Linear Independence and Bases

Linear Algebra MATH 2076

Linear Combinations

Suppose s_1, s_2, \ldots, s_p are scalars and $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ are vectors (all in the same vector space V). We call

$$
s_1\vec{v}_1+s_2\vec{v}_2+\cdots+s_p\vec{v}_p
$$

a linear combination of the vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$. For example, we always have the trivial linear combination

$$
0\cdot \vec{v}_1+0\cdot \vec{v}_2+\cdots+0\cdot \vec{v}_p=\vec{0}.
$$

Here we want to know when there is a non-trivial LC of $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ that equals $\vec{0}$. This means that $s_1\vec{v}_1 + s_2\vec{v}_2 + \cdots + s_p\vec{v}_p = \vec{0}$, and some scalar $s_i \neq 0$.

Linear Dependence versus Linear Independence

Definition

The vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ are linearly dependent if there is a non-trivial LC of them that equals $\vec{0}$: that is, if there are scalars s_1, s_2, \ldots, s_n so that

$$
s_1\vec{v}_1+s_2\vec{v}_2+\cdots+s_p\vec{v}_p=\vec{0},
$$

and (at least) one of the scalars is non-zero.

Linearly dependent vectors carry redundant information.

Definition

Vectors that are not LD are said to be linearly independent.

Linearly independent vectors carry NO redundant information.

Linear Independence

Definition

Vectors that are not LD are said to be linearly independent.

How do we show linear independence?

For vectors in a Euclidean space, we can form a matrix A and determine whether or not there are non-trivial solutions to $A\vec{x} = \vec{0}$. Review the Invertible Matrix Theorem!

But what about more general vectors $\vec{v}_1, \ldots, \vec{v}_p$? (For example, if the \vec{v}_i are all functions?)

Here we must decide whether or not

$$
s_1\vec{v}_1+\cdots+s_p\vec{v}_p=\vec{0} \implies s_1=\cdots=s_p=0.
$$

Example—vectors in F

Recall that $\mathbb{F}=\mathbb{F}(\mathbb{R}\to\mathbb{R})=\{$ all \boldsymbol{f} with $\mathbb{R}\xrightarrow{\boldsymbol{f}}\mathbb{R}\}$ is a vector space with the usual ways of adding and multiplying by scalars. Here we examine various pairs (and triples) of vectors in $\mathbb F$.

Look at cos and sin. Are these LD or LI? Is there a *non-trivial* LC $a \cos + b \sin$ that equals zero (the zero function), or does $a \cos + b \sin = 0 \implies a = 0 = b$?

What does $a \cos + b \sin = 0$ even mean? Here, of course, a and b are scalars. What is 0? It is the zero function, right?

So, $a \cos + b \sin = 0$ means that for all t.

$$
a\cos(t)+b\sin(t)=0.
$$

Let's plug in some values for t. Try $t = 0$ and then $t = \pi/2$. We get

 $a \cdot 1 + b \cdot 0 = 0$, so $a = 0$ and then $a \cdot 0 + b \cdot 1 = 0$, so $b = 0$.

Therefore, $a\cos + b\sin = 0 \implies a = 0 = b$; so cos, sin are LI.

Example—vectors in F

Now look at $\mathsf{exp} \textup{ and } \mathsf{exp}^{-1}$; these are the functions given by

$$
\exp(t) = e^t \quad \text{and} \quad \exp^{-1}(t) = e^{-t}.
$$

Are these LD or LI?

Is there a *non-trivial* LC a $\mathsf{exp} + b \, \mathsf{exp}^{-1}$ that equals zero, or does a exp + b exp⁻¹ = 0 \implies a = 0 = b?

Again, $a \exp + b \exp^{-1} = 0$ means that for all t,

$$
a e^t + b e^{-t} = 0.
$$

Can plug in values for t. Try $t = 0$ and then $t = \ln 2$. We get

$$
a + b = 0
$$
 and then $2a + \frac{1}{2}b = 0$.

Can show this SLE has unique soln $a = 0 = b$; so $\mathsf{exp}, \mathsf{exp}^{-1}$ are Ll. Here's alternative method. Start with

 $ae^{t} + be^{-t} = 0$ and then differentiate to get $ae^{t} - be^{-t} = 0$. Now easy to see that $a=0=b$; so $\mathsf{exp}, \mathsf{exp}^{-1}$ are LI.

Which of these are linearly independent?

$$
\cos^{2}(t), \sin^{2}(t) \n\cos^{2}(t), \sin^{2}(t), 1 \n\cos^{2}(t), \sin^{2}(t), \cos(2t) \ne^{t}, t e^{t} \n\sqrt{t}, t \sqrt{t}, t^{2} \sqrt{t} \n\frac{1}{t-1}, \frac{1}{t+1} \n\frac{1}{t-1}, \frac{1}{t+1}, \frac{1}{t^{2}-1}
$$

Bases for Vector Spaces

Let V be a vector space.

Definition

A set of vectors $\mathcal{B} = \{\vec{v}_1, \ldots, \vec{v}_p\}$ is called a *basis* for V if and only if

- \bullet β is linearly independent, and
- $\mathcal B$ spans $\mathbb V$ (i.e., $\mathbb V=\mathcal Span(\mathcal B)$).

Example (Standard Basis for \mathbb{R}^n)

The set $\mathcal{S} = \{\vec{e}_1, \ldots, \vec{e}_n\}$ is the *standard basis* for \mathbb{R}^n .

Here, as usual,

$$
\vec{e}_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} , \ \vec{e}_2 = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} , \dots , \ \vec{e}_n = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} \text{ and } \ \vec{x} = \sum_{i=1}^n x_i \vec{e}_i .
$$

Basis for \mathbb{P}_n

Recall that \mathbb{P}_n is the vector space of all polynomials of degree *n* or less.

Example (Standard Basis for \mathbb{P}_n)

The set $\mathcal{P} = \{\textbf{1}, \textbf{t}, \textbf{t}^{\textbf{2}}, \dots, \textbf{t}^{\textbf{n}}\}$ is the *standard basis* for \mathbb{P}_n .

Here $\boldsymbol{t^i}$ denotes the function that satisfies

for all real numbers t , $\boldsymbol{t}^{\boldsymbol{i}}(t)=t^{\boldsymbol{i}}.$

We know that each poly **p** in \mathbb{P}_n is a function of the form

$$
\boldsymbol{p}(t)=c_0+c_1t+c_2t^2+\cdots+c_nt^n,
$$

which means that

$$
p=c_01+c_1t+c_2t^2+\cdots+c_nt^n
$$

so P does indeed span \mathbb{P}_n , right? Why is P LI?

Let V be a vector space. The following are equivalent:

- \bullet β is a basis for \mathbb{V} .
- \bullet β is a minimal spanning set for V.
- \bullet β is a maximal linearly independent set in \mathbb{V} .