Bases and Coordinates

Linear Algebra MATH 2076

Bases

Let V be a vector space.

Definition

A set of vectors $\mathcal{B} = \{\vec{v}_1, \ldots, \vec{v}_p\}$ is called a *basis* for V if and only if

 \bullet β is linearly independent, and

•
$$
\mathcal B
$$
 spans $\mathbb V$ (i.e., $\mathbb V = \mathcal Span(\mathcal B)$).

So, what are bases useful for? Why do we care about these?

First, since $\mathbb{V} = \mathcal{S}$ pan (\mathcal{B}) , each vector \vec{v} in $\mathbb {V}$ can be written as a LC of basis vectors. That is, there are scalars scalars c_1, c_2, \ldots, c_p such that

$$
\vec{v} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_p \vec{v}_p \quad \left(\text{more compactly}, \ \vec{v} = \sum_{i=1}^p c_i \vec{v}_i\right).
$$

Next, B linearly independent says this is the only way \vec{v} can be so written.

Why is $\vec{v} = c_1\vec{v}_1 + c_2\vec{v}_2 + \cdots + c_p\vec{v}_p = \sum_{i=1}^p c_i\vec{v}_i$ the **only** way that \vec{v} can be written as a LC of vectors in the basis $\mathcal{B} = {\vec{v_1}, \dots, \vec{v_p}}$?

To see this, suppose we also have $\vec{v} = \sum_{i=1}^{p} d_i \vec{v}_i$ for some scalars d_i . Then by subtracting $\vec{v} = \sum_{i=1}^{p} d_i \vec{v}_i$ from $\vec{v} = \sum_{i=1}^{p} c_i \vec{v}_i$ we get

$$
\sum_{i=1}^p (c_i - d_i) \vec{v}_i = \sum_{i=1}^p c_i \vec{v}_i - \sum_{i=1}^p d_i \vec{v}_i = \vec{v} - \vec{v} = \vec{0}.
$$

But since $\mathcal B$ is LI, this implies that $c_i = d_i$ for all i. Right?

Using a Basis

Let $\mathcal{B} = \{\vec{v}_1, \ldots, \vec{v}_p\}$ be a basis for a vector space V. Then for each vector \vec{v} in \mathbb{V} , there are *unique* scalars c_1, c_2, \ldots, c_p such that

$$
\vec{v} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_p \vec{v}_p \quad \left(\text{more compactly}, \ \vec{v} = \sum_{i=1}^p c_i \vec{v}_i\right).
$$

Definition

We call c_1, c_2, \ldots, c_p the coordinates of \vec{v} relative to β .

We also call c_1, c_2, \ldots, c_p the *B-coordinates of* \vec{v} *and* $\left[\vec{v}\right]_{\mathcal{B}} =$ We also call $c_1, c_2, ..., c_p$ the *B-coordinates of* \vec{v} and $[\vec{v}]_B = \begin{bmatrix} c_2 \\ \vdots \end{bmatrix}$ is the *B-coordinate vector for* \vec{v} .

```
Note that \left[\vec{v}\right]_{\mathcal{B}} is a vector in \mathbb{R}^p.
```
 $\sqrt{ }$

 c_1 $c₂$. . . c_p 1

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$

Example

Let's find a basis for the plane $\mathbb W$ in $\mathbb R^3$ given by $x+2y+3z=0.$ One way to do this is to recognize that $\mathbb{W} = \mathcal{NS}([1\ 2\ 3])$ and proceed "as usual". However, it is pretty darn easy to find two LI vectors that span W; these two vectors will form a basis for W.

How can we find *one non-zero* vector in W; i.e., one *non-zero* solution to $x + 2y + 3z = 0$? (We did this sort of thing on the first day of class!) Just set one variable equal to 0, one variable equal to 1, and solve for the third variable; right?

With $z = 0$, $y = 1$ we get $x = -2$; and with $y = 0$, $z = 1$ we get $x = -3$. It now follows that a basis for W is given by

$$
\mathcal{B} = \{\vec{w}_1, \vec{w}_2\} \quad \text{where} \quad \vec{w}_1 = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \ \vec{w}_2 = \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}.
$$

Example

So, a basis for the plane W (i.e. the soln set to $x + 2y + 3z = 0$) is given by

$$
\mathcal{B} = \{\vec{w}_1, \vec{w}_2\} \quad \text{where} \quad \vec{w}_1 = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \ \vec{w}_2 = \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}.
$$

Thus every vector \vec{w} in W can be written in a unique way as $\vec{w} = c_1\vec{w}_1 + c_2\vec{w}_2$ where c_1, c_2 are the B-coordinates of \vec{w} , and then

$$
\begin{bmatrix} \vec{w} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}
$$
 is the *B*-coordinate vector for \vec{w} .

For example,

$$
\vec{w} = \begin{bmatrix} -1 \\ -4 \\ 3 \end{bmatrix} = 4\vec{w}_1 - 3\vec{w}_2 \text{ is in } \mathbb{W} \text{ and } \begin{bmatrix} \vec{w} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 4 \\ -3 \end{bmatrix}.
$$

Note that while \vec{w} is in \mathbb{R}^3 , $\left[\vec{w}\right]_{\mathcal{B}}$ is in \mathbb{R}^2 .

