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Bases

Let V be a vector space.

Definition

A set of vectors B = {~v1, . . . , ~vp} is called a basis for V if and only if

B is linearly independent, and

B spans V (i.e., V = Span
(
B
)
).

So, what are bases useful for? Why do we care about these?

First, since V = Span
(
B
)
, each vector ~v in V can be written as a LC of

basis vectors. That is, there are scalars scalars c1, c2, . . . , cp such that

~v = c1~v1 + c2~v2 + · · ·+ cp~vp
(

more compactly , ~v =

p∑
i=1

ci~vi

)
.

Next, B linearly independent says this is the only way ~v can be so written.
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Bases

Why is ~v = c1~v1 + c2~v2 + · · ·+ cp~vp =
∑p

i=1 ci~vi the only way that ~v can
be written as a LC of vectors in the basis B = {~v1, . . . , ~vp}?

To see this, suppose we also have ~v =
∑p

i=1 di~vi for some scalars di . Then
by subtracting ~v =

∑p
i=1 di~vi from ~v =

∑p
i=1 ci~vi we get

p∑
i=1

(ci − di )~vi =

p∑
i=1

ci~vi −
p∑

i=1

di~vi = ~v − ~v = ~0.

But since B is LI, this implies that ci = di for all i . Right?
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Using a Basis

Let B = {~v1, . . . , ~vp} be a basis for a vector space V. Then for each vector
~v in V, there are unique scalars c1, c2, . . . , cp such that

~v = c1~v1 + c2~v2 + · · ·+ cp~vp
(

more compactly , ~v =

p∑
i=1

ci~vi

)
.

Definition

We call c1, c2, . . . , cp the coordinates of ~v relative to B.

We also call c1, c2, . . . , cp the B-coordinates of ~v and
[
~v
]
B =


c1
c2
...
cp


is the B-coordinate vector for ~v .

Note that
[
~v
]
B is a vector in Rp.
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Example

Let’s find a basis for the plane W in R3 given by x + 2y + 3z = 0. One
way to do this is to recognize that W = NS

(
[1 2 3]

)
and proceed “as

usual”. However, it is pretty darn easy to find two LI vectors that span W;
these two vectors will form a basis for W.

How can we find one non-zero vector in W; i.e., one non-zero solution to
x + 2y + 3z = 0? (We did this sort of thing on the first day of class!) Just
set one variable equal to 0, one variable equal to 1, and solve for the third
variable; right?

With z = 0, y = 1 we get x = −2; and with y = 0, z = 1 we get x = −3.
It now follows that a basis for W is given by

B = {~w1, ~w2} where ~w1 =

 2
−1
0

 , ~w2 =

 3
0
−1

 .
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Example

So, a basis for the plane W (i.e. the soln set to x + 2y + 3z = 0) is given
by

B = {~w1, ~w2} where ~w1 =

 2
−1
0

 , ~w2 =

 3
0
−1

 .

Thus every vector ~w in W can be written in a unique way as
~w = c1~w1 + c2~w2 where c1, c2 are the B-coordinates of ~w , and then[

~w
]
B =

[
c1
c2

]
is the B-coordinate vector for ~w .

For example,

~w =

−1
−4
3

 = 4~w1 − 3~w2 is in W and
[
~w
]
B =

[
4
−3

]
.

Note that while ~w is in R3,
[
~w
]
B is in R2.
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Using Coordinate Vectors

As above, let W be the plane in R3 given by x + 2y + 3z = 0, so a basis
for W is given by B = {~w1, ~w2} where

~w1 =

 2
−1
0

 , ~w2 =

 3
0
−1

.Now consider the function W [·]B−−→ R2 given
by the formula ~w 7→

[
~w
]
B. For example,−1

−4
3

 7→ [
4
−3

]
. This LT is called the B-coordinate mapping.

The inverse of the B-coordinate mapping is easier to understand. This is

the LT R2 T−→ R3 given by the formula

T (~c) =

 2 3
−1 0
0 −1

 ~c = c1~w1 + c2~w2 where ~c =

[
c1
c2

]
.

Thus ~c in R2 is associated to ~w = T (~c) in W and
[
~w
]
B = ~c .

Note that Rng(T ) = W.
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Example

Let ~a1 =

 2
3
−5

 , ~a2 =

−4
−5
8

 , ~u =

8
2
4

 , ~v =

−2
−1
−1

, B = {~a1, ~a2}, and

V = SpanB.

Is ~u or ~v in V, and if so find its B-coordinates.

Can we write ~u (or ~v) as a LC of ~a1 and ~a2? Let A =
[
~a1 ~a2

]
.

Can we solve A~x = ~u (or A~x = ~v)? Look at

[
A
∣∣ ~u ~v

]
=

[
2 −4 8 −2
3 −5 2 −1
−5 8 4 −1

]
∼

[
1 −2 4 −1
0 1 −10 2
0 0 −9 0

]
∼

[
1 0 ? 3
0 1 −10 2
0 0 −9 0

]

Using elem row ops, we find the indicated REF and RREF for A. See that:
A~x = ~u has no solutions; ~u not in V, A~x = ~v has a solution; ~v is in V.

In fact, A~x = ~v has the solution ~x =

[
3
2

]
, and therefore

[
~v
]
B =

[
3
2

]
, that

is, ~v = 3~a1 + 2~a2. Note that ~v is in R3 whereas
[
~v
]
B is in R2.
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Coordinates for Subspaces of Rn

Suppose B = {~a1, . . . , ~ap} is a LI set of vectors in Rn. Let V = SpanB.
Then B is a basis for V.

In this setting, finding coord vectors
[
~v
]
B (for ~v in V) is just the problem

of solving A~x = ~v where A =
[
~a1 ~a2 · · · ~ap

]
.

That is, given a vector ~v in V,
[
~v
]
B is just the unique solution to A~x = ~v .

This holds because, if ~v = A~x = x1~a1 + x2~a2 + · · ·+ xp~ap, then
x1, x2, . . . , xp are the B-coords of ~v .

Again, while ~v is a vector in Rn,
[
~v
]
B is a vector in Rp.

Notice that ~v = A
[
~v
]
B; that is, multiplication by A changes B-coordinates

into standard coordinates. More about this later!
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