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Transformations V T−→W

Let V and W be vector spaces, and

let V T−→W be a function (aka, a
transformation).

Here V is the domain of T—where the input variables ~x live— and W is
the codomain of T—where the resulting output ~y = T (~x) lives.

For each ~x in V, ~y = T (~x) is called the image of ~x . If S is a bunch of
vectors in V (i.e., S is a subset of V), then

T (S) =
{

all images T (~x) where ~x is in S
}

is called the T-image of S; this is a subset of W.

The range of T is the image of all of V, i.e., Rng(T ) = T (V) ; this is

the set of all images T (~x), and Rng(T ) is a subset of the codomain of T .

An important question is to know which vectors ~b are in the range of T .
That is: Given ~b in W, when can we find an ~x in V with T (~x) = ~b?
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Linear Transformations V T−→W

Let V and W be vector spaces, and let V T−→W be a function (aka, a
transformation).

We call T a linear transformation provided

T (~u + ~v) = T (~u) + T (~v)

and

T (s~v) = sT (~v)

for all ~u, ~v in Rn and all scalars s.

Note that for any LT T we always have T (~0) = ~0. Right? Why?

Recall that every LT between two Euclidean spaces if a matrix
transformation. In general?
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Properties of Linear Transformations

Let V T−→W be a linear transformation. Then

T (~0) = ~0 .

More importantly, T preserves all linear combinations; i.e., the T -image of
a LC of vectors ~vj is a LC of T (~vj) using the same scalars. That is,

T (s1~v1 + s2~v2 + · · ·+ sp~vp) = s1T (~v1) + s2T (~v2) + · · ·+ spT (~vp)

or more simply—using “summation” notation—

T

( p∑
j=1

sj~vj

)
=

p∑
j=1

sjT (~vj).

This is called the linearity principle .
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Range and Kernel of a Linear Transformation

Let V T−→W be a linear transformation.

The range of T is the image of all
of V, i.e.,

Rng(T ) = T (V) =
{
T (~v)

∣∣ ~v in V
}

;

this is a vector subspace of W.

The kernel of T is the pre-image of ~0, i.e.,

Ker(T ) =
{
~v in V

∣∣ T (~v) = ~0
}

;

this is a vector subspace of V.

When V and W are Euclidean spaces, and T is mult by a matrix A

Ker(T ) = NS(A) and Rng(T ) = CS(A).
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Examples of Linear Transformations

Let A be a fixed m × n matrix.

Define Rn×p T−→ Rm×p by T (X ) = AX ; T
is a linear transformation. Without knowing more about A, we cannot say
much about Ker(T ) or Rng(T ).

We can also define Rp×m S−→ Rp×n by T (X ) = XA; S is an LT, but
without knowing A, we can’t “find” Ker(S) or Rng(S).

Now define Rm×n T−→ Rn×m by T (X ) = XT ; recall that XT is the
transpose of the matrix X given by

[
XT
]
ij

=
[
X
]
ji

. Then T is an LT.

What are Ker(T ) and Rng(T )? This is easy, right?

Next, define Rn×n S−→ Rn×n by T (X ) = X − XT ; you should check that S
is an LT. What are Ker(S) and Rng(S)?

If S(X ) = 0, then X = XT ; so Ker(S) is the subspace of all symmetric
n × n matrices.
HW: Show Rng(S) is the subspace of all skew-symmetric n × n matrices.
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More Examples of Linear Transformations

Recall that P is the vector space of all polynomials.

Thus p is in P if and
only if p is a function of the form

p(t) = c0 + c1t + c2t
2 + · · ·+ cnt

n.

Here c0, c1, . . . , cn are constants, called the coefficients of the polynomial
p, and when cn 6= 0 we say that p has degree n. (By definition, the zero
polynomial has degree zero.)

Define P T−→ R3 by T (p) =

p(1)
p(2)
p(3)

. Check that T is an LT. What are

Ker(T ) and Rng(T )? This is not hard, right?

Clearly, Rng(T ) = R3 (right?). Also, Ker(T ) is all polys p that have
zeroes at each of t = 1, 2, 3; so ~p is in Ker(T ) iff deg(p) ≥ 3 and p can
be factored as

p(t) = (t − 1)(t − 2)(t − 3)q(t).
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More Examples of Linear Transformations

Recall that P is the vector space of all polynomials.

Define P D−→ P by
differentiation: D(p) = p′. By Calculus, D is an LT.

What are Ker(D) and Rng(D)?

What is Ker(D)? This is just the “trivial” subspace of all constant
polynomials, right?

What is Rng(D)? Which polys are the derivative of some other poly?
Let q be a poly, say

q(t) = c0 + c1t + c2t
2 + · · ·+ cnt

n.

Can we find some other poly p so that p′ = D(p) = q?

Sure! We just
anti-differentiate, right? The poly

p(t) = c0t +
c1
2
t2 +

c2
3
t3 + · · ·+ cn

n + 1
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has the property that p′ = D(p) = q. This means that Rng(D) = P.
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And More Examples of Linear Transformations

Recall that P is the vector space of all polynomials.

Define Pn
D−→ Pn by

differentiation: D(p) = p′. By Calculus, D is an LT.

This is clearly similar to the above example, but notice that here we are
taking the domain and codomain of D to be Pn instead of P.

What are Ker(D) and Rng(D)?

Again, Ker(D) is the “trivial” subspace of all constant polynomials, right?

What about Rng(D)?

HW: Show that Rng(D) = Pn−1.
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One More Example of a Linear Transformation

Recall that P is the vector space of all polynomials.

Define P S−→ P by
“multiplication”: i.e., q = S(p) is the polynomial given by q(t) = t p(t).
You should check that S is an LT.

What are Ker(S) and Rng(S)?

Remember, Ker(S) is all polys p with S(p) = ~0. Notice that the poly 1
has S(1) = t, right? So, every constant non-zero poly has a non-zero S
image. We now see that Ker(S) = {0}.

What about Rng(D)? Notice that every S image q = S(p) has q(0) = 0.
Using this we see that Rng(S) consists of all polys q with “no constant
term”; i.e.,

Rng(S) =
{
q
∣∣ q(t) = b1t + b2t

2 + · · ·+ bnt
n
}
.

HW: Show that DS − SD = I where D is “differentiation” (as described 2
slides above) and I is the identity transformation I (p) = p.
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Remember, Ker(S) is all polys p with S(p) = ~0. Notice that the poly 1
has S(1) = t, right? So, every constant non-zero poly has a non-zero S
image. We now see that Ker(S) = {0}.

What about Rng(D)?

Notice that every S image q = S(p) has q(0) = 0.
Using this we see that Rng(S) consists of all polys q with “no constant
term”; i.e.,

Rng(S) =
{
q
∣∣ q(t) = b1t + b2t

2 + · · ·+ bnt
n
}
.

HW: Show that DS − SD = I where D is “differentiation” (as described 2
slides above) and I is the identity transformation I (p) = p.
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