Linear Transformations Between Vector Spaces

Linear Algebra MATH 2076

1 / 10

Let $\mathbb V$ and $\mathbb W$ be vector spaces, and

Let \mathbb{V} and \mathbb{W} be vector spaces, and let $\mathbb{V} \xrightarrow{\mathcal{T}} \mathbb{W}$ be a function (aka, a *transformation*).

2 / 10

Let \mathbb{V} and \mathbb{W} be vector spaces, and let $\mathbb{V} \xrightarrow{T} \mathbb{W}$ be a function (aka, a transformation).

Here \mathbb{V} is the *domain* of T—where the input variables \vec{x} live—

Let \mathbb{V} and \mathbb{W} be vector spaces, and let $\mathbb{V} \xrightarrow{\mathcal{T}} \mathbb{W}$ be a function (aka, a transformation).

Here $\mathbb V$ is the *domain* of T—where the input variables $\vec x$ live— and $\mathbb W$ is the *codomain* of T—where the resulting output $\vec y = T(\vec x)$ lives.

Transformations $\mathbb{V} \xrightarrow{I} \mathbb{W}$

Let \mathbb{V} and \mathbb{W} be vector spaces, and let $\mathbb{V} \xrightarrow{\mathcal{T}} \mathbb{W}$ be a function (aka, a transformation).

Here $\mathbb V$ is the *domain* of T—where the input variables $\vec x$ live— and $\mathbb W$ is the *codomain* of T—where the resulting output $\vec y = T(\vec x)$ lives.

For each \vec{x} in \mathbb{V} , $\vec{y} = T(\vec{x})$ is called the *image* of \vec{x} .

Let \mathbb{V} and \mathbb{W} be vector spaces, and let $\mathbb{V} \xrightarrow{\mathcal{T}} \mathbb{W}$ be a function (aka, a transformation).

Here $\mathbb V$ is the *domain* of T—where the input variables $\vec x$ live— and $\mathbb W$ is the *codomain* of T—where the resulting output $\vec y = T(\vec x)$ lives.

For each \vec{x} in \mathbb{V} , $\vec{y} = T(\vec{x})$ is called the *image* of \vec{x} . If \mathbb{S} is a bunch of vectors in \mathbb{V} (i.e., \mathbb{S} is a *subset* of \mathbb{V}), then

$$T(S) = \{ \text{all images } T(\vec{x}) \text{ where } \vec{x} \text{ is in } S \}$$

is called the *T-image of* \mathbb{S} ; this is a subset of \mathbb{W} .

Let \mathbb{V} and \mathbb{W} be vector spaces, and let $\mathbb{V} \xrightarrow{\mathcal{T}} \mathbb{W}$ be a function (aka, a transformation).

Here \mathbb{V} is the *domain* of T—where the input variables \vec{x} live— and \mathbb{W} is the *codomain* of T—where the resulting output $\vec{y} = T(\vec{x})$ lives.

For each \vec{x} in \mathbb{V} , $\vec{y} = T(\vec{x})$ is called the *image* of \vec{x} . If \mathbb{S} is a bunch of vectors in \mathbb{V} (i.e., \mathbb{S} is a *subset* of \mathbb{V}), then

$$T(S) = \{ \text{all images } T(\vec{x}) \text{ where } \vec{x} \text{ is in } S \}$$

is called the *T-image of* \mathbb{S} ; this is a subset of \mathbb{W} .

The *range* of T is the image of all of \mathbb{V} , i.e., $\boxed{\mathcal{R}ng(T) = T(\mathbb{V})}$; this is the set of <u>all</u> images $T(\vec{x})$,

Let \mathbb{V} and \mathbb{W} be vector spaces, and let $\mathbb{V} \xrightarrow{T} \mathbb{W}$ be a function (aka, a transformation).

Here $\mathbb V$ is the *domain* of T—where the input variables $\vec x$ live— and $\mathbb W$ is the *codomain* of T—where the resulting output $\vec y = T(\vec x)$ lives.

For each \vec{x} in \mathbb{V} , $\vec{y} = T(\vec{x})$ is called the *image* of \vec{x} . If \mathbb{S} is a bunch of vectors in \mathbb{V} (i.e., \mathbb{S} is a *subset* of \mathbb{V}), then

$$T(S) = \{ all \text{ images } T(\vec{x}) \text{ where } \vec{x} \text{ is in } S \}$$

is called the *T-image of* \mathbb{S} ; this is a subset of \mathbb{W} .

The *range* of T is the image of all of \mathbb{V} , i.e., $\boxed{\mathcal{R}ng(T) = T(\mathbb{V})}$; this is the set of <u>all</u> images $T(\vec{x})$, and $\mathcal{R}ng(T)$ is a subset of the codomain of T.

2 / 10

Let \mathbb{V} and \mathbb{W} be vector spaces, and let $\mathbb{V} \xrightarrow{\mathcal{T}} \mathbb{W}$ be a function (aka, a transformation).

Here $\mathbb V$ is the *domain* of T—where the input variables $\vec x$ live— and $\mathbb W$ is the *codomain* of T—where the resulting output $\vec y = T(\vec x)$ lives.

For each \vec{x} in \mathbb{V} , $\vec{y} = T(\vec{x})$ is called the *image* of \vec{x} . If \mathbb{S} is a bunch of vectors in \mathbb{V} (i.e., \mathbb{S} is a *subset* of \mathbb{V}), then

$$T(S) = \{ all \text{ images } T(\vec{x}) \text{ where } \vec{x} \text{ is in } S \}$$

is called the *T-image of* \mathbb{S} ; this is a subset of \mathbb{W} .

The *range* of T is the image of all of \mathbb{V} , i.e., $\boxed{\mathcal{R}ng(T) = T(\mathbb{V})}$; this is the set of <u>all</u> images $T(\vec{x})$, and $\mathcal{R}ng(T)$ is a subset of the codomain of T.

An important question is to know which vectors \vec{b} are in the range of T.

Let \mathbb{V} and \mathbb{W} be vector spaces, and let $\mathbb{V} \xrightarrow{\mathcal{T}} \mathbb{W}$ be a function (aka, a *transformation*).

Here $\mathbb V$ is the *domain* of T—where the input variables $\vec x$ live— and $\mathbb W$ is the *codomain* of T—where the resulting output $\vec y = T(\vec x)$ lives.

For each \vec{x} in \mathbb{V} , $\vec{y} = T(\vec{x})$ is called the *image* of \vec{x} . If \mathbb{S} is a bunch of vectors in \mathbb{V} (i.e., \mathbb{S} is a *subset* of \mathbb{V}), then

$$T(S) = \{ all \text{ images } T(\vec{x}) \text{ where } \vec{x} \text{ is in } S \}$$

is called the *T-image of* \mathbb{S} ; this is a subset of \mathbb{W} .

The *range* of T is the image of all of \mathbb{V} , i.e., $\boxed{\mathcal{R}ng(T) = T(\mathbb{V})}$; this is the set of <u>all</u> images $T(\vec{x})$, and $\mathcal{R}ng(T)$ is a subset of the codomain of T.

An important question is to know which vectors \vec{b} are in the range of T. That is: Given \vec{b} in \mathbb{W} , when can we find an \vec{x} in \mathbb{V} with $T(\vec{x}) = \vec{b}$?

