{ }$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $c₁$ $c₂$. . . 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ has an associated *B-coordinate vector* $\left[\vec{v}\right]_{\mathcal{B}}$ where c_1, c_2, \ldots, c_p are the *B*-coordinates of \vec{v} . Again, $\left[\vec{v}\right]_{\mathcal{B}}$ is a vector in \mathbb{R}^p .

Now define $\mathbb{V} \xrightarrow{[\cdot]_B} \mathbb{R}^p$ by the formula $\vec{v} \mapsto [\vec{v}]_B$. This is a LT called the B -coordinate mapping.

The inverse of the B -coordinate mapping is easier to understand. This is the linear transformation $\mathbb{R}^p\stackrel{\mathcal{T}}{\rightarrow}\mathbb{V}$ given by the formula $\sqrt{ }$ x_1 1

$$
T(\vec{x}) = x_1 \vec{a}_1 + x_2 \vec{a}_2 + \dots + x_p \vec{a}_p \quad \text{where} \quad \vec{x} = \begin{bmatrix} x_2 \\ \vdots \\ x_p \end{bmatrix}
$$

.

Let $B = \{\vec{a}_1, \ldots, \vec{a}_p\}$ be a basis for a vector space V. Then each \vec{v} in V $\left[\vec{v}\right]_{\mathcal{B}}=$ $\sqrt{ }$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $c₁$ $c₂$. . . 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ has an associated *B-coordinate vector* $\left[\vec{v}\right]_{\mathcal{B}}$ where c_1, c_2, \ldots, c_p are the *B*-coordinates of \vec{v} . Again, $\left[\vec{v}\right]_{\mathcal{B}}$ is a vector in \mathbb{R}^p .

Now define $\mathbb{V} \xrightarrow{[\cdot]_B} \mathbb{R}^p$ by the formula $\vec{v} \mapsto [\vec{v}]_B$. This is a LT called the B -coordinate mapping.

The inverse of the B -coordinate mapping is easier to understand. This is the linear transformation $\mathbb{R}^p\stackrel{\mathcal{T}}{\rightarrow}\mathbb{V}$ given by the formula $\sqrt{ }$ x_1 1

$$
\mathcal{T}(\vec{x}) = x_1 \vec{a}_1 + x_2 \vec{a}_2 + \cdots + x_p \vec{a}_p \quad \text{where} \quad \vec{x} = \begin{bmatrix} x_2 \\ \vdots \end{bmatrix}
$$

Thus \vec{x} in \mathbb{R}^p is associated to $\vec{v} = \mathcal{T}(\vec{x})$ in $\mathbb {V}$ and $[\vec{v}]_{\mathcal{B}} = \vec{x}.$

 x_p

 $\begin{array}{c} \hline \end{array}$.

Let $B = \{\vec{a}_1, \ldots, \vec{a}_p\}$ be a basis for a vector space V. Then each \vec{v} in V $\left[\vec{v}\right]_{\mathcal{B}}=$ $\sqrt{ }$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $c₁$ $c₂$. . . 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ has an associated *B-coordinate vector* $\left[\vec{v}\right]_{\mathcal{B}}$ where c_1, c_2, \ldots, c_p are the *B*-coordinates of \vec{v} . Again, $\left[\vec{v}\right]_{\mathcal{B}}$ is a vector in \mathbb{R}^p .

Now define $\mathbb{V} \xrightarrow{[\cdot]_B} \mathbb{R}^p$ by the formula $\vec{v} \mapsto [\vec{v}]_B$. This is a LT called the B -coordinate mapping.

The inverse of the B -coordinate mapping is easier to understand. This is the linear transformation $\mathbb{R}^p\stackrel{\mathcal{T}}{\rightarrow}\mathbb{V}$ given by the formula $\sqrt{ }$ x_1 1

$$
\mathcal{T}(\vec{x}) = x_1 \vec{a}_1 + x_2 \vec{a}_2 + \cdots + x_p \vec{a}_p \quad \text{where} \quad \vec{x} = \begin{bmatrix} x_2 \\ \vdots \end{bmatrix}
$$

Thus \vec{x} in \mathbb{R}^p is associated to $\vec{v} = \mathcal{T}(\vec{x})$ in $\mathbb {V}$ and $[\vec{v}]_B = \vec{x}$. That is, $[T(\vec{x})]_B = \vec{x}$.

 x_p

 $\begin{array}{c} \hline \end{array}$.

