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Linear Combinations

Suppose s1, s2, . . . , sp are scalars and ~v1, ~v2, . . . , ~vp are vectors (all in the
same vector space V). We call

s1~v1 + s2~v2 + · · ·+ sp~vp

a linear combination of the vectors ~v1, ~v2, . . . , ~vp. For example, we always
have the trivial linear combination

0 · ~v1 + 0 · ~v2 + · · ·+ 0 · ~vp = ~0.

Section 4.3 LD, LI, Bases 24 February 2017 2 / 10



Linear Combinations

Suppose s1, s2, . . . , sp are scalars and ~v1, ~v2, . . . , ~vp are vectors (all in the
same vector space V).

We call

s1~v1 + s2~v2 + · · ·+ sp~vp

a linear combination of the vectors ~v1, ~v2, . . . , ~vp. For example, we always
have the trivial linear combination

0 · ~v1 + 0 · ~v2 + · · ·+ 0 · ~vp = ~0.

Section 4.3 LD, LI, Bases 24 February 2017 2 / 10



Linear Combinations

Suppose s1, s2, . . . , sp are scalars and ~v1, ~v2, . . . , ~vp are vectors (all in the
same vector space V). We call

s1~v1 + s2~v2 + · · ·+ sp~vp

a linear combination of the vectors ~v1, ~v2, . . . , ~vp.

For example, we always
have the trivial linear combination

0 · ~v1 + 0 · ~v2 + · · ·+ 0 · ~vp = ~0.

Section 4.3 LD, LI, Bases 24 February 2017 2 / 10



Linear Combinations

Suppose s1, s2, . . . , sp are scalars and ~v1, ~v2, . . . , ~vp are vectors (all in the
same vector space V). We call

s1~v1 + s2~v2 + · · ·+ sp~vp

a linear combination of the vectors ~v1, ~v2, . . . , ~vp. For example, we always
have the trivial linear combination

0 · ~v1 + 0 · ~v2 + · · ·+ 0 · ~vp = ~0.

Section 4.3 LD, LI, Bases 24 February 2017 2 / 10



Linear Combinations

Suppose s1, s2, . . . , sp are scalars and ~v1, ~v2, . . . , ~vp are vectors (all in the
same vector space V). We call

s1~v1 + s2~v2 + · · ·+ sp~vp

a linear combination of the vectors ~v1, ~v2, . . . , ~vp. For example, we always
have the trivial linear combination

0 · ~v1 + 0 · ~v2 + · · ·+ 0 · ~vp = ~0.

The span of ~v1, ~v2, . . . , ~vp,

Span{~v1, ~v2, . . . ~vp} .

is the set of all LCs of ~v1, ~v2, . . . ~vp.
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a linear combination of the vectors ~v1, ~v2, . . . , ~vp. For example, we always
have the trivial linear combination

0 · ~v1 + 0 · ~v2 + · · ·+ 0 · ~vp = ~0.

We also want to know when there is a non-trivial LC of ~v1, ~v2, . . . , ~vp that
equals ~0.

This means that s1~v1 + s2~v2 + · · · + sp~vp = ~0, and some scalar
sj 6= 0.
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Linear Dependence versus Linear Independence

Definition

The vectors ~v1, ~v2, . . . , ~vp are linearly dependent if there is a non-trivial LC
of them that equals ~0:

that is, if there are scalars s1, s2, . . . , sp so that

s1~v1 + s2~v2 + · · ·+ sp~vp = ~0,

and (at least) one of the scalars is non-zero.

Definition

Vectors that are not LD are said to be linearly independent.

Linearly independent vectors carry NO redundant information.
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Linear Independence

Definition

Vectors that are not LD are said to be linearly independent.

How do we show linear independence?

For vectors in some Euclidean space, we can form a matrix A and
determine whether or not there are non-trivial solutions to A~x = ~0.

But what about more general vectors ~v1, . . . , ~vp?
(For example, if the ~vi are all functions?)

