#### Bases and Coordinates

Linear Algebra MATH 2076



#### Bases

Let  $\mathbb{V}$  be a vector space.

#### Definition

A set of vectors  $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_p\}$  is called a *basis* for  $\mathbb V$  if and only if

•  ${\mathcal B}$  is linearly independent, and

• 
$$\mathcal{B}$$
 spans  $\mathbb{V}$  (i.e.,  $\mathbb{V} = Span(\mathcal{B})$ ).

So, what are bases useful for? Why do we care about these?

First, since  $\mathbb{V} = Span(\mathcal{B})$ , each vector  $\vec{v}$  in  $\mathbb{V}$  can be written as a LC of basis vectors. That is, there are scalars scalars  $c_1, c_2, \ldots, c_p$  such that

$$ec{v}=c_1ec{v}_1+c_2ec{v}_2+\dots+c_pec{v}_p \quad \Big( ext{more compactly}\,,\,\,ec{v}=\sum_{i=1}^pc_iec{v}_i\Big).$$

Next,  $\mathcal{B}$  linearly independent says this is the **only** way  $\vec{v}$  can be so written.

Why is  $\vec{v} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_p \vec{v}_p = \sum_{i=1}^p c_i \vec{v}_i$  the **only** way that  $\vec{v}$  can be written as a LC of vectors in the basis  $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_p\}$ ?

To see this, suppose we also have  $\vec{v} = \sum_{i=1}^{p} d_i \vec{v_i}$  for some scalars  $d_i$ . Then by subtracting  $\vec{v} = \sum_{i=1}^{p} d_i \vec{v_i}$  from  $\vec{v} = \sum_{i=1}^{p} c_i \vec{v_i}$  we get

$$\sum_{i=1}^{p} (c_i - d_i) \vec{v}_i = \sum_{i=1}^{p} c_i \vec{v}_i - \sum_{i=1}^{p} d_i \vec{v}_i = \vec{v} - \vec{v} = \vec{0}.$$

But since  $\mathcal{B}$  is LI, this implies that  $c_i = d_i$  for all *i*. Right?

# Using a Basis

Let  $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_p\}$  be a basis for a vector space  $\mathbb{V}$ . Then for each vector  $\vec{v}$  in  $\mathbb{V}$ , there are *unique* scalars  $c_1, c_2, \dots, c_p$  such that

$$\vec{v} = c_1 \vec{v_1} + c_2 \vec{v_2} + \dots + c_p \vec{v_p} \quad \left( \text{more compactly} , \ \vec{v} = \sum_{i=1}^p c_i \vec{v_i} \right).$$

#### Definition

We call  $c_1, c_2, \ldots, c_p$  the coordinates of  $\vec{v}$  relative to  $\mathcal{B}$ .

We also call  $c_1, c_2, \ldots, c_p$  the *B*-coordinates of  $\vec{v}$  and  $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \end{bmatrix}$ is the *B*-coordinate vector for  $\vec{v}$ .

```
Note that \begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}} is a vector in \mathbb{R}^{p}.
```

# Example

Let's find a basis for the plane  $\mathbb{W}$  in  $\mathbb{R}^3$  given by x + 2y + 3z = 0. One way to do this is to recognize that  $\mathbb{W} = \mathcal{NS}([1\ 2\ 3])$  and proceed "as usual". However, it is pretty darn easy to find two LI vectors that span  $\mathbb{W}$ ; these two vectors will form a basis for  $\mathbb{W}$ .

How can we find *one non-zero* vector in  $\mathbb{W}$ ; i.e., one *non-zero* solution to x + 2y + 3z = 0? (We did this sort of thing on the first day of class!) Just set one variable equal to 0, one variable equal to 1, and solve for the third variable; right?

With z = 0, y = 1 we get x = -2; and with y = 0, z = 1 we get x = -3. It now follows that a basis for  $\mathbb{W}$  is given by

$$\mathcal{B} = \{ \vec{w_1}, \vec{w_2} \}$$
 where  $\vec{w_1} = \begin{bmatrix} 2\\ -1\\ 0 \end{bmatrix}, \vec{w_2} = \begin{bmatrix} 3\\ 0\\ -1 \end{bmatrix}.$ 

#### Example

So, a basis for the plane  $\mathbb{W}$  (i.e. the soln set to x + 2y + 3z = 0) is given by

$$\mathcal{B} = \{\vec{w_1}, \vec{w_2}\}$$
 where  $\vec{w_1} = \begin{bmatrix} 2\\ -1\\ 0 \end{bmatrix}, \vec{w_2} = \begin{bmatrix} 3\\ 0\\ -1 \end{bmatrix}$ .

Thus every vector  $\vec{w}$  in  $\mathbb{W}$  can be written in a unique way as  $\vec{w} = c_1 \vec{w}_1 + c_2 \vec{w}_2$  where  $c_1, c_2$  are the  $\mathcal{B}$ -coordinates of  $\vec{w}$ , and then

$$\begin{bmatrix} \vec{w} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$
 is the  $\mathcal{B}$ -coordinate vector for  $\vec{w}$ .

For example,

$$\vec{w} = \begin{bmatrix} -1\\ -4\\ 3 \end{bmatrix} = 4\vec{w}_1 - 3\vec{w}_2$$
 is in  $\mathbb{W}$  and  $\begin{bmatrix} \vec{w} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 4\\ -3 \end{bmatrix}$ .

Note that while  $\vec{w}$  is in  $\mathbb{R}^3$ ,  $[\vec{w}]_{\mathcal{B}}$  is in  $\mathbb{R}^2$ .