Let \mathbb{V} and \mathbb{W} be vector spaces, and let $\mathbb{V} \xrightarrow{\mathcal{T}} \mathbb{W}$ be a function (aka, a *transformation*).

Let \mathbb{V} and \mathbb{W} be vector spaces, and let $\mathbb{V} \xrightarrow{\mathcal{T}} \mathbb{W}$ be a function (aka, a transformation).

We call T a *linear transformation* provided

3 / 10

Linear Transformations $\mathbb{V} \xrightarrow{T} \mathbb{W}$

Let \mathbb{V} and \mathbb{W} be vector spaces, and let $\mathbb{V} \xrightarrow{\mathcal{T}} \mathbb{W}$ be a function (aka, a transformation).

We call T a *linear transformation* provided

$$T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$$

for all \vec{u} , \vec{v} in \mathbb{R}^n and all scalars s.

Section 4.2.B

Let \mathbb{V} and \mathbb{W} be vector spaces, and let $\mathbb{V} \xrightarrow{\mathcal{T}} \mathbb{W}$ be a function (aka, a transformation).

We call T a *linear transformation* provided

$$T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$$

and

$$T(s\vec{v}) = sT(\vec{v})$$

for all \vec{u} , \vec{v} in \mathbb{R}^n and all scalars s.

Linear Transformations $\mathbb{V} \xrightarrow{T} \mathbb{W}$

Let \mathbb{V} and \mathbb{W} be vector spaces, and let $\mathbb{V} \xrightarrow{\mathcal{T}} \mathbb{W}$ be a function (aka, a transformation).

We call T a *linear transformation* provided

$$T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$$

and

$$T(s\vec{v}) = sT(\vec{v})$$

for all \vec{u} , \vec{v} in \mathbb{R}^n and all scalars s.

Note that for **any** LT T we always have $T(\vec{0}) =$

Let \mathbb{V} and \mathbb{W} be vector spaces, and let $\mathbb{V} \xrightarrow{\mathcal{T}} \mathbb{W}$ be a function (aka, a transformation).

We call T a *linear transformation* provided

$$T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$$

and

$$T(s\vec{v}) = sT(\vec{v})$$

for all \vec{u} , \vec{v} in \mathbb{R}^n and all scalars s.

Note that for **any** LT T we always have $T(\vec{0}) = \vec{0}$. Right?

Linear Transformations $\mathbb{V} \xrightarrow{T} \mathbb{W}$

Let \mathbb{V} and \mathbb{W} be vector spaces, and let $\mathbb{V} \xrightarrow{\mathcal{T}} \mathbb{W}$ be a function (aka, a transformation).

We call T a *linear transformation* provided

$$T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$$

and

$$T(s\vec{v}) = sT(\vec{v})$$

for all \vec{u} , \vec{v} in \mathbb{R}^n and all scalars s.

Note that for any LT T we always have $T(\vec{0}) = \vec{0}$. Right? Why?

Linear Transformations $\mathbb{V} \stackrel{/}{\rightarrow} \mathbb{W}$

Let \mathbb{V} and \mathbb{W} be vector spaces, and let $\mathbb{V} \xrightarrow{\mathcal{T}} \mathbb{W}$ be a function (aka, a transformation).

We call T a *linear transformation* provided

$$T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$$

and

$$T(s\vec{v}) = sT(\vec{v})$$

for all \vec{u} , \vec{v} in \mathbb{R}^n and all scalars s.

Note that for **any** LT T we always have $T(\vec{0}) = \vec{0}$. Right? Why?

Recall that *every* LT between two Euclidean spaces if a matrix transformation.

22 February 2017

Linear Transformations $\mathbb{V} \xrightarrow{T} \mathbb{W}$

Let \mathbb{V} and \mathbb{W} be vector spaces, and let $\mathbb{V} \xrightarrow{\mathcal{T}} \mathbb{W}$ be a function (aka, a transformation).

We call T a *linear transformation* provided

$$T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$$

and

$$T(s\vec{v}) = sT(\vec{v})$$

for all \vec{u} , \vec{v} in \mathbb{R}^n and all scalars s.

Note that for **any** LT T we always have $T(\vec{0}) = \vec{0}$. Right? Why?

Recall that *every* LT between two Euclidean spaces if a matrix transformation. In general?

Let $\mathbb{V} \xrightarrow{T} \mathbb{W}$ be a linear transformation. Then

Let $\mathbb{V} \xrightarrow{\mathcal{T}} \mathbb{W}$ be a linear transformation. Then $\mathcal{T}(\vec{0}) = \vec{0}$.

Let
$$\mathbb{V} \xrightarrow{\mathcal{T}} \mathbb{W}$$
 be a linear transformation. Then $\boxed{\mathcal{T}(\vec{0}) = \vec{0}}$.

More importantly, T preserves all linear combinations;

Let
$$\mathbb{V} \xrightarrow{\mathcal{T}} \mathbb{W}$$
 be a linear transformation. Then $\boxed{\mathcal{T}(\vec{0}) = \vec{0}}$.

More importantly, T preserves all linear combinations; i.e., the T-image of a LC of vectors \vec{v}_i is a LC of $T(\vec{v}_i)$ using the same scalars.

Let $\mathbb{V} \xrightarrow{\mathcal{T}} \mathbb{W}$ be a linear transformation. Then $\boxed{\mathcal{T}(\vec{0}) = \vec{0}}$.

More importantly, T preserves all linear combinations; i.e., the T-image of a LC of vectors $\vec{v_i}$ is a LC of $T(\vec{v_i})$ using the same scalars. That is,

$$T(s_1\vec{v}_1 + s_2\vec{v}_2 + \cdots + s_p\vec{v}_p) = s_1T(\vec{v}_1) + s_2T(\vec{v}_2) + \cdots + s_pT(\vec{v}_p)$$

4 / 10

Let $\mathbb{V} \xrightarrow{T} \mathbb{W}$ be a linear transformation. Then $|T(\vec{0}) = \vec{0}|$.

More importantly, T preserves all linear combinations; i.e., the T-image of a LC of vectors $\vec{v_i}$ is a LC of $T(\vec{v_i})$ using the same scalars. That is,

$$T(s_1\vec{v}_1 + s_2\vec{v}_2 + \cdots + s_p\vec{v}_p) = s_1T(\vec{v}_1) + s_2T(\vec{v}_2) + \cdots + s_pT(\vec{v}_p)$$

or more simply—using "summation" notation—

$$T\left(\sum_{j=1}^p s_j \vec{v}_j\right) = \sum_{j=1}^p s_j T(\vec{v}_j).$$

Section 4.2.B

Let $\mathbb{V} \xrightarrow{T} \mathbb{W}$ be a linear transformation. Then $|T(\vec{0}) = \vec{0}|$.

More importantly, T preserves all linear combinations; i.e., the T-image of a LC of vectors $\vec{v_i}$ is a LC of $T(\vec{v_i})$ using the same scalars. That is,

$$T(s_1\vec{v}_1 + s_2\vec{v}_2 + \dots + s_p\vec{v}_p) = s_1T(\vec{v}_1) + s_2T(\vec{v}_2) + \dots + s_pT(\vec{v}_p)$$

or more simply—using "summation" notation—

$$T\left(\sum_{j=1}^p s_j \vec{v}_j\right) = \sum_{j=1}^p s_j T(\vec{v}_j).$$

This is called the *linearity principle* .

