Linear Transformations Between Vector Spaces

Linear Algebra MATH 2076

Transformations $\mathbb{V} \xrightarrow{T} \mathbb{W}$

Let \mathbb{V} and \mathbb{W} be vector spaces, and let $\mathbb{V} \xrightarrow{T} \mathbb{W}$ be a function (aka, a *transformation*).

Here \mathbb{V} is the *domain* of T (where the input variables \vec{x} live) and \mathbb{W} is the *codomain* of T (where the resulting output $\vec{y} = T(\vec{x})$ lives).

For each \vec{x} in \mathbb{V} , $\vec{y} = T(\vec{x})$ is called the *image* of \vec{x} . If \mathbb{S} is a bunch of vectors in \mathbb{V} (i.e., \mathbb{S} is a *subset* of \mathbb{V}), then

$$T(\mathbb{S}) = \{ \text{all images } T(\vec{x}) \text{ where } \vec{x} \text{ is in } \mathbb{S} \}$$

is called the *T*-image of S; this is a subset of W.

The *range* of *T* is the image of all of \mathbb{V} , i.e., $|\mathcal{R}ng(T) = T(\mathbb{V})|$; this is the set of <u>all</u> images $T(\vec{x})$, and $\mathcal{R}ng(T)$ is a subset of the codomain of *T*. An important question is to know which vectors \vec{b} are in the range of *T*. That is: Given \vec{b} in \mathbb{W} , when can we find an \vec{x} in \mathbb{V} with $T(\vec{x}) = \vec{b}$?

Linear Transformations $\mathbb{V} \xrightarrow{\mathcal{T}} \mathbb{W}$

Let \mathbb{V} and \mathbb{W} be vector spaces, and let $\mathbb{V} \xrightarrow{\mathcal{T}} \mathbb{W}$ be a function (aka, a *transformation*).

We call *T* a *linear* transformation provided

$$T(\vec{u}+\vec{v})=T(\vec{u})+T(\vec{v})$$

and

$$T(s\vec{v}) = sT(\vec{v})$$

for all \vec{u}, \vec{v} in \mathbb{R}^n and all scalars *s*.

Note that for **any** LT T we always have $T(\vec{0}) = \vec{0}$. Right? Why?

Recall that *every* LT between two Euclidean spaces is a matrix transformation. In general?

Linear Algebra

Properties of Linear Transformations

Let
$$\mathbb{V} \xrightarrow{\mathcal{T}} \mathbb{W}$$
 be a linear transformation. Then $T(\vec{0}) = \vec{0}$.

More importantly, T preserves all linear combinations; i.e., the T-image of a LC of vectors $\vec{v_j}$ is a LC of $T(\vec{v_j})$ using the same scalars. That is,

$$T(s_1\vec{v}_1 + s_2\vec{v}_2 + \dots + s_p\vec{v}_p) = s_1T(\vec{v}_1) + s_2T(\vec{v}_2) + \dots + s_pT(\vec{v}_p)$$

or more simply—using "summation" notation—

$$T\left(\sum_{j=1}^{p} \mathbf{s}_{j} \vec{\mathbf{v}}_{j}\right) = \sum_{j=1}^{p} \mathbf{s}_{j} T(\vec{\mathbf{v}}_{j}).$$

This is called the *linearity principle*.

Range and Kernel of a Linear Transformation

Let $\mathbb{V} \xrightarrow{T} \mathbb{W}$ be a linear transformation. The *range* of *T* is the image of all of \mathbb{V} , i.e.,

$$\mathcal{R}ng(T) = T(\mathbb{V}) = \{T(\vec{v}) \mid \vec{v} \text{ in } \mathbb{V}\};$$

this is a vector subspace of \mathbb{W} .

The *kernel* of T is the pre-image of $\vec{0}$, i.e.,

$$\mathcal{K}er(T) = \{ \vec{v} \text{ in } \mathbb{V} \mid T(\vec{v}) = \vec{0} \};$$

this is a vector subspace of \mathbb{V} .

When $\mathbb V$ and $\mathbb W$ are Euclidean spaces, and $\mathcal T$ is mult by a matrix A

$$\mathcal{K}er(T) = \mathcal{NS}(A)$$
 and $\mathcal{R}ng(T) = \mathcal{CS}(A)$.

Examples of Linear Transformations

Let A be a fixed $m \times n$ matrix. Define $\mathbb{R}^{n \times p} \xrightarrow{T} \mathbb{R}^{m \times p}$ by T(X) = AX; T is a linear transformation. Without knowing more about A, we cannot say much about $\mathcal{K}er(T)$ or $\mathcal{R}ng(T)$.

We can also define $\mathbb{R}^{p \times m} \xrightarrow{S} \mathbb{R}^{p \times n}$ by T(X) = XA; S is an LT, but without knowing A, we can't "find" $\mathcal{K}er(S)$ or $\mathcal{R}ng(S)$.

Now define $\mathbb{R}^{m \times n} \xrightarrow{T} \mathbb{R}^{n \times m}$ by $T(X) = X^T$; recall that X^T is the *transpose* of the matrix X given by $[X^T]_{ij} = [X]_{ji}$. Then T is an LT. What are $\mathcal{K}er(T)$ and $\mathcal{R}ng(T)$? This is easy, right?

