The Coordinate Mapping Transformation

Linear Algebra MATH 2076

Coordinates and Coordinate Vectors

Let $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ be a basis for a vector space \mathbb{V} . Then for each vector \vec{v} in \mathbb{V} , there are *unique* scalars c_1, c_2, \ldots, c_p such that

$$\vec{v} = c_1 \vec{a}_1 + c_2 \vec{a}_2 + \dots + c_p \vec{a}_p = \sum_{i=1}^p c_i \vec{a}_i.$$

We call c_1, c_2, \ldots, c_p the \mathcal{B} -coordinates of \vec{v} and $[\vec{v}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \end{bmatrix}$

Note that $[\vec{v}]_{\mathcal{B}}$ is a vector in \mathbb{R}^p .

Properties of Coordinate Vectors

Again, let $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ be a basis for a vector space \mathbb{V} . Then:

- ullet for all $ec{v},ec{w}$ in \mathbb{V} , $\left[ec{v}+ec{w}
 ight]_{\mathcal{B}}=\left[ec{v}
 ight]_{\mathcal{B}}+\left[ec{w}
 ight]_{\mathcal{B}}$
- ullet for all scalars s and all $ec{v}$ in \mathbb{V} , $ig[sec{v}ig]_{\mathcal{B}}=sig[ec{v}ig]_{\mathcal{B}}$

This means that for any vectors $\vec{v}_1, \ldots, \vec{v}_q$ in \mathbb{V} , the \mathcal{B} -coord vector for any LC of the \vec{v}_i 's if the same LC of the \mathcal{B} -coord vectors; that is,

$$\left[\sum_{i=1}^{q} s_{i} \vec{v}_{i}\right]_{\mathcal{B}} = \sum_{i=1}^{q} s_{i} \left[\vec{v}_{i}\right]_{\mathcal{B}}.$$

This is also what tells us that the \mathcal{B} -coord mapping $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^p$ is a linear transformation.

Coordinates for Subspaces of \mathbb{R}^n

Suppose $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ is a LI set of vectors in \mathbb{R}^n . Let $\mathbb{V} = \mathcal{S}pan\mathcal{B}$. Then \mathcal{B} is a basis for \mathbb{V} .

In this setting, finding coord vectors $[\vec{v}]_{\mathcal{B}}$ (for \vec{v} in \mathbb{V}) is just the problem of solving $A\vec{x} = \vec{v}$ where $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 \cdots \vec{a}_p \end{bmatrix}$.

That is, given a vector \vec{v} in \mathbb{V} , $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$ is just the unique solution to $A\vec{x} = \vec{v}$. This holds because, if $\vec{v} = A\vec{x} = x_1\vec{a}_1 + x_2\vec{a}_2 + \cdots + x_p\vec{a}_p$, then x_1, x_2, \ldots, x_p are the \mathcal{B} -coords of \vec{v} .

Again, while \vec{v} is a vector in \mathbb{R}^n , $\left[\vec{v}\right]_{\mathcal{B}}$ is a vector in \mathbb{R}^p .

Notice that $\vec{v} = A[\vec{v}]_{\mathcal{B}}$; that is, multiplication by A changes \mathcal{B} -coordinates into standard coordinates. More about this later!

The Coordinate Mapping $\mathbb{V} \xrightarrow{|\cdot|_{\mathcal{B}}} \mathbb{R}^p$

Let $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ be a basis for a vector space \mathbb{V} . Then each \vec{v} in \mathbb{V} has an associated \mathcal{B} -coordinate vector $[\vec{v}]_{\mathcal{R}}$ $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$ where c_1, c_2, \ldots, c_p are the \mathcal{B} -coordinates of \vec{v} . Again, $[\vec{v}]_{\mathcal{B}}$ is a vector in \mathbb{R}^p .

Now define $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^p$ by the formula $\vec{v} \mapsto [\vec{v}]_{\mathcal{B}}$. This is a LT called the *B-coordinate mapping*.

The inverse of the \mathcal{B} -coordinate mapping is easier to understand. This is

The inverse of the
$$\mathcal{B}$$
-coordinate mapping is easier to understand the linear transformation $\mathbb{R}^p \xrightarrow{\mathcal{T}} \mathbb{V}$ given by the formula
$$T(\vec{x}) = x_1 \vec{a}_1 + x_2 \vec{a}_2 + \dots + x_p \vec{a}_p \quad \text{where} \quad \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix}.$$

Thus \vec{x} in \mathbb{R}^p is associated to $\vec{v} = T(\vec{x})$ in \mathbb{V} and $[\vec{v}]_{R} = \vec{x}$. That is, $[T(\vec{x})]_{R} = [\vec{v}]_{R} = \vec{x}$. Can we write T as a matrix transformation? What if \mathbb{V} is a vector subspace of some \mathbb{R}^n ?