Section 4.2.B

Let $\mathbb{V} \xrightarrow{T} \mathbb{W}$ be a linear transformation.

Let $\mathbb{V} \xrightarrow{T} \mathbb{W}$ be a linear transformation. The *range* of T is the image of all of \mathbb{V} , i.e.,

$$\mathcal{R}ng(T) = T(\mathbb{V}) = \{ T(\vec{v}) \mid \vec{v} \text{ in } \mathbb{V} \};$$

5 / 10

Let $\mathbb{V} \xrightarrow{T} \mathbb{W}$ be a linear transformation. The *range* of T is the image of all of \mathbb{V} , i.e.,

$$\mathcal{R}ng(T) = T(\mathbb{V}) = \{ T(\vec{v}) \mid \vec{v} \text{ in } \mathbb{V} \};$$

this is a vector subspace of \mathbb{W} .

5 / 10

Section 4.2.B LTs btwn VSs 22 February 2017

Let $\mathbb{V} \xrightarrow{T} \mathbb{W}$ be a linear transformation. The *range* of T is the image of all of \mathbb{V} , i.e.,

$$\mathcal{R}ng(T) = T(\mathbb{V}) = \{T(\vec{v}) \mid \vec{v} \text{ in } \mathbb{V}\};$$

this is a vector subspace of \mathbb{W} .

The *kernel* of T is the pre-image of $\vec{0}$, i.e.,

$$Ker(T) = \{ \vec{v} \text{ in } V \mid T(\vec{v}) = \vec{0} \};$$

Let $\mathbb{V} \xrightarrow{T} \mathbb{W}$ be a linear transformation. The *range* of T is the image of all of \mathbb{V} , i.e.,

$$\mathcal{R}ng(T) = T(\mathbb{V}) = \{ T(\vec{v}) \mid \vec{v} \text{ in } \mathbb{V} \};$$

this is a vector subspace of \mathbb{W} .

The *kernel* of T is the pre-image of $\vec{0}$, i.e.,

$$Ker(T) = \{ \vec{v} \text{ in } V \mid T(\vec{v}) = \vec{0} \};$$

this is a vector subspace of \mathbb{V} .

Section 4.2.B

Let $\mathbb{V} \xrightarrow{T} \mathbb{W}$ be a linear transformation. The *range* of T is the image of all of \mathbb{V} , i.e.,

$$\mathcal{R}ng(T) = T(\mathbb{V}) = \{ T(\vec{v}) \mid \vec{v} \text{ in } \mathbb{V} \};$$

this is a vector subspace of \mathbb{W} .

The *kernel* of T is the pre-image of $\vec{0}$, i.e.,

$$Ker(T) = \{ \vec{v} \text{ in } V \mid T(\vec{v}) = \vec{0} \};$$

this is a vector subspace of \mathbb{V} .

When $\mathbb V$ and $\mathbb W$ are Euclidean spaces, and $\mathcal T$ is mult by a matrix A

Let $\mathbb{V} \xrightarrow{T} \mathbb{W}$ be a linear transformation. The *range* of T is the image of all of \mathbb{V} , i.e.,

$$\mathcal{R}ng(T) = T(\mathbb{V}) = \{ T(\vec{v}) \mid \vec{v} \text{ in } \mathbb{V} \};$$

this is a vector subspace of \mathbb{W} .

The *kernel* of T is the pre-image of $\vec{0}$, i.e.,

$$Ker(T) = \{ \vec{v} \text{ in } V \mid T(\vec{v}) = \vec{0} \};$$

this is a vector subspace of V.

When $\mathbb V$ and $\mathbb W$ are Euclidean spaces, and $\mathcal T$ is mult by a matrix $\mathcal A$

$$\mathcal{K}er(T) = \mathcal{NS}(A)$$
 and $\mathcal{R}ng(T) = \mathcal{CS}(A)$.

5 / 10

Section 4.2.B LTs btwn VSs 22 February 2017

Examples of Linear Transformations

Let A be a fixed $m \times n$ matrix.

Examples of Linear Transformations

Let A be a fixed $m \times n$ matrix. Define $\mathbb{R}^{n \times p} \xrightarrow{T} \mathbb{R}^{m \times p}$ by T(X) = AX;

Let A be a fixed $m \times n$ matrix. Define $\mathbb{R}^{n \times p} \xrightarrow{T} \mathbb{R}^{m \times p}$ by T(X) = AX; T is a linear transformation.

Let A be a fixed $m \times n$ matrix. Define $\mathbb{R}^{n \times p} \xrightarrow{T} \mathbb{R}^{m \times p}$ by T(X) = AX; T is a linear transformation. Without knowing more about A, we cannot say much about $\mathcal{K}er(T)$ or $\mathcal{R}ng(T)$.

Let A be a fixed $m \times n$ matrix. Define $\mathbb{R}^{n \times p} \xrightarrow{T} \mathbb{R}^{m \times p}$ by T(X) = AX; T is a linear transformation. Without knowing more about A, we cannot say much about $\mathcal{K}er(T)$ or $\mathcal{R}ng(T)$.

We can also define $\mathbb{R}^{p \times m} \xrightarrow{S} \mathbb{R}^{p \times n}$ by T(X) = XA;

Section 4.2.B LTs btwn VSs

Let A be a fixed $m \times n$ matrix. Define $\mathbb{R}^{n \times p} \xrightarrow{T} \mathbb{R}^{m \times p}$ by T(X) = AX; T is a linear transformation. Without knowing more about A, we cannot say much about $\mathcal{K}er(T)$ or $\mathcal{R}ng(T)$.

We can also define $\mathbb{R}^{p\times m}\xrightarrow{S}\mathbb{R}^{p\times n}$ by T(X)=XA; S is an LT,

Section 4.2.B LTs btwn VSs

Let A be a fixed $m \times n$ matrix. Define $\mathbb{R}^{n \times p} \xrightarrow{T} \mathbb{R}^{m \times p}$ by T(X) = AX; T is a linear transformation. Without knowing more about A, we cannot say much about Ker(T) or Reg(T).

We can also define $\mathbb{R}^{p\times m}\xrightarrow{S}\mathbb{R}^{p\times n}$ by T(X)=XA; S is an LT, but without knowing A, we can't "find" Ker(S) or Rig(S).

Let A be a fixed $m \times n$ matrix. Define $\mathbb{R}^{n \times p} \xrightarrow{T} \mathbb{R}^{m \times p}$ by T(X) = AX; T is a linear transformation. Without knowing more about A, we cannot say much about $\mathcal{K}er(T)$ or $\mathcal{R}ng(T)$.

We can also define $\mathbb{R}^{p\times m}\xrightarrow{S}\mathbb{R}^{p\times n}$ by T(X)=XA; S is an LT, but without knowing A, we can't "find" $\mathcal{K}er(S)$ or $\mathcal{R}ng(S)$.

Now define $\mathbb{R}^{m \times n} \xrightarrow{T} \mathbb{R}^{n \times m}$ by $T(X) = X^T$;

Let A be a fixed $m \times n$ matrix. Define $\mathbb{R}^{n \times p} \xrightarrow{T} \mathbb{R}^{m \times p}$ by T(X) = AX; T is a linear transformation. Without knowing more about A, we cannot say much about $\mathcal{K}er(T)$ or $\mathcal{R}ng(T)$.