Let $B = \{\vec{a}_1, \ldots, \vec{a}_p\}$ be a basis for a vector space V. Then each \vec{v} in V $\left[\vec{v}\right]_{\mathcal{B}}=$ $\sqrt{ }$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $c₁$ $c₂$. . . 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ has an associated *B-coordinate vector* $\left[\vec{v}\right]_{\mathcal{B}}$ where c_1, c_2, \ldots, c_p are the *B*-coordinates of \vec{v} . Again, $\left[\vec{v}\right]_{\mathcal{B}}$ is a vector in \mathbb{R}^p .

Now define $\mathbb{V} \xrightarrow{[\cdot]_B} \mathbb{R}^p$ by the formula $\vec{v} \mapsto [\vec{v}]_B$. This is a LT called the B -coordinate mapping.

The inverse of the B -coordinate mapping is easier to understand. This is the linear transformation $\mathbb{R}^p\stackrel{\mathcal{T}}{\rightarrow}\mathbb{V}$ given by the formula $\sqrt{ }$ x_1 1

$$
\mathcal{T}(\vec{x}) = x_1 \vec{a}_1 + x_2 \vec{a}_2 + \cdots + x_p \vec{a}_p \quad \text{where} \quad \vec{x} = \begin{bmatrix} x_2 \\ \vdots \end{bmatrix}
$$

Thus \vec{x} in \mathbb{R}^p is associated to $\vec{v} = \mathcal{T}(\vec{x})$ in $\mathbb {V}$ and $[\vec{v}]_B = \vec{x}$. That is, $[T(\vec{x})]_B = \vec{x}$. \overline{Can} we write \overline{T} as a matrix transformation?

 x_p

 $\begin{array}{c} \hline \end{array}$.

Let $B = \{\vec{a}_1, \ldots, \vec{a}_p\}$ be a basis for a vector space V. Then each \vec{v} in V $\left[\vec{v}\right]_{\mathcal{B}}=$ $\sqrt{ }$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $c₁$ $c₂$. . . 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ has an associated *B-coordinate vector* $\left[\vec{v}\right]_{\mathcal{B}}$ where c_1, c_2, \ldots, c_p are the *B*-coordinates of \vec{v} . Again, $\left[\vec{v}\right]_{\mathcal{B}}$ is a vector in \mathbb{R}^p .

Now define $\mathbb{V} \xrightarrow{[\cdot]_B} \mathbb{R}^p$ by the formula $\vec{v} \mapsto [\vec{v}]_B$. This is a LT called the B -coordinate mapping.

The inverse of the B -coordinate mapping is easier to understand. This is the linear transformation $\mathbb{R}^p\stackrel{\mathcal{T}}{\rightarrow}\mathbb{V}$ given by the formula $\sqrt{ }$ x_1 1

$$
\mathcal{T}(\vec{x}) = x_1 \vec{a}_1 + x_2 \vec{a}_2 + \cdots + x_p \vec{a}_p \quad \text{where} \quad \vec{x} = \begin{bmatrix} x_2 \\ \vdots \end{bmatrix}
$$

Thus \vec{x} in \mathbb{R}^p is associated to $\vec{v} = \mathcal{T}(\vec{x})$ in $\mathbb {V}$ and $[\vec{v}]_B = \vec{x}$. That is, $[T(\vec{x})]_B = \vec{x}$. Can we write T as a matrix transformation? What if $\mathbb {V}$ is a vector subspace of some $\mathbb {R}^n?$

 x_p

 $\begin{array}{c} \hline \end{array}$.

Suppose $\mathcal{B} = \{\vec{a}_1, \ldots, \vec{a}_p\}$ is a LI set of vectors in \mathbb{R}^n .

