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: T
Transformations V — W

T :
Let V and W be vector spaces, and let V. — W be a function (aka, a
transformation).

Here V is the domain of T (where the input variables X live) and W is the
codomain of T (where the resulting output y = T(X) lives).

For each X in V, y = T(X) is called the image of X. If S is a bunch of
vectors in V (i.e., S is a subset of V), then

T(S) = {all images T(x) where X is in S}

is called the T-image of S; this is a subset of W.

The range of T is the image of all of V, i.e., | Rng(T) = T(V)] this is
the set of all images T(X), and Rng(T) is a subset of the codomain of T.

An important question is to know which vectors b are in the range of T.
That is: Given b in W, when can we find an X in V with T(X) = b?
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: : T
Linear Transformations V — W

Let V and W be vector spaces, and let V l> W be a function (aka, a
transformation).

We call T a linear transformation provided
T(o+ V)= T(a)+ T(V)

and

for all @,V in R™ and all scalars s.
Note that for any LT T we always have T(6) — 0. Right? Why?

Recall that every LT between two Euclidean spaces is a matrix
transformation. In general?
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Properties of Linear Transformations

Let V 1> W be a linear transformation. Then T(0)=0|

More importantly, T preserves all linear combinations; i.e., the T-image of
a LC of vectors v; is a LC of T(V;) using the same scalars. That is,

T(51\71 + %+ + Sp\7p) =51 T(\71) + S T(\72) +--+Sp T(Vp)

or more simply—using “summation” notation—

P P
(X s%) =L sT®).
j=1 j=1

This is called the ’ linearity princip/e‘.
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Range and Kernel of a Linear Transformation

Let V > W be a linear transformation. The range of T is the image of all
of V, i.e.,

Rng(T)=T(V)={T(V) ’ VinV};

this is a vector subspace of W.
The kernel of T is the pre-image of 0, i.e.,
Ker(T)={VinV | T(V)= 6}
this is a vector subspace of V.
When V and W are Euclidean spaces, and T is mult by a matrix A

Ker(T) =NS(A) and Rng(T)=CS(A).
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Examples of Linear Transformations

Let A be a fixed m x n matrix. Define R7P L, Rmxp by T(X)=AX; T
is a linear transformation. Without knowing more about A, we cannot say
much about Ker(T) or Rng(T).

We can also define RPXm 2, Rpxn by T(X)= XA; Sis an LT, but
without knowing A, we can't “find” Ker(S) or Rng(S).

Now define Rmxn Ly Rnxm by T(X) = XT; recall that X7 is the
transpose of the matrix X given by [XT]. = [X] . Then T isan LT.
What are Ker(T) and Rng(T)? This is easy, right?

Next, define R?*" 3, moxn by T(X)=X— XT; you should check that S
is an LT. What are Ker(S) and Rng(S)?

If S(X) =0, then X = XT; so Ker(S) is the subspace of all symmetric
n X n matrices.

HW: Show Rng(S) is the subspace of all skew-symmetric n x n matrices.
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More Examples of Linear Transformations

Recall that PP is the vector space of all polynomials. Thus p is in P if and
only if p is a function of the form

p(t) =co+cit+ ct? + -+ cyt”.

Here cg, c1, . .., cn are constants, called the coefficients of the polynomial
p. and when ¢, # 0 we say that p has degree n. (By definition, the zero
polynomial has degree zero.)

o P(1)] " Check that T is an LT.
Define P — R* by T(p) = |P(2)|- What are Ker(T) & Rng(T)?

p(3)

This is not too hard; please try to find these yourself before we do it.
Clearly, Rng(T) = R3. Right? Why?? Also, a poly p is in Ker(T) iff p
has zeroes at each of t =1,2,3; so p isin Ker(T) iff deg(p) > 3 and p
can be factored as

p(t) = (t = 1)(t — 2)(t — 3)q(t).
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More Examples of Linear Transformations

Recall that PP is the vector space of all polynomials. Define P op by
differentiation: D(p) = p’. By Calculus, D is an LT.

What are Ker(D) and Rng(D)?

What is [Cer(D)? This is just the “trivial” subspace of all constant
polynomials, right? So, Ker(D) = Span{1}.

What is Rng(D)? Which polys are the derivative of some other poly?
Let g be a poly, say

q(t) = co+cit+ ot? + -+ cpt".
Can we find some other poly p so that p’ = D(p) = q? Sure! We just

anti-differentiate, right? The poly

€1 .2 € 3 Cn n+1
t = t 7t 7t tt 7t
p(t) = cot + 3F 5 +--- 1

has the property that p’ = D(p) = q. This means that Rng(D) = P.
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And More Examples of Linear Transformations

Recall that PP is the vector space of all polynomials. Define P, D, P, by
differentiation: D(p) = p’. By Calculus, D is an LT.

This is clearly similar to the above example, but notice that here we are
taking the domain and codomain of D to be P, instead of P.

What are Ker(D) and Rng(D)? This is not too hard; please try to find
these yourself before we give the answers.

Again, Ker(D) is the “trivial” subspace of all constant polynomials, right?
What about Rng(D)?

HW: Show that Rng(D) = Pp_1.
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One More Example of a Linear Transformation

Recall that PP is the vector space of all polynomials. Define P S p by
“multiplication”: i.e., ¢ = S(p) is the polynomial given by q(t) = t p(t).
You should check that S is an LT.

What are Ker(S) and Rng(S)?

Remember, Ker(S) is all polys p with S(p) = 0. Notice that the poly 1
has S(1) = t, right? So, every constant non-zero poly has a non-zero S
image. We now see that Ker(S) = {0}.

What about Rng(D)? Notice that every S image ¢ = S(p) has q(0) = 0.
Using this we see that Rng(S) consists of all polys g with “no constant
term”; i.e.,

Rng(S) = {q | q(t) = bit+ bot> +-- - + bnt”}.

HW: Show that DS — SD = | where D is “differentiation” (as described 2
slides above) and [ is the identity transformation /(p) = p.
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