We can also define $\mathbb{R}^{p\times m}\xrightarrow{S}\mathbb{R}^{p\times n}$ by T(X)=XA; S is an LT, but without knowing A, we can't "find" $\mathcal{K}er(S)$ or $\mathcal{R}ng(S)$.

Now define $\mathbb{R}^{m \times n} \xrightarrow{T} \mathbb{R}^{n \times m}$ by $T(X) = X^T$; recall that X^T is the transpose of the matrix X given by $[X^T]_{ij} = [X]_{ji}$.

Let A be a fixed $m \times n$ matrix. Define $\mathbb{R}^{n \times p} \xrightarrow{T} \mathbb{R}^{m \times p}$ by T(X) = AX; T is a linear transformation. Without knowing more about A, we cannot say much about Ker(T) or Reg(T).

We can also define $\mathbb{R}^{p\times m}\xrightarrow{S}\mathbb{R}^{p\times n}$ by T(X)=XA; S is an LT, but without knowing A, we can't "find" $\mathcal{K}er(S)$ or $\mathcal{R}ng(S)$.

Now define $\mathbb{R}^{m \times n} \xrightarrow{T} \mathbb{R}^{n \times m}$ by $T(X) = X^T$; recall that X^T is the transpose of the matrix X given by $[X^T]_{ij} = [X]_{ji}$. Then T is an LT.

Let A be a fixed $m \times n$ matrix. Define $\mathbb{R}^{n \times p} \xrightarrow{T} \mathbb{R}^{m \times p}$ by T(X) = AX; T is a linear transformation. Without knowing more about A, we cannot say much about $\mathcal{K}er(T)$ or $\mathcal{R}ng(T)$.

We can also define $\mathbb{R}^{p\times m}\xrightarrow{S}\mathbb{R}^{p\times n}$ by T(X)=XA; S is an LT, but without knowing A, we can't "find" $\mathcal{K}er(S)$ or $\mathcal{R}ng(S)$.

Now define $\mathbb{R}^{m\times n} \xrightarrow{T} \mathbb{R}^{n\times m}$ by $T(X) = X^T$; recall that X^T is the transpose of the matrix X given by $\left[X^T\right]_{ij} = \left[X\right]_{ji}$. Then T is an LT. What are $\mathcal{K}er(T)$ and $\mathcal{R}ng(T)$?

Let A be a fixed $m \times n$ matrix. Define $\mathbb{R}^{n \times p} \xrightarrow{T} \mathbb{R}^{m \times p}$ by T(X) = AX; T is a linear transformation. Without knowing more about A, we cannot say much about $\mathcal{K}er(T)$ or $\mathcal{R}ng(T)$.

We can also define $\mathbb{R}^{p\times m}\xrightarrow{S}\mathbb{R}^{p\times n}$ by T(X)=XA; S is an LT, but without knowing A, we can't "find" $\mathcal{K}er(S)$ or $\mathcal{R}ng(S)$.

Now define $\mathbb{R}^{m\times n} \xrightarrow{T} \mathbb{R}^{n\times m}$ by $T(X) = X^T$; recall that X^T is the transpose of the matrix X given by $\left[X^T\right]_{ij} = \left[X\right]_{ji}$. Then T is an LT. What are $\mathcal{K}er(T)$ and $\mathcal{R}ng(T)$? This is easy, right?

Let A be a fixed $m \times n$ matrix. Define $\mathbb{R}^{n \times p} \xrightarrow{T} \mathbb{R}^{m \times p}$ by T(X) = AX; T is a linear transformation. Without knowing more about A, we cannot say much about $\mathcal{K}er(T)$ or $\mathcal{R}ng(T)$.

We can also define $\mathbb{R}^{p\times m}\xrightarrow{S}\mathbb{R}^{p\times n}$ by T(X)=XA; S is an LT, but without knowing A, we can't "find" $\mathcal{K}er(S)$ or $\mathcal{R}ng(S)$.

Now define $\mathbb{R}^{m\times n} \xrightarrow{T} \mathbb{R}^{n\times m}$ by $T(X) = X^T$; recall that X^T is the transpose of the matrix X given by $\left[X^T\right]_{ij} = \left[X\right]_{ji}$. Then T is an LT. What are $\mathcal{K}er(T)$ and $\mathcal{R}ng(T)$? This is easy, right?

Next, define $\mathbb{R}^{n\times n} \xrightarrow{S} \mathbb{R}^{n\times n}$ by $T(X) = X - X^T$;

Let A be a fixed $m \times n$ matrix. Define $\mathbb{R}^{n \times p} \xrightarrow{T} \mathbb{R}^{m \times p}$ by T(X) = AX; T is a linear transformation. Without knowing more about A, we cannot say much about Ker(T) or Reg(T).

We can also define $\mathbb{R}^{p\times m}\xrightarrow{S}\mathbb{R}^{p\times n}$ by T(X)=XA; S is an LT, but without knowing A, we can't "find" $\mathcal{K}er(S)$ or $\mathcal{R}ng(S)$.

Now define $\mathbb{R}^{m\times n} \xrightarrow{T} \mathbb{R}^{n\times m}$ by $T(X) = X^T$; recall that X^T is the transpose of the matrix X given by $\left[X^T\right]_{ij} = \left[X\right]_{ji}$. Then T is an LT. What are $\mathcal{K}er(T)$ and $\mathcal{R}ng(T)$? This is easy, right?

Next, define $\mathbb{R}^{n\times n} \xrightarrow{S} \mathbb{R}^{n\times n}$ by $T(X) = X - X^T$; you should check that S is an LT.

Let A be a fixed $m \times n$ matrix. Define $\mathbb{R}^{n \times p} \xrightarrow{T} \mathbb{R}^{m \times p}$ by T(X) = AX; T is a linear transformation. Without knowing more about A, we cannot say much about $\mathcal{K}er(T)$ or $\mathcal{R}ng(T)$.

We can also define $\mathbb{R}^{p\times m}\xrightarrow{S}\mathbb{R}^{p\times n}$ by T(X)=XA; S is an LT, but without knowing A, we can't "find" $\mathcal{K}er(S)$ or $\mathcal{R}ng(S)$.

Now define $\mathbb{R}^{m\times n} \xrightarrow{T} \mathbb{R}^{n\times m}$ by $T(X) = X^T$; recall that X^T is the transpose of the matrix X given by $\left[X^T\right]_{ij} = \left[X\right]_{ji}$. Then T is an LT. What are $\mathcal{K}er(T)$ and $\mathcal{R}ng(T)$? This is easy, right?

Next, define $\mathbb{R}^{n\times n} \xrightarrow{S} \mathbb{R}^{n\times n}$ by $T(X) = X - X^T$; you should check that S is an LT. What are $\mathcal{K}er(S)$ and $\mathcal{R}ng(S)$?

Let A be a fixed $m \times n$ matrix. Define $\mathbb{R}^{n \times p} \xrightarrow{T} \mathbb{R}^{m \times p}$ by T(X) = AX; T is a linear transformation. Without knowing more about A, we cannot say much about $\mathcal{K}er(T)$ or $\mathcal{R}ng(T)$.