# Using Coordinate Vectors

As above, let  $\mathbb{W}$  be the plane in  $\mathbb{R}^3$  given by x + 2y + 3z = 0, so a basis for  $\mathbb{W}$  is given by  $\mathcal{B} = \{\vec{w_1}, \vec{w_2}\}$  where

Now consider the function  $\mathbb{W} \xrightarrow{[:]_{\mathcal{B}}} \mathbb{R}^2$  given  $\vec{w_1} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \vec{w_2} = \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}$ . by the formula  $\vec{w} \mapsto \begin{bmatrix} \vec{w} \end{bmatrix}_{\mathcal{B}}$ . For example,  $\vec{w_1} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$ ,  $\vec{w_2} = \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}$ .  $\begin{bmatrix} -1 \\ -4 \\ 3 \end{bmatrix} \mapsto \begin{bmatrix} 4 \\ -3 \end{bmatrix}$ . This LT is called the *B*-coordinate mapping.

The inverse of the  $\mathcal{B}$ -coordinate mapping is easier to understand. This is the LT  $\mathbb{R}^2 \xrightarrow{T} \mathbb{R}^3$  given by the formula

$$T(\vec{c}) = \begin{bmatrix} 2 & 3\\ -1 & 0\\ 0 & -1 \end{bmatrix} \vec{c} = c_1 \vec{w}_1 + c_2 \vec{w}_2 \quad \text{where} \quad \vec{c} = \begin{bmatrix} c_1\\ c_2 \end{bmatrix}$$

Thus  $\vec{c}$  in  $\mathbb{R}^2$  is associated to  $\vec{w} = T(\vec{c})$  in  $\mathbb{W}$  and  $[\vec{w}]_{\mathcal{B}} = \vec{c}$ . Note that  $\mathcal{R}ng(T) = \mathbb{W}$ .

# Example

Let 
$$\vec{a}_1 = \begin{bmatrix} 2\\3\\-5 \end{bmatrix}$$
,  $\vec{a}_2 = \begin{bmatrix} -4\\-5\\8 \end{bmatrix}$ ,  $\vec{u} = \begin{bmatrix} 8\\2\\4 \end{bmatrix}$ ,  $\vec{v} = \begin{bmatrix} -2\\-1\\-1 \end{bmatrix}$ ,  $\mathcal{B} = \{\vec{a}_1, \vec{a}_2\}$ , and  $\mathbb{V} = \mathcal{S}pan \mathcal{B}$ .

Is  $\vec{u}$  or  $\vec{v}$  in  $\mathbb{V}$ , and if so find its  $\mathcal{B}$ -coordinates.

Can we write  $\vec{u}$  (or  $\vec{v}$ ) as a LC of  $\vec{a_1}$  and  $\vec{a_2}$ ? Let  $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} \end{bmatrix}$ . Can we solve  $A\vec{x} = \vec{u}$  (or  $A\vec{x} = \vec{v}$ )? Look at

$$\begin{bmatrix} A \mid \vec{u} \ \vec{v} \end{bmatrix} = \begin{bmatrix} 2 & -4 & 8 & -2 \\ 3 & -5 & 2 & -1 \\ -5 & 8 & 4 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 4 & -1 \\ 0 & 1 & -10 & 2 \\ 0 & 0 & -9 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & ? & 3 \\ 0 & 1 & -10 & 2 \\ 0 & 0 & -9 & 0 \end{bmatrix}$$

Using elem row ops, we find the indicated REF and RREF for *A*. See that:  $A\vec{x} = \vec{u}$  has no solutions;  $\vec{u}$  not in  $\mathbb{V}$ ,  $A\vec{x} = \vec{v}$  has a solution;  $\vec{v}$  is in  $\mathbb{V}$ . In fact,  $A\vec{x} = \vec{v}$  has the solution  $\vec{x} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ , and therefore  $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ , that is,  $\vec{v} = 3\vec{a}_1 + 2\vec{a}_2$ . Note that  $\vec{v}$  is in  $\mathbb{R}^3$  whereas  $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$  is in  $\mathbb{R}^2$ .

# Coordinates for Subspaces of $\mathbb{R}^n$

Suppose  $\mathcal{B} = \{\vec{a}_1, \dots, \vec{a}_p\}$  is a LI set of vectors in  $\mathbb{R}^n$ . Let  $\mathbb{V} = Span \mathcal{B}$ . Then  $\mathcal{B}$  is a basis for  $\mathbb{V}$ .

In this setting, finding coord vectors  $\begin{bmatrix} \vec{v} \end{bmatrix}_{\mathcal{B}}$  (for  $\vec{v}$  in  $\mathbb{V}$ ) is just the problem of solving  $A\vec{x} = \vec{v}$  where  $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \cdots & \vec{a_p} \end{bmatrix}$ .

That is, given a vector  $\vec{v}$  in  $\mathbb{V}$ ,  $[\vec{v}]_{\mathcal{B}}$  is just the unique solution to  $A\vec{x} = \vec{v}$ . This holds because, if  $\vec{v} = A\vec{x} = x_1\vec{a}_1 + x_2\vec{a}_2 + \cdots + x_p\vec{a}_p$ , then  $x_1, x_2, \ldots, x_p$  are the  $\mathcal{B}$ -coords of  $\vec{v}$ .

Again, while  $\vec{v}$  is a vector in  $\mathbb{R}^n$ ,  $[\vec{v}]_{\mathcal{B}}$  is a vector in  $\mathbb{R}^p$ .

Notice that  $\vec{v} = A[\vec{v}]_{\mathcal{B}}$ ; that is, multiplication by A changes  $\mathcal{B}$ -coordinates into standard coordinates. More about this later!