A 2-plane in \mathbb{R}^4

Let
$$\mathbb{W} = \mathcal{S}pan\{\vec{a}, \vec{b}\}$$
 where $\vec{a} = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix}$, $\vec{b} = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 3 \end{bmatrix}$. \mathbb{W} is the 2-plane in \mathbb{R}^4 consisting of all LCs of \vec{a} and \vec{b} ; that is, all vectors of the form

The \mathcal{B} -coordinate mapping $\mathbb{W} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^2$ is given by $\vec{w} \mapsto [\vec{w}]_{R}$. In my opinion, the inverse of the

 \mathcal{B} -coordinate mapping is easier to understand. This is the LT

$$\mathbb{R}^2 \xrightarrow{T} \mathbb{W} \subset \mathbb{R}^4$$
 given by the formula $T\left(\begin{bmatrix} s \\ t \end{bmatrix}\right) = s\vec{a} + t\vec{b}$.

W is the 2-plane in \mathbb{R}^4

 $s\vec{a} + t\vec{b}$ where s, t are

arbitrary scalars.

Evidently, if
$$\vec{c} = \begin{bmatrix} s \\ t \end{bmatrix}$$
 and $\vec{w} = T(\vec{c}) = s\vec{a} + t\vec{b}$, then
$$\left[T(\vec{c}) \right]_{\mathcal{B}} = \left[\vec{w} \right]_{\mathcal{B}} = \left[s\vec{a} + t\vec{b} \right]_{\mathcal{B}} = \begin{bmatrix} s \\ t \end{bmatrix} = \vec{c}. \text{ Right?}$$

Think of T as transforming the st-plane into the 2-plane \mathbb{W} that sits in \mathbb{R}^4 ; T attaches "labels" (that we call \mathcal{B} -coords) to each vector in \mathbb{W} .

Coordinate Mappings for Subspaces of \mathbb{R}^n

Suppose $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$ is a LI set of vectors in \mathbb{R}^n . Let $\mathbb{V} = \mathcal{S}pan\mathcal{B}$. Then \mathcal{B} is a basis for \mathbb{V} .

In this setting, finding coord vectors $[\vec{v}]_{\mathcal{B}}$ (for \vec{v} in \mathbb{V}) is just the problem of solving $A\vec{x} = \vec{v}$ where $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 \cdots \vec{a}_p \end{bmatrix}$.

Given \vec{v} in \mathbb{V} , $[\vec{v}]_{\mathcal{B}}$ is the unique solution to $A\vec{x} = \vec{v}$.

That is, if $\vec{c} = [\vec{v}]_{\mathcal{B}}$, then $A\vec{c} = \vec{v}$, and this is the only such vector with this property. Again, multiplication by A changes \mathcal{B} -coordinates into standard coordinates.

Look at the LT $\mathbb{R}^p \xrightarrow{\mathcal{T}} \mathbb{R}^n$ given by $T(\vec{x}) = A\vec{x}$. Notice that $[T(\vec{x})]_{\mathcal{B}} = \vec{x}$. Right?

Write \vec{c} in place of \vec{x} and let $\vec{v} = T(\vec{c}) = A\vec{c}$. Since $A\vec{c} = \vec{v}$, it follows that $\vec{c} = \begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$. Right? So, $\begin{bmatrix} T(\vec{c}) \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}} = \vec{c}$.

Coordinate Mappings for Subspaces of \mathbb{R}^n

We have a LT
$$\mathbb{R}^p \xrightarrow{T} \mathbb{R}^n$$
 given by $T(\vec{x}) = A\vec{x}$ where $A = \begin{bmatrix} \vec{a_1} \ \vec{a_2} \cdots \vec{a_p} \end{bmatrix}$.
Since $\mathbb{V} = \mathcal{S}pan\mathcal{B} = \mathcal{S}pan\{\vec{a_1}, \vec{a_2}, \dots, \vec{a_p}\} = \mathcal{CS}(A)$, it follows that $\mathcal{R}ng(T) = \mathbb{V}$. Also, $[T(\vec{x})]_{\mathcal{B}} = \vec{x}$.

Since \mathcal{B} is LI, $A\vec{x} = \vec{0}$ iff $\vec{x} = \vec{0}$, so $\mathcal{K}er(T) = \{\vec{0}\}$. This means T is one-to-one; therefore, $\mathbb{R}^p \xrightarrow{T} \mathcal{R}ng(T) = \mathbb{V}$ has an inverse.