We can also define $\mathbb{R}^{p\times m}\xrightarrow{S}\mathbb{R}^{p\times n}$ by T(X)=XA; S is an LT, but without knowing A, we can't "find" $\mathcal{K}er(S)$ or $\mathcal{R}ng(S)$.

Now define $\mathbb{R}^{m\times n} \xrightarrow{T} \mathbb{R}^{n\times m}$ by $T(X) = X^T$; recall that X^T is the transpose of the matrix X given by $\left[X^T\right]_{ij} = \left[X\right]_{ji}$. Then T is an LT. What are $\mathcal{K}er(T)$ and $\mathcal{R}ng(T)$? This is easy, right?

Next, define $\mathbb{R}^{n\times n} \xrightarrow{S} \mathbb{R}^{n\times n}$ by $T(X) = X - X^T$; you should check that S is an LT. What are $\mathcal{K}er(S)$ and $\mathcal{R}ng(S)$? If S(X) = 0, then $X = X^T$; so $\mathcal{K}er(S)$ is

Section 4.2.B

Let A be a fixed $m \times n$ matrix. Define $\mathbb{R}^{n \times p} \xrightarrow{T} \mathbb{R}^{m \times p}$ by T(X) = AX; T is a linear transformation. Without knowing more about A, we cannot say much about Ker(T) or Reg(T).

We can also define $\mathbb{R}^{p\times m}\xrightarrow{S}\mathbb{R}^{p\times n}$ by T(X)=XA; S is an LT, but without knowing A, we can't "find" $\mathcal{K}er(S)$ or $\mathcal{R}ng(S)$.

Now define $\mathbb{R}^{m\times n} \xrightarrow{T} \mathbb{R}^{n\times m}$ by $T(X) = X^T$; recall that X^T is the transpose of the matrix X given by $\left[X^T\right]_{ij} = \left[X\right]_{ji}$. Then T is an LT. What are $\mathcal{K}er(T)$ and $\mathcal{R}ng(T)$? This is easy, right?

Next, define $\mathbb{R}^{n\times n} \xrightarrow{S} \mathbb{R}^{n\times n}$ by $T(X) = X - X^T$; you should check that S is an LT. What are $\mathcal{K}er(S)$ and $\mathcal{R}ng(S)$? If S(X) = 0, then $X = X^T$; so $\mathcal{K}er(S)$ is the subspace of all *symmetric*

If S(X) = 0, then X = X'; so $\mathcal{K}er(S)$ is the subspace of all *symmetric* $n \times n$ matrices.

Let A be a fixed $m \times n$ matrix. Define $\mathbb{R}^{n \times p} \xrightarrow{T} \mathbb{R}^{m \times p}$ by T(X) = AX; T is a linear transformation. Without knowing more about A, we cannot say much about $\mathcal{K}er(T)$ or $\mathcal{R}ng(T)$.

We can also define $\mathbb{R}^{p\times m}\xrightarrow{S}\mathbb{R}^{p\times n}$ by T(X)=XA; S is an LT, but without knowing A, we can't "find" $\mathcal{K}er(S)$ or $\mathcal{R}ng(S)$.

Now define $\mathbb{R}^{m\times n} \xrightarrow{T} \mathbb{R}^{n\times m}$ by $T(X) = X^T$; recall that X^T is the transpose of the matrix X given by $[X^T]_{ij} = [X]_{ji}$. Then T is an LT. What are $\mathcal{K}er(T)$ and $\mathcal{R}ng(T)$? This is easy, right?

Next, define $\mathbb{R}^{n\times n}\xrightarrow{S}\mathbb{R}^{n\times n}$ by $T(X)=X-X^T$; you should check that S is an LT. What are $\mathcal{K}er(S)$ and $\mathcal{R}ng(S)$?

If S(X) = 0, then $X = X^T$; so Ker(S) is the subspace of all *symmetric* $n \times n$ matrices.

HW: Show $\mathcal{R}ng(S)$ is the subspace of all *skew-symmetric* $n \times n$ matrices.

Section 4.2.B LTs btwn VSs 22 February 2017 6 / 10

Recall that \mathbb{P} is the vector space of all polynomials.

Recall that $\mathbb P$ is the vector space of all polynomials. Thus $\boldsymbol p$ is in $\mathbb P$ if and only if $\boldsymbol p$ is a function of the form

$$\mathbf{p}(t) = c_0 + c_1 t + c_2 t^2 + \cdots + c_n t^n.$$

Here c_0, c_1, \ldots, c_n are constants, called the *coefficients* of the polynomial \boldsymbol{p} , and when $c_n \neq 0$ we say that \boldsymbol{p} has *degree n*. (By definition, the zero polynomial has degree zero.)

Section 4.2.B LTs btwn VSs 22 February 2017 7 / 10

Recall that $\mathbb P$ is the vector space of all polynomials. Thus $\boldsymbol p$ is in $\mathbb P$ if and only if $\boldsymbol p$ is a function of the form

$$\mathbf{p}(t) = c_0 + c_1 t + c_2 t^2 + \dots + c_n t^n.$$

Here c_0, c_1, \ldots, c_n are constants, called the *coefficients* of the polynomial \boldsymbol{p} , and when $c_n \neq 0$ we say that \boldsymbol{p} has *degree n*. (By definition, the zero polynomial has degree zero.)

Define
$$\mathbb{P} \xrightarrow{\mathcal{T}} \mathbb{R}^3$$
 by $\mathcal{T}(\boldsymbol{p}) = \begin{bmatrix} \boldsymbol{p}(1) \\ \boldsymbol{p}(2) \\ \boldsymbol{p}(3) \end{bmatrix}$.

7 / 10

Recall that $\mathbb P$ is the vector space of all polynomials. Thus $\boldsymbol p$ is in $\mathbb P$ if and only if $\boldsymbol p$ is a function of the form

$$\mathbf{p}(t) = c_0 + c_1 t + c_2 t^2 + \dots + c_n t^n.$$

Here c_0, c_1, \ldots, c_n are constants, called the *coefficients* of the polynomial \boldsymbol{p} , and when $c_n \neq 0$ we say that \boldsymbol{p} has *degree n*. (By definition, the zero polynomial has degree zero.)

Define
$$\mathbb{P} \xrightarrow{\mathcal{T}} \mathbb{R}^3$$
 by $\mathcal{T}(\boldsymbol{p}) = \begin{bmatrix} \boldsymbol{p}(1) \\ \boldsymbol{p}(2) \\ \boldsymbol{p}(3) \end{bmatrix}$. Check that \mathcal{T} is an LT.

7 / 10

Recall that $\mathbb P$ is the vector space of all polynomials. Thus $\boldsymbol p$ is in $\mathbb P$ if and only if $\boldsymbol p$ is a function of the form

$$\mathbf{p}(t) = c_0 + c_1 t + c_2 t^2 + \dots + c_n t^n.$$

Here c_0, c_1, \ldots, c_n are constants, called the *coefficients* of the polynomial \boldsymbol{p} , and when $c_n \neq 0$ we say that \boldsymbol{p} has *degree n*. (By definition, the zero polynomial has degree zero.)

Define
$$\mathbb{P} \xrightarrow{T} \mathbb{R}^3$$
 by $T(\mathbf{p}) = \begin{bmatrix} \mathbf{p}(1) \\ \mathbf{p}(2) \\ \mathbf{p}(3) \end{bmatrix}$. Check that T is an LT. What are $\mathcal{K}er(T)$ and $\mathcal{R}ng(T)$?