Here we must decide whether or not

s1~v1 + · · ·+ sp~vp = ~0 =⇒ s1 = · · · = sp = 0.
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Example—vectors in F

Recall that F = F(R→ R) = {all f with R f−→ R} is a vector space with
the usual ways of adding and multiplying by scalars.

Here we examine various pairs (and triples) of vectors in F.

Look at cos and sin. Are these LD or LI? Is there a non-trivial LC
a cos + b sin that equals zero, or does a cos + b sin = 0 =⇒ a = 0 = b?

What does a cos + b sin = 0 even mean? Here, of course, a and b are
scalars. What is 0? It is the zero function, right?

So, a cos + b sin = 0 means that for all t,

a cos(t) + b sin(t) = 0.

Let’s plug in some values for t.

Try t = 0

and then t = π/2. We get

a · 1 + b · 0 = 0, so a = 0

and then a · 0 + b · 1 = 0, so b = 0.

Therefore, a cos + b sin = 0 =⇒ a = 0 = b; so cos, sin are LI.
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What does a cos + b sin = 0 even mean? Here, of course, a and b are
scalars. What is 0? It is the zero function, right?

So, a cos + b sin = 0 means that for all t,

a cos(t) + b sin(t) = 0.

Let’s plug in some values for t. Try t = 0 and then t = π/2. We get

a · 1 + b · 0 = 0, so a = 0 and then a · 0 + b · 1 = 0, so b = 0.

Therefore, a cos + b sin = 0 =⇒ a = 0 = b; so cos, sin are LI.
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Example—vectors in F
Now look at exp and exp−1; these are the functions given by

exp(t) = et and exp−1(t) = e−t .

Are these LD or LI?

Is there a non-trivial LC a exp + b exp−1 that equals zero, or does
a exp + b exp−1 = 0 =⇒ a = 0 = b?

Again, a exp + b exp−1 = 0 means that for all t,

a et + b e−t = 0.

Can plug in values for t.

Try t = 0

and then t = ln 2. We get

a + b = 0

and then 2a− 1

2
b = 0.

Can show this SLE has unique soln; so exp, exp−1 are LI.

Here’s alternative method.

Start with

a et + b e−t = 0

and then differentiate to get a et − b e−t = 0.

Now easy to see that a = 0 = b; so exp, exp−1 are LI.
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Which of these are linearly independent?

cos2(t), sin2(t)

cos2(t), sin2(t), 1

cos2(t), sin2(t), cos(2t)

et , t et
√
t, t
√
t, t2
√
t

1

t − 1
,

1

t + 1
1

t − 1
,

1

t + 1
,

1

t2 − 1
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Bases

Let V be a vector space.

Definition

A bunch of vectors B = {~v1, . . . , ~vp} is called a basis for V if and only if

B is linearly independent, and

B spans V (i.e., V = Span
(
B
)
).

Example (Standard Basis for Rn)

The set S = {~e1, . . . , ~en} is the standard basis for Rn.

Here, as usual,

~e1 =


1
0
...
0

 , ~e2 =


0
1
...
0

 , . . . , ~en =


0
0
...
1

 .
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Basis for Pn

Recall that Pn is the vector space of all polynomials of degree n or less.

Example (Standard Basis for Pn)

The set P = {1, t, t2, . . . , tn} is the standard basis for Pn.

Here t i denotes the function that satisfies

for all numbers t , t i (t) = t i .

We know that each poly p in Pn can be written as

p = c01 + c1t + c2t
2 + · · ·+ cnt

n

which just means that for all t,

p(t) = c0 + c1t + c2t
2 + · · ·+ cnt

n,

so P does indeed span Pn, right?

Why is P LI?
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Equivalent Views for a Basis

Let V be a vector space.

The following are equivalent:

B is a basis for V.

B is a maximal linearly independent set in V.

B is a minimal spanning set for V.
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