Linear Transformations Between Vector Spaces

Linear Algebra MATH 2076

Transformations $\mathbb{V} \stackrel{\mathcal{T}}{\rightarrow} \mathbb{W}$

Let $\mathbb {V}$ and $\mathbb {W}$ be vector spaces, and let $\mathbb {V} \stackrel{\mathcal{T}}{\rightarrow} \mathbb {W}$ be a function (aka, a transformation).

Here V is the *domain* of T (where the input variables \vec{x} live) and W is the *codomain* of T (where the resulting output $\vec{y} = T(\vec{x})$ lives).

For each \vec{x} in \vec{v} , $\vec{y} = T(\vec{x})$ is called the *image* of \vec{x} . If S is a bunch of vectors in V (i.e., S is a *subset* of V), then

$$
\mathcal{T}(\mathbb{S}) = \{ \text{all images } \mathcal{T}(\vec{x}) \text{ where } \vec{x} \text{ is in } \mathbb{S} \}
$$

is called the T -image of \mathbb{S} ; this is a subset of \mathbb{W} .

The *range* of T is the image of all of V, i.e., $\left|\mathcal{R}ng(T)=T(V)\right|$; this is the set of all images $T(\vec{x})$, and $\mathcal{R}ng(T)$ is a subset of the codomain of T. An important question is to know which vectors \vec{b} are in the range of T.

That is: Given \vec{b} in W, when can we find an \vec{x} in V with $T(\vec{x}) = \vec{b}$?

Linear Transformations $\mathbb{V} \overset{\mathcal{T}}{\rightarrow} \mathbb{W}$

Let $\mathbb {V}$ and $\mathbb {W}$ be vector spaces, and let $\mathbb {V} \stackrel{\mathcal{T}}{\rightarrow} \mathbb {W}$ be a function (aka, a transformation).

We call T a *linear transformation* provided

$$
T(\vec{u}+\vec{v})=T(\vec{u})+T(\vec{v})
$$

and

$$
T(s\vec{v})=sT(\vec{v})
$$

for all \vec{u}, \vec{v} in \mathbb{R}^n and all scalars s.

Note that for any LT T we always have $T(\vec{0}) = \vec{0}$. Right? Why?

Recall that every LT between two Euclidean spaces is a matrix transformation. In general?

Properties of Linear Transformations

Let
$$
\mathbb{V} \xrightarrow{\mathcal{T}}
$$
 W be a linear transformation. Then $|\mathcal{T}(\vec{0}) = \vec{0}|$.

More importantly, T preserves all linear combinations; i.e., the T -image of a LC of vectors $\vec{v_j}$ is a LC of $\mathcal{T}(\vec{v_j})$ using the same scalars. That is,

$$
\mathcal{T}\big(s_1\vec{v}_1+s_2\vec{v}_2+\cdots+s_p\vec{v}_p\big)=s_1\,\mathcal{T}\big(\vec{v}_1\big)+s_2\,\mathcal{T}\big(\vec{v}_2\big)+\cdots+s_p\,\mathcal{T}\big(\vec{v}_p\big)
$$

or more simply—using "summation" notation—

$$
T\bigg(\sum_{j=1}^p s_j\vec{v}_j\bigg)=\sum_{j=1}^p s_j\,T(\vec{v}_j).
$$

This is called the *linearity principle* \vert .

Range and Kernel of a Linear Transformation

Let $\mathbb{V} \stackrel{\mathcal{T}}{\rightarrow} \mathbb{W}$ be a linear transformation. The *range* of \mathcal{T} is the image of all of V , i.e.,

$$
\mathcal{R}ng(\mathcal{T})=\mathcal{T}(\mathbb{V})=\{\mathcal{T}(\vec{v})\mid \vec{v} \text{ in } \mathbb{V}\};
$$

this is a vector subspace of W.

The kernel of T is the pre-image of $\vec{0}$, i.e.,

$$
\mathcal{K}er(\mathcal{T})=\left\{\vec{v} \text{ in } \mathbb{V} \middle| \mathcal{T}(\vec{v})=\vec{0}\right\};
$$

this is a vector subspace of V.

When V and W are Euclidean spaces, and T is mult by a matrix A

$$
\mathcal{K}er(T) = \mathcal{NS}(A) \quad \text{and} \quad \mathcal{R}ng(T) = \mathcal{CS}(A).
$$

Examples of Linear Transformations

Let A be a fixed $m \times n$ matrix. Define $\mathbb{R}^{n \times p} \stackrel{\mathcal{T}}{\rightarrow} \mathbb{R}^{m \times p}$ by $\mathcal{T}(X) = AX;$ \mathcal{T} is a linear transformation. Without knowing more about A, we cannot say much about $\mathcal{K}er(T)$ or $\mathcal{R}ng(T)$.

We can also define $\mathbb{R}^{p\times m}\stackrel{S}{\to}\mathbb{R}^{p\times n}$ by $\mathcal{T}(X)=X$ A; S is an LT, but without knowing A, we can't "find" $Ker(S)$ or $Rng(S)$.

Now define $\mathbb{R}^{m\times n}\stackrel{\mathcal{T}}{\rightarrow}\mathbb{R}^{n\times m}$ by $\mathcal{T}(X)=X^{\mathcal{T}}$; recall that $X^{\mathcal{T}}$ is the *transpose* of the matrix X given by $\left[X^{\mathcal{T}}\right]_{ij} = \left[X\right]_{ji}$. Then $\mathcal T$ is an LT. What are $Ker(T)$ and $Rng(T)$? This is easy, right?