(ロ) (個) (量) (量) (量) (9) (0)

7 / 10

Recall that $\mathbb P$ is the vector space of all polynomials. Thus $\boldsymbol p$ is in $\mathbb P$ if and only if $\boldsymbol p$ is a function of the form

$$\mathbf{p}(t) = c_0 + c_1 t + c_2 t^2 + \dots + c_n t^n.$$

Here c_0, c_1, \ldots, c_n are constants, called the *coefficients* of the polynomial \boldsymbol{p} , and when $c_n \neq 0$ we say that \boldsymbol{p} has *degree n*. (By definition, the zero polynomial has degree zero.)

Define
$$\mathbb{P} \xrightarrow{\mathcal{T}} \mathbb{R}^3$$
 by $\mathcal{T}(\boldsymbol{p}) = \begin{bmatrix} \boldsymbol{p}(1) \\ \boldsymbol{p}(2) \\ \boldsymbol{p}(3) \end{bmatrix}$. Check that \mathcal{T} is an LT. What are

Ker(T) and Rng(T)? This is not hard, right?

7 / 10

Recall that $\mathbb P$ is the vector space of all polynomials. Thus $\boldsymbol p$ is in $\mathbb P$ if and only if $\boldsymbol p$ is a function of the form

$$\mathbf{p}(t) = c_0 + c_1 t + c_2 t^2 + \cdots + c_n t^n.$$

Here c_0, c_1, \ldots, c_n are constants, called the *coefficients* of the polynomial \boldsymbol{p} , and when $c_n \neq 0$ we say that \boldsymbol{p} has *degree n*. (By definition, the zero polynomial has degree zero.)

Define
$$\mathbb{P} \xrightarrow{\mathcal{T}} \mathbb{R}^3$$
 by $\mathcal{T}(\boldsymbol{p}) = \begin{bmatrix} \boldsymbol{p}(1) \\ \boldsymbol{p}(2) \\ \boldsymbol{p}(3) \end{bmatrix}$. Check that \mathcal{T} is an LT. What are

Ker(T) and Rng(T)? This is not hard, right?

Clearly, $\mathcal{R}ng(T) = \mathbb{R}^3$ (right?). Also, $\mathcal{K}er(T)$ is all polys \boldsymbol{p} that have zeroes at each of t = 1, 2, 3; so

Recall that $\mathbb P$ is the vector space of all polynomials. Thus $\boldsymbol p$ is in $\mathbb P$ if and only if $\boldsymbol p$ is a function of the form

$$\mathbf{p}(t) = c_0 + c_1 t + c_2 t^2 + \cdots + c_n t^n.$$

Here c_0, c_1, \ldots, c_n are constants, called the *coefficients* of the polynomial \boldsymbol{p} , and when $c_n \neq 0$ we say that \boldsymbol{p} has *degree n*. (By definition, the zero polynomial has degree zero.)

Define
$$\mathbb{P} \xrightarrow{T} \mathbb{R}^3$$
 by $T(\mathbf{p}) = \begin{bmatrix} \mathbf{p}(1) \\ \mathbf{p}(2) \\ \mathbf{p}(3) \end{bmatrix}$. Check that T is an LT. What are

Ker(T) and Rng(T)? This is not hard, right?

Clearly, $\mathcal{R}ng(T) = \mathbb{R}^3$ (right?). Also, $\mathcal{K}er(T)$ is all polys \boldsymbol{p} that have zeroes at each of t = 1, 2, 3; so \vec{p} is in $\mathcal{K}er(T)$ iff $\deg(\boldsymbol{p}) \geq 3$ and \boldsymbol{p} can be factored as

$$\mathbf{p}(t) = (t-1)(t-2)(t-3)\mathbf{q}(t).$$

←□▶ ←□▶ ←□▶ ←□▶ □ ♥9

Recall that \mathbb{P} is the vector space of all polynomials.

Recall that \mathbb{P} is the vector space of all polynomials. Define $\mathbb{P} \xrightarrow{D} \mathbb{P}$ by differentiation: $D(\mathbf{p}) = \mathbf{p}'$.

Recall that \mathbb{P} is the vector space of all polynomials. Define $\mathbb{P} \xrightarrow{D} \mathbb{P}$ by differentiation: $D(\mathbf{p}) = \mathbf{p}'$. By Calculus, D is an LT.

Recall that \mathbb{P} is the vector space of all polynomials. Define $\mathbb{P} \xrightarrow{D} \mathbb{P}$ by differentiation: $D(\mathbf{p}) = \mathbf{p}'$. By Calculus, D is an LT.

What are Ker(D) and Rng(D)?

Recall that \mathbb{P} is the vector space of all polynomials. Define $\mathbb{P} \xrightarrow{D} \mathbb{P}$ by differentiation: $D(\mathbf{p}) = \mathbf{p}'$. By Calculus, D is an LT.

What are Ker(D) and Rng(D)?

What is Ker(D)?

Recall that \mathbb{P} is the vector space of all polynomials. Define $\mathbb{P} \xrightarrow{D} \mathbb{P}$ by differentiation: $D(\mathbf{p}) = \mathbf{p}'$. By Calculus, D is an LT.

What are Ker(D) and Rng(D)?

What is Ker(D)? This is just the "trivial" subspace of all *constant* polynomials, right?

Recall that \mathbb{P} is the vector space of all polynomials. Define $\mathbb{P} \xrightarrow{D} \mathbb{P}$ by differentiation: $D(\mathbf{p}) = \mathbf{p}'$. By Calculus, D is an LT.

What are Ker(D) and Rng(D)?

What is Ker(D)? This is just the "trivial" subspace of all *constant* polynomials, right?

What is $\mathcal{R}ng(D)$?

Recall that \mathbb{P} is the vector space of all polynomials. Define $\mathbb{P} \xrightarrow{D} \mathbb{P}$ by differentiation: $D(\mathbf{p}) = \mathbf{p}'$. By Calculus, D is an LT.

What are Ker(D) and Rng(D)?

What is Ker(D)? This is just the "trivial" subspace of all *constant* polynomials, right?

What is Rng(D)? Which polys are the derivative of some other poly?

Recall that \mathbb{P} is the vector space of all polynomials. Define $\mathbb{P} \xrightarrow{D} \mathbb{P}$ by differentiation: $D(\mathbf{p}) = \mathbf{p}'$. By Calculus, D is an LT.

What are Ker(D) and Rng(D)?

What is Ker(D)? This is just the "trivial" subspace of all *constant* polynomials, right?

What is $\mathcal{R}ng(D)$? Which polys are the derivative of some other poly? Let \boldsymbol{q} be a poly, say

Recall that \mathbb{P} is the vector space of all polynomials. Define $\mathbb{P} \xrightarrow{D} \mathbb{P}$ by differentiation: $D(\mathbf{p}) = \mathbf{p}'$. By Calculus, D is an LT.

What are Ker(D) and Rng(D)?

What is Ker(D)? This is just the "trivial" subspace of all *constant* polynomials, right?