 \leftarrow

Suppose $\mathcal{B} = \{\vec{a}_1, \ldots, \vec{a}_p\}$ is a LI set of vectors in \mathbb{R}^n . Let $\mathbb{V} = \mathcal{S}$ pan \mathcal{B} .

 \leftarrow

 $2QQ$

Suppose $\mathcal{B} = \{\vec{a}_1, \ldots, \vec{a}_p\}$ is a LI set of vectors in \mathbb{R}^n . Let $\mathbb{V} = \mathcal{S}$ pan \mathcal{B} . Then β is a basis for V .

 \leftarrow

 $2Q$

Suppose $\mathcal{B} = \{\vec{a}_1, \ldots, \vec{a}_p\}$ is a LI set of vectors in \mathbb{R}^n . Let $\mathbb{V} = \mathcal{S}$ pan \mathcal{B} . Then β is a basis for V .

In this setting, finding coord vectors $\left[\vec{v}\right]_{\mathcal{B}}$ (for \vec{v} in $\mathbb{V})$ is just the problem of solving $A\vec{x} = \vec{v}$ where $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_p \end{bmatrix}$.

Suppose $\mathcal{B} = \{\vec{a}_1, \ldots, \vec{a}_p\}$ is a LI set of vectors in \mathbb{R}^n . Let $\mathbb{V} = \mathcal{S}$ pan \mathcal{B} . Then β is a basis for V .

In this setting, finding coord vectors $\left[\vec{v}\right]_{\mathcal{B}}$ (for \vec{v} in $\mathbb{V})$ is just the problem of solving $A\vec{x} = \vec{v}$ where $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_p \end{bmatrix}$.

Given \vec{v} in \mathbb{V} , $[\vec{v}]_B^{}$ is the unique solution to $A\vec{x} = \vec{v}$.

Suppose $\mathcal{B} = \{\vec{a}_1, \ldots, \vec{a}_p\}$ is a LI set of vectors in \mathbb{R}^n . Let $\mathbb{V} = \mathcal{S}$ pan \mathcal{B} . Then β is a basis for V .

In this setting, finding coord vectors $\left[\vec{v}\right]_{\mathcal{B}}$ (for \vec{v} in $\mathbb{V})$ is just the problem of solving $A\vec{x} = \vec{v}$ where $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_p \end{bmatrix}$.

Given \vec{v} in \mathbb{V} , $[\vec{v}]_B^{}$ is the unique solution to $A\vec{x} = \vec{v}$.

Look at the LT $\mathbb{R}^p \stackrel{\mathcal{T}}{\rightarrow} \mathbb{R}^n$ given by $\mathcal{T}(\vec{x}) = A \vec{x}.$

Suppose $\mathcal{B} = \{\vec{a}_1, \ldots, \vec{a}_p\}$ is a LI set of vectors in \mathbb{R}^n . Let $\mathbb{V} = \mathcal{S}$ pan \mathcal{B} . Then β is a basis for V .

In this setting, finding coord vectors $\left[\vec{v}\right]_{\mathcal{B}}$ (for \vec{v} in $\mathbb{V})$ is just the problem of solving $A\vec{x} = \vec{v}$ where $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_p \end{bmatrix}$. Given \vec{v} in \mathbb{V} , $[\vec{v}]_B^{}$ is the unique solution to $A\vec{x} = \vec{v}$.

Look at the LT $\mathbb{R}^p \stackrel{\mathcal{T}}{\rightarrow} \mathbb{R}^n$ given by $\mathcal{T}(\vec{x}) = A \vec{x}$. Since $\mathbb{V} = \mathcal{S}$ pan \mathcal{B} , it follows that \mathcal{R} *ng*(T) = V .

Suppose $\mathcal{B} = \{\vec{a}_1, \ldots, \vec{a}_p\}$ is a LI set of vectors in \mathbb{R}^n . Let $\mathbb{V} = \mathcal{S}$ pan \mathcal{B} . Then β is a basis for V .

In this setting, finding coord vectors $\left[\vec{v}\right]_{\mathcal{B}}$ (for \vec{v} in $\mathbb{V})$ is just the problem of solving $A\vec{x} = \vec{v}$ where $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_p \end{bmatrix}$. Given \vec{v} in \mathbb{V} , $[\vec{v}]_B^{}$ is the unique solution to $A\vec{x} = \vec{v}$.