Next, define $\mathbb{R}^{n\times n}\stackrel{S}{\to}\mathbb{R}^{n\times n}$ by $\mathcal{T}(X)=X-X^{\mathcal{T}}$; you should check that S is an LT. What are $Ker(S)$ and $Rng(S)$? If $S(X)=0$, then $X=X^{\mathcal{T}}$; so $\mathcal{K}er(S)$ is the subspace of all *symmetric* $n \times n$ matrices.

HW: Show $\mathcal{R}ng(S)$ is the subspace of all skew-symmetric $n \times n$ matrices.

More Examples of Linear Transformations

Recall that $\mathbb P$ is the vector space of all polynomials. Thus **p** is in $\mathbb P$ if and only if \boldsymbol{p} is a function of the form

$$
\pmb{p}(t) = c_0 + c_1 t + c_2 t^2 + \cdots + c_n t^n.
$$

Here c_0, c_1, \ldots, c_n are constants, called the *coefficients* of the polynomial **p**, and when $c_n \neq 0$ we say that **p** has *degree n.* (By definition, the zero polynomial has degree zero.)

Define $\mathbb{P} \stackrel{\mathcal{T}}{\rightarrow} \mathbb{R}^3$ by $\mathcal{T}(\bm{p})=$ $\sqrt{ }$ $\overline{1}$ $\bm{p}(1)$ $p(2)$ $p(3)$ 1 $\vert \cdot$ Check that T is an LT. What are ${\mathcal Ker}(T)$ & ${\mathcal R}$ ng $(\mathcal T)?$ This is not too hard; please try to find these yourself before we do it. Clearly, \mathcal{R} ng $(\mathcal{T}) = \mathbb{R}^3$. Right? Why?? Also, a poly \boldsymbol{p} is in \mathcal{K} er (\mathcal{T}) iff \boldsymbol{p} has zeroes at each of $t = 1, 2, 3$; so **p** is in $\mathcal{K}er(T)$ iff deg(**p**) > 3 and **p** can be factored as

$$
p(t) = (t-1)(t-2)(t-3)q(t).
$$

More Examples of Linear Transformations

Recall that $\mathbb P$ is the vector space of all polynomials. Define $\mathbb P\stackrel{D}{\to}\mathbb P$ by differentiation: $D(\bm{p}) = \bm{p}'$. By Calculus, D is an LT.

What are $Ker(D)$ and $Rng(D)$?

What is $Ker(D)$? This is just the "trivial" subspace of all constant polynomials, right? So, $Ker(D) = Span\{1\}$.

What is $\mathcal{R}ng(D)$? Which polys are the derivative of some other poly? Let q be a poly, say

$$
\bm{q}(t) = c_0 + c_1 t + c_2 t^2 + \cdots + c_n t^n.
$$

Can we find some other poly \boldsymbol{p} so that $\boldsymbol{p}' = D(\boldsymbol{p}) = \boldsymbol{q}$? Sure! We just anti-differentiate, right? The poly

$$
\boldsymbol{p}(t) = c_0 t + \frac{c_1}{2} t^2 + \frac{c_2}{3} t^3 + \cdots + \frac{c_n}{n+1} t^{n+1}
$$

has the property that $\boldsymbol{p}' = D(\boldsymbol{p}) = \boldsymbol{q}$. This means that $\mathcal{R}ng(D) = \mathbb{P}.$

And More Examples of Linear Transformations

Recall that $\mathbb P$ is the vector space of all polynomials. Define $\mathbb P_n\stackrel{D}{\to}\mathbb P_n$ by differentiation: $D(\bm{p}) = \bm{p}'$. By Calculus, D is an LT.

This is clearly similar to the above example, but notice that here we are taking the domain and codomain of D to be \mathbb{P}_n instead of \mathbb{P}_n .

What are $Ker(D)$ and $Rng(D)$? This is not too hard; please try to find these yourself before we give the answers.

Again, $Ker(D)$ is the "trivial" subspace of all *constant* polynomials, right?

What about \mathcal{R} ng (D) ?

HW: Show that \mathcal{R} *ng*(*D*) = \mathbb{P}_{n-1} .

One More Example of a Linear Transformation

Recall that $\mathbb P$ is the vector space of all polynomials. Define $\mathbb P\stackrel{\mathsf{S}}{\to}\mathbb P$ by "multiplication": i.e., $\boldsymbol{q} = S(\boldsymbol{p})$ is the polynomial given by $\boldsymbol{q}(t) = t \, \boldsymbol{p}(t)$. You should check that S is an LT.

What are $\mathcal{K}er(S)$ and $\mathcal{R}ng(S)$?

Remember, $\mathcal{K}er(S)$ is all polys **p** with $S(p) = 0$. Notice that the poly 1 has $S(1) = t$, right? So, every constant non-zero poly has a non-zero S image. We now see that $Ker(S) = \{0\}.$

What about \mathcal{R} ng (D) ? Notice that every S image $\boldsymbol{q} = S(\boldsymbol{p})$ has $\boldsymbol{q}(0) = 0$. Using this we see that $Rng(S)$ consists of all polys q with "no constant term"; i.e.,

$$
\mathcal{R}ng(S)=\Big\{\boldsymbol{q}\mid \boldsymbol{q}(t)=b_1t+b_2t^2+\cdots+b_nt^n\Big\}.
$$

HW: Show that $DS - SD = I$ where D is "differentiation" (as described 2 slides above) and *I* is the identity transformation $I(\mathbf{p}) = \mathbf{p}$.