What is $\mathcal{R}ng(D)$? Which polys are the derivative of some other poly? Let \boldsymbol{q} be a poly, say

$$q(t) = c_0 + c_1 t + c_2 t^2 + \cdots + c_n t^n.$$

Recall that \mathbb{P} is the vector space of all polynomials. Define $\mathbb{P} \xrightarrow{D} \mathbb{P}$ by differentiation: $D(\mathbf{p}) = \mathbf{p}'$. By Calculus, D is an LT.

What are Ker(D) and Rng(D)?

What is Ker(D)? This is just the "trivial" subspace of all *constant* polynomials, right?

What is $\mathcal{R}ng(D)$? Which polys are the derivative of some other poly? Let \boldsymbol{q} be a poly, say

$$q(t) = c_0 + c_1 t + c_2 t^2 + \cdots + c_n t^n.$$

Can we find some other poly \boldsymbol{p} so that $\boldsymbol{p}' = D(\boldsymbol{p}) = \boldsymbol{q}$?

Recall that \mathbb{P} is the vector space of all polynomials. Define $\mathbb{P} \xrightarrow{D} \mathbb{P}$ by differentiation: $D(\mathbf{p}) = \mathbf{p}'$. By Calculus, D is an LT.

What are Ker(D) and Rng(D)?

What is Ker(D)? This is just the "trivial" subspace of all *constant* polynomials, right?

What is $\mathcal{R}ng(D)$? Which polys are the derivative of some other poly? Let \boldsymbol{q} be a poly, say

$$q(t) = c_0 + c_1 t + c_2 t^2 + \cdots + c_n t^n.$$

Can we find some other poly \mathbf{p} so that $\mathbf{p}' = D(\mathbf{p}) = \mathbf{q}$? Sure! We just anti-differentiate, right?

Recall that \mathbb{P} is the vector space of all polynomials. Define $\mathbb{P} \xrightarrow{D} \mathbb{P}$ by differentiation: $D(\mathbf{p}) = \mathbf{p}'$. By Calculus, D is an LT.

What are Ker(D) and Rng(D)?

What is Ker(D)? This is just the "trivial" subspace of all *constant* polynomials, right?

What is $\mathcal{R}ng(D)$? Which polys are the derivative of some other poly? Let \boldsymbol{q} be a poly, say

$$q(t) = c_0 + c_1 t + c_2 t^2 + \cdots + c_n t^n.$$

Can we find some other poly p so that p' = D(p) = q? Sure! We just anti-differentiate, right? The poly

$$\mathbf{p}(t) = c_0 t + \frac{c_1}{2} t^2 + \frac{c_2}{3} t^3 + \dots + \frac{c_n}{n+1} t^{n+1}$$

has the property that p' = D(p) = q. This means that $\mathcal{R}ng(D) = \mathbb{P}$.

Recall that \mathbb{P} is the vector space of all polynomials.

Recall that \mathbb{P} is the vector space of all polynomials. Define $\mathbb{P}_n \xrightarrow{D} \mathbb{P}_n$ by differentiation: $D(\mathbf{p}) = \mathbf{p}'$.

Recall that \mathbb{P} is the vector space of all polynomials. Define $\mathbb{P}_n \xrightarrow{D} \mathbb{P}_n$ by differentiation: $D(\mathbf{p}) = \mathbf{p}'$. By Calculus, D is an LT.

Recall that \mathbb{P} is the vector space of all polynomials. Define $\mathbb{P}_n \xrightarrow{D} \mathbb{P}_n$ by differentiation: $D(\mathbf{p}) = \mathbf{p}'$. By Calculus, D is an LT.

This is clearly similar to the above example, but notice that here we are taking the domain and codomain of D to be \mathbb{P}_n instead of \mathbb{P} .

Recall that \mathbb{P} is the vector space of all polynomials. Define $\mathbb{P}_n \xrightarrow{D} \mathbb{P}_n$ by differentiation: $D(\mathbf{p}) = \mathbf{p}'$. By Calculus, D is an LT.

This is clearly similar to the above example, but notice that here we are taking the domain and codomain of D to be \mathbb{P}_n instead of \mathbb{P} .

What are Ker(D) and Rng(D)?

Recall that \mathbb{P} is the vector space of all polynomials. Define $\mathbb{P}_n \xrightarrow{D} \mathbb{P}_n$ by differentiation: $D(\mathbf{p}) = \mathbf{p}'$. By Calculus, D is an LT.

This is clearly similar to the above example, but notice that here we are taking the domain and codomain of D to be \mathbb{P}_n instead of \mathbb{P} .

What are Ker(D) and Rng(D)?

Again, Ker(D) is the "trivial" subspace of all *constant* polynomials, right?

Recall that \mathbb{P} is the vector space of all polynomials. Define $\mathbb{P}_n \xrightarrow{D} \mathbb{P}_n$ by differentiation: $D(\mathbf{p}) = \mathbf{p}'$. By Calculus, D is an LT.

This is clearly similar to the above example, but notice that here we are taking the domain and codomain of D to be \mathbb{P}_n instead of \mathbb{P} .

What are Ker(D) and Rng(D)?

Again, Ker(D) is the "trivial" subspace of all *constant* polynomials, right?

What about $\mathcal{R}ng(D)$?

Recall that \mathbb{P} is the vector space of all polynomials. Define $\mathbb{P}_n \xrightarrow{D} \mathbb{P}_n$ by differentiation: $D(\mathbf{p}) = \mathbf{p}'$. By Calculus, D is an LT.

This is clearly similar to the above example, but notice that here we are taking the domain and codomain of D to be \mathbb{P}_n instead of \mathbb{P} .

What are Ker(D) and Rng(D)?

Again, Ker(D) is the "trivial" subspace of all *constant* polynomials, right?

What about $\mathcal{R}ng(D)$?

HW: Show that $\mathcal{R}ng(D) = \mathbb{P}_{n-1}$.

Recall that \mathbb{P} is the vector space of all polynomials.

Recall that $\mathbb P$ is the vector space of all polynomials. Define $\mathbb P \xrightarrow{S} \mathbb P$ by "multiplication":

Recall that \mathbb{P} is the vector space of all polynomials. Define $\mathbb{P} \xrightarrow{S} \mathbb{P}$ by "multiplication": i.e., q = S(p) is the polynomial given by q(t) = t p(t).

LTs btwn VSs

Recall that \mathbb{P} is the vector space of all polynomials. Define $\mathbb{P} \xrightarrow{S} \mathbb{P}$ by "multiplication": i.e., $\mathbf{q} = S(\mathbf{p})$ is the polynomial given by $\mathbf{q}(t) = t \, \mathbf{p}(t)$. You should check that S is an LT.

Recall that $\mathbb P$ is the vector space of all polynomials. Define $\mathbb P \xrightarrow{S} \mathbb P$ by "multiplication": i.e., $\mathbf q = S(\mathbf p)$ is the polynomial given by $\mathbf q(t) = t \, \mathbf p(t)$. You should check that S is an LT.

What are Ker(S) and Rng(S)?

Recall that \mathbb{P} is the vector space of all polynomials. Define $\mathbb{P} \xrightarrow{S} \mathbb{P}$ by "multiplication": i.e., $\mathbf{q} = S(\mathbf{p})$ is the polynomial given by $\mathbf{q}(t) = t \mathbf{p}(t)$. You should check that S is an LT.

What are Ker(S) and Rng(S)?

Remember, Ker(S) is all polys \boldsymbol{p} with $S(\boldsymbol{p}) = \vec{0}$.