Look at the LT $\mathbb{R}^p \stackrel{\mathcal{T}}{\rightarrow} \mathbb{R}^n$ given by $\mathcal{T}(\vec{x}) = A \vec{x}$. Since $\mathbb{V} = \mathcal{S}$ pan \mathcal{B} , it follows that $\mathcal{R}ng(\mathcal{T}) = \mathbb{V}$. Notice that $\left[\mathcal{T}(\vec{x})\right]_{\mathcal{B}} = \vec{x}$.

Suppose $\mathcal{B} = \{\vec{a}_1, \ldots, \vec{a}_p\}$ is a LI set of vectors in \mathbb{R}^n . Let $\mathbb{V} = \mathcal{S}$ pan \mathcal{B} . Then β is a basis for V .

In this setting, finding coord vectors $\left[\vec{v}\right]_{\mathcal{B}}$ (for \vec{v} in $\mathbb{V})$ is just the problem of solving $A\vec{x} = \vec{v}$ where $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_p \end{bmatrix}$. Given \vec{v} in \mathbb{V} , $[\vec{v}]_B^{}$ is the unique solution to $A\vec{x} = \vec{v}$.

Look at the LT $\mathbb{R}^p \stackrel{\mathcal{T}}{\rightarrow} \mathbb{R}^n$ given by $\mathcal{T}(\vec{x}) = A \vec{x}$. Since $\mathbb{V} = \mathcal{S}$ pan \mathcal{B} , it follows that \mathcal{R} *ng*(*T*) $=$ \mathbb{V} . Notice that $\left[T(\vec{x}) \right]_{\mathcal{B}} = \vec{x}$. Right?

Suppose $\mathcal{B} = \{\vec{a}_1, \ldots, \vec{a}_p\}$ is a LI set of vectors in \mathbb{R}^n . Let $\mathbb{V} = \mathcal{S}$ pan \mathcal{B} . Then β is a basis for V .

In this setting, finding coord vectors $\left[\vec{v}\right]_{\mathcal{B}}$ (for \vec{v} in $\mathbb{V})$ is just the problem of solving $A\vec{x} = \vec{v}$ where $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_p \end{bmatrix}$. Given \vec{v} in \mathbb{V} , $[\vec{v}]_B^{}$ is the unique solution to $A\vec{x} = \vec{v}$.

Look at the LT $\mathbb{R}^p \stackrel{\mathcal{T}}{\rightarrow} \mathbb{R}^n$ given by $\mathcal{T}(\vec{x}) = A \vec{x}$. Since $\mathbb{V} = \mathcal{S}$ pan \mathcal{B} , it follows that \mathcal{R} *ng*(*T*) $=$ \mathbb{V} . Notice that $\left[T(\vec{x}) \right]_{\mathcal{B}} = \vec{x}$. Right? Since B is LI, $A\vec{x} = \vec{0}$ iff $\vec{x} = \vec{0}$.

Suppose $\mathcal{B} = \{\vec{a}_1, \ldots, \vec{a}_p\}$ is a LI set of vectors in \mathbb{R}^n . Let $\mathbb{V} = \mathcal{S}$ pan \mathcal{B} . Then β is a basis for V .

In this setting, finding coord vectors $\left[\vec{v}\right]_{\mathcal{B}}$ (for \vec{v} in $\mathbb{V})$ is just the problem of solving $A\vec{x} = \vec{v}$ where $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_p \end{bmatrix}$. Given \vec{v} in \mathbb{V} , $[\vec{v}]_B^{}$ is the unique solution to $A\vec{x} = \vec{v}$.

Look at the LT $\mathbb{R}^p \stackrel{\mathcal{T}}{\rightarrow} \mathbb{R}^n$ given by $\mathcal{T}(\vec{x}) = A \vec{x}$. Since $\mathbb{V} = \mathcal{S}$ pan \mathcal{B} , it follows that \mathcal{R} *ng*(*T*) $=$ \mathbb{V} . Notice that $\left[T(\vec{x}) \right]_{\mathcal{B}} = \vec{x}$. Right? Since B is LI, $A\vec{x} = \vec{0}$ iff $\vec{x} = \vec{0}$, so $Ker(T) = {\vec{0}}$.