Next, define $\mathbb{R}^{n \times n} \xrightarrow{S} \mathbb{R}^{n \times n}$ by $T(X) = X - X^T$; you should check that S is an LT. What are $\mathcal{K}er(S)$ and $\mathcal{R}ng(S)$? If S(X) = 0, then $X = X^T$; so $\mathcal{K}er(S)$ is the subspace of all symmetric $n \times n$ matrices. HW: Show $\mathcal{R}ng(S)$ is the subspace of all skew-symmetric $n \times n$ matrices.

More Examples of Linear Transformations

Recall that \mathbb{P} is the vector space of all polynomials. Thus p is in \mathbb{P} if and only if p is a function of the form

$$\boldsymbol{p}(t) = c_0 + c_1 t + c_2 t^2 + \cdots + c_n t^n.$$

Here c_0, c_1, \ldots, c_n are constants, called the *coefficients* of the polynomial p, and when $c_n \neq 0$ we say that p has *degree n*. (By definition, the zero polynomial has degree zero.)

Define $\mathbb{P} \xrightarrow{T} \mathbb{R}^3$ by $T(\mathbf{p}) = \begin{bmatrix} \mathbf{p}(1) \\ \mathbf{p}(2) \\ \mathbf{p}(3) \end{bmatrix}$. Check that T is an LT. What are $\mathcal{K}er(T) \& \mathcal{R}ng(T)$? This is not too hard; please try to find these yourself before we do it. Clearly, $\mathcal{R}ng(T) = \mathbb{R}^3$. Right? Why?? Also, a poly \mathbf{p} is in $\mathcal{K}er(T)$ iff \mathbf{p} has zeroes at each of t = 1, 2, 3; so \mathbf{p} is in $\mathcal{K}er(T)$ iff $\deg(\mathbf{p}) \ge 3$ and \mathbf{p} can be factored as

$$p(t) = (t-1)(t-2)(t-3)q(t).$$

More Examples of Linear Transformations

Recall that \mathbb{P} is the vector space of all polynomials. Define $\mathbb{P} \xrightarrow{D} \mathbb{P}$ by differentiation: $D(\mathbf{p}) = \mathbf{p}'$. By Calculus, D is an LT.

What are $\mathcal{K}er(D)$ and $\mathcal{R}ng(D)$?

What is $\mathcal{K}er(D)$? This is just the "trivial" subspace of all *constant* polynomials, right? So, $\mathcal{K}er(D) = \mathcal{S}pan\{1\}$.

What is $\mathcal{R}ng(D)$? Which polys are the derivative of some other poly? Let **q** be a poly, say

$$\boldsymbol{q}(t)=c_0+c_1t+c_2t^2+\cdots+c_nt^n.$$

Can we find some other poly p so that p' = D(p) = q? Sure! We just anti-differentiate, right? The poly

$$\boldsymbol{p}(t) = c_0 t + \frac{c_1}{2} t^2 + \frac{c_2}{3} t^3 + \dots + \frac{c_n}{n+1} t^{n+1}$$

has the property that p' = D(p) = q. This means that $\mathcal{R}ng(D) = \mathbb{P}$.

And More Examples of Linear Transformations

Recall that \mathbb{P} is the vector space of all polynomials. Define $\mathbb{P}_n \xrightarrow{D} \mathbb{P}_n$ by differentiation: $D(\mathbf{p}) = \mathbf{p}'$. By Calculus, D is an LT.

This is clearly similar to the above example, but notice that here we are taking the domain and codomain of D to be \mathbb{P}_n instead of \mathbb{P} .

What are $\mathcal{K}er(D)$ and $\mathcal{R}ng(D)$? This is not too hard; please try to find these yourself before we give the answers.

Again, $\mathcal{K}er(D)$ is the "trivial" subspace of all *constant* polynomials, right?

What about $\mathcal{R}ng(D)$?

HW: Show that $\mathcal{R}ng(D) = \mathbb{P}_{n-1}$.

One More Example of a Linear Transformation

Recall that \mathbb{P} is the vector space of all polynomials. Define $\mathbb{P} \xrightarrow{S} \mathbb{P}$ by "multiplication": i.e., $\boldsymbol{q} = S(\boldsymbol{p})$ is the polynomial given by $\boldsymbol{q}(t) = t \boldsymbol{p}(t)$. You should check that S is an LT.

What are $\mathcal{K}er(S)$ and $\mathcal{R}ng(S)$?

Remember, $\mathcal{K}er(S)$ is all polys \boldsymbol{p} with $S(\boldsymbol{p}) = \boldsymbol{0}$. Notice that the poly $\boldsymbol{1}$ has $S(\boldsymbol{1}) = \boldsymbol{t}$, right? So, every constant non-zero poly has a non-zero S image. We now see that $\mathcal{K}er(S) = \{\boldsymbol{0}\}$.

What about $\mathcal{R}ng(D)$? Notice that every S image q = S(p) has q(0) = 0. Using this we see that $\mathcal{R}ng(S)$ consists of all polys q with "no constant term"; i.e.,

$$\mathcal{R}ng(S) = \Big\{ \boldsymbol{q} \mid \boldsymbol{q}(t) = b_1t + b_2t^2 + \cdots + b_nt^n \Big\}.$$

HW: Show that DS - SD = I where D is "differentiation" (as described 2 slides above) and I is the identity transformation $I(\mathbf{p}) = \mathbf{p}$.

Linear Algebra