LTs btwn VSs

Recall that \mathbb{P} is the vector space of all polynomials. Define $\mathbb{P} \xrightarrow{S} \mathbb{P}$ by "multiplication": i.e., $\mathbf{q} = S(\mathbf{p})$ is the polynomial given by $\mathbf{q}(t) = t \mathbf{p}(t)$. You should check that S is an LT.

What are Ker(S) and Rng(S)?

Remember, Ker(S) is all polys \boldsymbol{p} with $S(\boldsymbol{p}) = \vec{0}$. Notice that the poly 1 has $S(\mathbf{1}) = \mathbf{t}$, right?

Recall that \mathbb{P} is the vector space of all polynomials. Define $\mathbb{P} \xrightarrow{S} \mathbb{P}$ by "multiplication": i.e., $\mathbf{q} = S(\mathbf{p})$ is the polynomial given by $\mathbf{q}(t) = t \, \mathbf{p}(t)$. You should check that S is an LT.

What are Ker(S) and Rng(S)?

Remember, Ker(S) is all polys p with $S(p) = \vec{0}$. Notice that the poly 1 has S(1) = t, right? So, every constant non-zero poly has a non-zero S image.

Recall that $\mathbb P$ is the vector space of all polynomials. Define $\mathbb P \xrightarrow{S} \mathbb P$ by "multiplication": i.e., $\boldsymbol q = S(\boldsymbol p)$ is the polynomial given by $\boldsymbol q(t) = t \, \boldsymbol p(t)$. You should check that S is an LT.

What are Ker(S) and Rng(S)?

Remember, $\mathcal{K}er(S)$ is all polys \boldsymbol{p} with $S(\boldsymbol{p})=\vec{0}$. Notice that the poly $\boldsymbol{1}$ has $S(\boldsymbol{1})=\boldsymbol{t}$, right? So, every constant non-zero poly has a non-zero S image. We now see that $\mathcal{K}er(S)=\{\boldsymbol{0}\}$.

Recall that $\mathbb P$ is the vector space of all polynomials. Define $\mathbb P \xrightarrow{S} \mathbb P$ by "multiplication": i.e., $\boldsymbol q = S(\boldsymbol p)$ is the polynomial given by $\boldsymbol q(t) = t \, \boldsymbol p(t)$. You should check that S is an LT.

What are Ker(S) and Rng(S)?

Remember, $\mathcal{K}er(S)$ is all polys \boldsymbol{p} with $S(\boldsymbol{p})=\vec{0}$. Notice that the poly $\boldsymbol{1}$ has $S(\boldsymbol{1})=\boldsymbol{t}$, right? So, every constant non-zero poly has a non-zero S image. We now see that $\mathcal{K}er(S)=\{\boldsymbol{0}\}$.

What about $\mathcal{R}ng(D)$?

Recall that \mathbb{P} is the vector space of all polynomials. Define $\mathbb{P} \xrightarrow{S} \mathbb{P}$ by "multiplication": i.e., $\mathbf{q} = S(\mathbf{p})$ is the polynomial given by $\mathbf{q}(t) = t \mathbf{p}(t)$. You should check that S is an LT.

What are Ker(S) and Rng(S)?

Remember, Ker(S) is all polys \boldsymbol{p} with $S(\boldsymbol{p}) = \vec{0}$. Notice that the poly $\boldsymbol{1}$ has S(1) = t, right? So, every constant non-zero poly has a non-zero S image. We now see that $Ker(S) = \{0\}$.

What about $\mathcal{R}ng(D)$? Notice that every S image $\mathbf{q} = S(\mathbf{p})$ has $\mathbf{q}(0) = 0$.

Recall that \mathbb{P} is the vector space of all polynomials. Define $\mathbb{P} \xrightarrow{S} \mathbb{P}$ by "multiplication": i.e., $\mathbf{q} = S(\mathbf{p})$ is the polynomial given by $\mathbf{q}(t) = t \, \mathbf{p}(t)$. You should check that S is an LT.

What are Ker(S) and Rng(S)?

Remember, $\mathcal{K}er(S)$ is all polys \boldsymbol{p} with $S(\boldsymbol{p})=\vec{0}$. Notice that the poly $\boldsymbol{1}$ has $S(\boldsymbol{1})=\boldsymbol{t}$, right? So, every constant non-zero poly has a non-zero S image. We now see that $\mathcal{K}er(S)=\{\boldsymbol{0}\}$.

What about $\mathcal{R}ng(D)$? Notice that every S image $\mathbf{q} = S(\mathbf{p})$ has $\mathbf{q}(0) = 0$. Using this we see that $\mathcal{R}ng(S)$ consists of all polys \mathbf{q} with "no constant term"; i.e.,

Section 4.2.B LTs btwn VSs 22 February 2017 10 / 10

Recall that \mathbb{P} is the vector space of all polynomials. Define $\mathbb{P} \xrightarrow{S} \mathbb{P}$ by "multiplication": i.e., $\mathbf{q} = S(\mathbf{p})$ is the polynomial given by $\mathbf{q}(t) = t \mathbf{p}(t)$. You should check that S is an LT.

What are Ker(S) and Rng(S)?

Remember, Ker(S) is all polys \boldsymbol{p} with $S(\boldsymbol{p}) = \vec{0}$. Notice that the poly 1 has S(1) = t, right? So, every constant non-zero poly has a non-zero S image. We now see that $Ker(S) = \{0\}$.

What about $\mathcal{R}ng(D)$? Notice that every S image $\mathbf{q} = S(\mathbf{p})$ has $\mathbf{q}(0) = 0$. Using this we see that $\mathcal{R}ng(S)$ consists of all polys \boldsymbol{q} with "no constant term"; i.e.,

$$\mathcal{R}ng(S) = \Big\{ m{q} \mid m{q}(t) = b_1 t + b_2 t^2 + \dots + b_n t^n \Big\}.$$

Section 4.2.B LTs btwn VSs

Recall that $\mathbb P$ is the vector space of all polynomials. Define $\mathbb P \xrightarrow{S} \mathbb P$ by "multiplication": i.e., $\boldsymbol q = S(\boldsymbol p)$ is the polynomial given by $\boldsymbol q(t) = t \, \boldsymbol p(t)$. You should check that S is an LT.

What are Ker(S) and Rng(S)?

Remember, $\mathcal{K}er(S)$ is all polys \boldsymbol{p} with $S(\boldsymbol{p}) = \vec{0}$. Notice that the poly $\boldsymbol{1}$ has $S(\boldsymbol{1}) = \boldsymbol{t}$, right? So, every constant non-zero poly has a non-zero S image. We now see that $\mathcal{K}er(S) = \{\boldsymbol{0}\}$.

What about $\mathcal{R}ng(D)$? Notice that every S image $\mathbf{q} = S(\mathbf{p})$ has $\mathbf{q}(0) = 0$. Using this we see that $\mathcal{R}ng(S)$ consists of all polys \mathbf{q} with "no constant term"; i.e.,

$$\mathcal{R}ng(S) = \Big\{ m{q} \mid m{q}(t) = b_1 t + b_2 t^2 + \dots + b_n t^n \Big\}.$$

HW: Show that DS - SD = I where D is "differentiation" (as described 2 slides above) and I is the identity transformation $L(\mathbf{p}) = \mathbf{p}$.