Suppose $\mathcal{B} = \{\vec{a}_1, \ldots, \vec{a}_p\}$ is a LI set of vectors in \mathbb{R}^n . Let $\mathbb{V} = \mathcal{S}$ pan \mathcal{B} . Then β is a basis for V .

In this setting, finding coord vectors $\left[\vec{v}\right]_{\mathcal{B}}$ (for \vec{v} in $\mathbb{V})$ is just the problem of solving $A\vec{x} = \vec{v}$ where $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_p \end{bmatrix}$. Given \vec{v} in \mathbb{V} , $[\vec{v}]_B^{}$ is the unique solution to $A\vec{x} = \vec{v}$.

Look at the LT $\mathbb{R}^p \stackrel{\mathcal{T}}{\rightarrow} \mathbb{R}^n$ given by $\mathcal{T}(\vec{x}) = A \vec{x}$. Since $\mathbb{V} = \mathcal{S}$ pan \mathcal{B} , it follows that \mathcal{R} *ng*(*T*) $=$ \mathbb{V} . Notice that $\left[T(\vec{x}) \right]_{\mathcal{B}} = \vec{x}$. Right? Since B is LI, $A\vec{x} = \vec{0}$ iff $\vec{x} = \vec{0}$, so $Ker(T) = {\vec{0}}$. This means T is one-to-one, which says that $\mathbb{R}^p \stackrel{\mathcal{T}}{\rightarrow} \mathcal{R}$ ng $(\mathcal{T})=\mathbb{V}$ has an inverse.

Suppose $\mathcal{B} = \{\vec{a}_1, \ldots, \vec{a}_p\}$ is a LI set of vectors in \mathbb{R}^n . Let $\mathbb{V} = \mathcal{S}$ pan \mathcal{B} . Then β is a basis for V .

In this setting, finding coord vectors $\left[\vec{v}\right]_{\mathcal{B}}$ (for \vec{v} in $\mathbb{V})$ is just the problem of solving $A\vec{x} = \vec{v}$ where $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_p \end{bmatrix}$. Given \vec{v} in \mathbb{V} , $[\vec{v}]_B^{}$ is the unique solution to $A\vec{x} = \vec{v}$.

Look at the LT $\mathbb{R}^p \stackrel{\mathcal{T}}{\rightarrow} \mathbb{R}^n$ given by $\mathcal{T}(\vec{x}) = A \vec{x}$. Since $\mathbb{V} = \mathcal{S}$ pan \mathcal{B} , it follows that \mathcal{R} *ng*(*T*) $=$ \mathbb{V} . Notice that $\left[T(\vec{x}) \right]_{\mathcal{B}} = \vec{x}$. Right? Since B is LI, $A\vec{x} = \vec{0}$ iff $\vec{x} = \vec{0}$, so $Ker(T) = {\vec{0}}$. This means T is one-to-one, which says that $\mathbb{R}^p \stackrel{\mathcal{T}}{\rightarrow} \mathcal{R}$ ng $(\mathcal{T})=\mathbb{V}$ has an inverse.

The inverse of $\mathbb{R}^p \stackrel{\mathcal{T}}{\longrightarrow} \mathcal{R}$ ng $(\mathcal{T})=\mathbb{V}$ is the $\mathcal{B}\text{-}$ coord mapping $\mathbb{V} \stackrel{[\cdot]_B}{\longrightarrow} \mathbb{R}^p.$

 QQQ

K ロ > K @ > K 경 > K 경 > → 경

Again, let $\mathcal{B} = \{\vec{a}_1, \ldots, \vec{a}_p\}$ be a basis for a vector space V. Then:

4 0 8

 $2Q$

Again, let $B = \{\vec{a}_1, \ldots, \vec{a}_p\}$ be a basis for a vector space V. Then:

• for all
$$
\vec{v}
$$
, \vec{w} in V, $[\vec{v} + \vec{w}]_B = [\vec{v}]_B + [\vec{w}]_B$

4 **D** F

 OQ

Again, let $\mathcal{B} = \{\vec{a}_1, \ldots, \vec{a}_p\}$ be a basis for a vector space V. Then:

for all \vec{v}, \vec{w} in \mathbb{V} , $[\vec{v} + \vec{w}]_B = [\vec{v}]_B + [\vec{w}]_B$

for all scalars s and all \vec{v} in $\mathbb{V},~\left[s\vec{v}\right]_{\mathcal{B}}=s\big[\vec{v}\big]_{\mathcal{B}}$

Again, let $\mathcal{B} = \{\vec{a}_1, \ldots, \vec{a}_p\}$ be a basis for a vector space V. Then:

- for all \vec{v}, \vec{w} in \mathbb{V} , $[\vec{v} + \vec{w}]_B = [\vec{v}]_B + [\vec{w}]_B$
- for all scalars s and all \vec{v} in $\mathbb{V},~\left[s\vec{v}\right]_{\mathcal{B}}=s\big[\vec{v}\big]_{\mathcal{B}}$

This means that for any vectors $\vec{v}_1, \ldots, \vec{v}_q$ in \mathbb{V} ,

 PQQ

Again, let $\mathcal{B} = \{\vec{a}_1, \ldots, \vec{a}_p\}$ be a basis for a vector space V. Then:

- for all \vec{v}, \vec{w} in \mathbb{V} , $[\vec{v} + \vec{w}]_B = [\vec{v}]_B + [\vec{w}]_B$
- for all scalars s and all \vec{v} in $\mathbb{V},~\left[s\vec{v}\right]_{\mathcal{B}}=s\big[\vec{v}\big]_{\mathcal{B}}$

This means that for any vectors $\vec{v}_1, \ldots, \vec{v}_q$ in V, the B-coord vector for any LC of the $\vec{v_i}$'s if the same LC of the ${\cal B}$ -coord vectors;

Again, let $\mathcal{B} = \{\vec{a}_1, \ldots, \vec{a}_p\}$ be a basis for a vector space V. Then:

- for all \vec{v}, \vec{w} in \mathbb{V} , $[\vec{v} + \vec{w}]_B = [\vec{v}]_B + [\vec{w}]_B$
- for all scalars s and all \vec{v} in $\mathbb{V},~\left[s\vec{v}\right]_{\mathcal{B}}=s\big[\vec{v}\big]_{\mathcal{B}}$
- This means that for any vectors $\vec{v}_1, \ldots, \vec{v}_q$ in $\mathbb V$, the *B*-coord vector for any LC of the $\vec{v_i}$'s if the same LC of the ${\cal B}$ -coord vectors; that is,

$$
\left[\sum_{i=1}^q s_i \vec{v}_i\right]_{\mathcal{B}} = \sum_{i=1}^q s_i \left[\vec{v}_i\right]_{\mathcal{B}}.
$$

Again, let $\mathcal{B} = \{\vec{a}_1, \ldots, \vec{a}_p\}$ be a basis for a vector space V. Then:

- for all \vec{v}, \vec{w} in \mathbb{V} , $[\vec{v} + \vec{w}]_B = [\vec{v}]_B + [\vec{w}]_B$
- for all scalars s and all \vec{v} in $\mathbb{V},~\left[s\vec{v}\right]_{\mathcal{B}}=s\big[\vec{v}\big]_{\mathcal{B}}$
- This means that for any vectors $\vec{v}_1, \ldots, \vec{v}_q$ in \mathbb{V} , the B-coord vector for any LC of the $\vec{v_i}$'s if the same LC of the ${\cal B}$ -coord vectors; that is,

$$
\left[\sum_{i=1}^q s_i \vec{v}_i\right]_{\mathcal{B}} = \sum_{i=1}^q s_i \left[\vec{v}_i\right]_{\mathcal{B}}.
$$

This is also what tells us that the B-coord mapping $\mathbb{V} \overset{[\cdot]_B}{\longrightarrow} \mathbb{R}^p$ is a linear transformation.

 Ω