Using Coordinate Vectors

As above, let $\mathbb W$ be the plane in $\mathbb R^3$ given by $x+2y+3z=0$, so a basis for W is given by $\mathcal{B} = {\vec{w_1}, \vec{w_2}}$ where

 $\vec{w}_1 =$ $\sqrt{ }$ $\overline{1}$ 2 −1 0 1 $\Big\vert$, $\vec{w}_2 =$ $\sqrt{ }$ $\overline{1}$ 3 0 −1 1 $\vert \cdot$ Now consider the function $\mathbb{W} \xrightarrow[]{[\cdot]_B} \mathbb{R}^2$ given by the formula $\vec{w} \mapsto \left[\vec{w}\right]_{\mathcal{B}}$. For example, $\sqrt{ }$ $\overline{1}$ -1 -4 3 1 $\Big\downarrow \mapsto \Big[\begin{matrix} 4 \\ -1 \end{matrix}$ -3 $\Big]$. This LT is called the *B-coordinate mapping*.

The inverse of the B-coordinate mapping is easier to understand. This is the LT $\mathbb{R}^2 \stackrel{\mathcal{T}}{\rightarrow} \mathbb{R}^3$ given by the formula

$$
\mathcal{T}(\vec{c}) = \begin{bmatrix} 2 & 3 \\ -1 & 0 \\ 0 & -1 \end{bmatrix} \vec{c} = c_1 \vec{w}_1 + c_2 \vec{w}_2 \quad \text{where} \quad \vec{c} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}.
$$

Thus \vec{c} in \mathbb{R}^2 is associated to $\vec{w} = \mathcal{T}(\vec{c})$ in $\mathbb W$ and $\left[\vec{w}\right]_{\mathcal{B}} = \vec{c}$. Note that \mathcal{R} ng $(T) = W$.

Example

Let
$$
\vec{a}_1 = \begin{bmatrix} 2 \\ 3 \\ -5 \end{bmatrix}
$$
, $\vec{a}_2 = \begin{bmatrix} -4 \\ -5 \\ 8 \end{bmatrix}$, $\vec{u} = \begin{bmatrix} 8 \\ 2 \\ 4 \end{bmatrix}$, $\vec{v} = \begin{bmatrix} -2 \\ -1 \\ -1 \end{bmatrix}$, $\mathcal{B} = \{\vec{a}_1, \vec{a}_2\}$, and $\mathbb{V} = \text{Span } \mathcal{B}$.

Is \vec{u} or \vec{v} in \vec{v} , and if so find its β -coordinates.

Can we write \vec{u} (or \vec{v}) as a LC of \vec{a}_1 and \vec{a}_2 ? Let $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 \end{bmatrix}$. Can we solve $A\vec{x} = \vec{u}$ (or $A\vec{x} = \vec{v}$)? Look at

$$
\begin{bmatrix} A & \vec{u} & \vec{v} \end{bmatrix} = \begin{bmatrix} 2 & -4 & 8 & -2 \\ 3 & -5 & 2 & -1 \\ -5 & 8 & 4 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 4 & -1 \\ 0 & 1 & -10 & 2 \\ 0 & 0 & -9 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 7 & 3 \\ 0 & 1 & -10 & 2 \\ 0 & 0 & -9 & 0 \end{bmatrix}
$$

Using elem row ops, we find the indicated REF and RREF for A. See that: $A\vec{x} = \vec{u}$ has no solutions; \vec{u} not in V, $A\vec{x} = \vec{v}$ has a solution; \vec{v} is in V. In fact, $A\vec{x} = \vec{v}$ has the solution $\vec{x} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ 2 $\Big]$, and therefore $\big[\vec{v}\big]_\mathcal{B} = \Big[\begin{matrix} 3 \ 2 \end{matrix} \Big]$ 2 $\big]$, that is, $\vec{v} = 3\vec{a}_1 + 2\vec{a_2}$. Note that \vec{v} is in \mathbb{R}^3 whereas $\left[\vec{v}\right]_{\mathcal{B}}$ is in \mathbb{R}^2 .

Coordinates for Subspaces of \mathbb{R}^n

Suppose $\mathcal{B} = \{\vec{a}_1, \ldots, \vec{a}_p\}$ is a LI set of vectors in \mathbb{R}^n . Let $\mathbb{V} = \mathcal{S}$ pan \mathcal{B} . Then β is a basis for V .

In this setting, finding coord vectors $\left[\vec{v}\right]_{\mathcal{B}}$ (for \vec{v} in $\mathbb{V})$ is just the problem of solving $A\vec{x} = \vec{v}$ where $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_p \end{bmatrix}$.

That is, given a vector \vec{v} in \mathbb{V} , $\left[\vec{v}\right]_{\mathcal{B}}$ is just the unique solution to $A\vec{x} = \vec{v}$. This holds because, if $\vec{v} = A\vec{x} = x_1\vec{a}_1 + x_2\vec{a}_2 + \cdots + x_p\vec{a}_p$, then x_1, x_2, \ldots, x_p are the *B*-coords of \vec{v} .

Again, while \vec{v} is a vector in \mathbb{R}^n , $\left[\vec{v}\right]_{\mathcal{B}}$ is a vector in \mathbb{R}^p .

Notice that $\vec{v} = A \big[\vec{v} \big]_{\mathcal{B}};$ that is, multiplication by A changes $\mathcal{B}\text{-coordinates}$ into standard coordinates. More about this later!