Remember, if $\vec{v} = T(\vec{c}) = A\vec{c}$, then $\vec{c} = \begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$. This tells us that the inverse of $\mathbb{R}^p \xrightarrow{T} \mathcal{R} ng(T) = \mathbb{V}$ is the \mathcal{B} -coord mapping $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^p$. That is, $\mathbb{R}^p \xrightarrow{T} \mathbb{V}$ is the inverse of the \mathcal{B} -coord mapping $\mathbb{V} \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^p$.

A HyperPlane in \mathbb{P}_3 (the space of all cubic polynomials)

Let \mathbb{W} be the space of all polynomials \boldsymbol{p} in \mathbb{P}_3 that satisfy $\boldsymbol{p}(2)=0$.

In the video HypPlaneP3.mp4 we

- Explain why \mathbb{W} is a vector subspace of \mathbb{P}_3 .
- ullet Find a basis ${\mathcal B}$ for ${\mathbb W}$ and determine the dimension of ${\mathbb W}$.
- Find the \mathcal{B} -coordinate vector for $\mathbf{p}(t) = (t-1)(t-2)(t-3)$.

We make extensive use of coordinate vectors and related material.

Example—Null Space and Column Space

Find bases for the null space and column space of

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 3 & 6 & 9 & 2 & -5 \\ 2 & 4 & 6 & 1 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & -2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

and determine the corresponding coordinate maps.

Using elem row ops, we find the indicated REF and RREF for A.

Thus columns 1,2,4 are pivot columns for A, so a basis for $\mathcal{CS}(A)$ is given

by
$$\left\{ \begin{bmatrix} 1\\0\\3\\2 \end{bmatrix}, \begin{bmatrix} 2\\1\\6\\4 \end{bmatrix}, \begin{bmatrix} 4\\1\\2\\1 \end{bmatrix} \right\}$$
 and we see that $\mathcal{CS}(A)$ is a 3-plane in \mathbb{R}^4 .

Let's focus on $\mathcal{NS}(A)$. So, we need to "solve" $A\vec{x} = \vec{0}$. The free variables are $x_3 = s$, $x_5 = t$; then $x_4 = -2t$, $x_2 = -s + 2t$, $x_1 = -s - t$.

Example—Null Space and Column Space

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 3 & 6 & 9 & 2 & -5 \\ 2 & 4 & 6 & 1 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & -2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

 $\mathcal{NS}(A)$ is a vector subspace of \mathbb{R}^5 . To "find" $\mathcal{NS}(A)$, we solve $A\vec{x} = \vec{0}$. Free vrbls are $x_3 = s$, $x_5 = t$; then $x_4 = -2t$, $x_2 = -s + 2t$, $x_1 = -s - t$.

Thus
$$A\vec{x} = \vec{0}$$
 iff $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -s+t \\ -s+2t \\ s \\ -2t \\ t \end{bmatrix} = s \begin{bmatrix} -1 \\ -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ 2 \\ 0 \\ -2 \\ 1 \end{bmatrix}.$

So, $\mathcal{NS}(A)$ is a 2-plane in \mathbb{R}^5 and the above two vectors form a basis.

11 / 12

Example—Null Space and Column Space

$$\mathcal{NS}(A) \text{ is 2-plane in } \mathbb{R}^5 \text{ with basis } \mathcal{B} = \{\vec{v}_1, \vec{v}_2\} \text{ where } \begin{bmatrix} -1 \\ -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} -1 \\ 2 \\ 0 \\ -2 \\ 1 \end{bmatrix}.$$
 then $[\vec{x}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$ which is a vector in \mathbb{R}^2 .

The LT $\mathbb{R}^2 \xrightarrow{\mathcal{T}} \mathbb{R}^5$ given by $T(\vec{c}) = \begin{bmatrix} \vec{v}_1 \ \vec{v}_2 \end{bmatrix} \vec{c}$ has the property that $\begin{bmatrix} T(\begin{bmatrix} c_1 \\ c_2 \end{bmatrix}) \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$, and $\mathcal{R}ng(T) = \mathcal{NS}(A) = \mathcal{CS}(\begin{bmatrix} \vec{v}_1 \ \vec{v}_2 \end{bmatrix})$.

The inverse of $\mathbb{R}^2 \xrightarrow{T} \mathcal{R} ng(T) = \mathcal{NS}(A) \subset \mathbb{R}^5$ is the \mathcal{B} -coordinate mapping $\mathcal{NS}(A) \xrightarrow{[\cdot]_{\mathcal{B}}} \mathbb{R}^2$ given by $\vec{x} \mapsto \begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}}$.

Linear Algebra Coord Maps Chapter 4, Section 4b 12 / 12