Subspaces of Euclidean Space \mathbb{R}^n

Linear Algebra MATH 2076

Column Space and Null Space

(4 同) (4 目) (4 日)

Let \mathbb{V} be a vector space.

(日) (四) (三) (三) (三)

э

Let $\mathbb V$ be a vector space. We call $\mathbb W$ a *vector subspace* of $\mathbb V$ if and only if

イロト イポト イヨト イヨト

Let \mathbb{V} be a vector space. We call \mathbb{W} a *vector subspace* of \mathbb{V} if and only if **1** $\vec{0}$ is in \mathbb{W} ,

イロト イポト イヨト イヨト

Let \mathbb{V} be a vector space. We call \mathbb{W} a *vector subspace* of \mathbb{V} if and only if

- \bigcirc $\vec{0}$ is in \mathbb{W} ,
- 2 W closed wrt vector addition,

< 4 **₽** ► <

Let \mathbb{V} be a vector space. We call \mathbb{W} a *vector subspace* of \mathbb{V} if and only if

- $0 \vec{0} is in \mathbb{W},$
- **2** \mathbb{W} closed wrt vector addition, $(\vec{u}, \vec{v} \text{ in } \mathbb{W} \implies \vec{u} + \vec{v} \text{ in } \mathbb{W})$,

Let \mathbb{V} be a vector space. We call \mathbb{W} a *vector subspace* of \mathbb{V} if and only if

- I o is in W,
- **2** \mathbb{W} closed wrt vector addition, $(\vec{u}, \vec{v} \text{ in } \mathbb{W} \implies \vec{u} + \vec{v} \text{ in } \mathbb{W})$,
- **◎** *W* closed wrt scalar mult

.

Let \mathbb{V} be a vector space. We call \mathbb{W} a *vector subspace* of \mathbb{V} if and only if

- I o is in W,
- **2** \mathbb{W} closed wrt vector addition, $(\vec{u}, \vec{v} \text{ in } \mathbb{W} \implies \vec{u} + \vec{v} \text{ in } \mathbb{W})$,

Let \mathbb{V} be a vector space. We call \mathbb{W} a *vector subspace* of \mathbb{V} if and only if

- $0 \vec{0} is in W,$
- **2** \mathbb{W} closed wrt vector addition, $(\vec{u}, \vec{v} \text{ in } \mathbb{W} \implies \vec{u} + \vec{v} \text{ in } \mathbb{W})$,
- $\textcircled{O} \ \mathbb{W} \ closed \ wrt \ scalar \ mult \ (s \ scalar \ , \ \vec{v} \ in \ \mathbb{W} \ \Longrightarrow \ s\vec{v} \ in \ \mathbb{W}).$ Note that

Let $\mathbb V$ be a vector space. We call $\mathbb W$ a *vector subspace* of $\mathbb V$ if and only if

- $\vec{0}$ is in \mathbb{W} ,
- **2** \mathbb{W} closed wrt vector addition, $(\vec{u}, \vec{v} \text{ in } \mathbb{W} \implies \vec{u} + \vec{v} \text{ in } \mathbb{W})$,
- $\textcircled{O} \ \mathbb{W} \ closed \ wrt \ scalar \ mult \ (s \ scalar \ , \ \vec{v} \ in \ \mathbb{W} \ \Longrightarrow \ s\vec{v} \ in \ \mathbb{W}).$ Note that
 - (3) says that whenever \vec{w} is in \mathbb{W} , $Span{\vec{w}}$ lies in \mathbb{W} , and

Let $\mathbb V$ be a vector space. We call $\mathbb W$ a *vector subspace* of $\mathbb V$ if and only if

- 0 is in W,
- **2** \mathbb{W} closed wrt vector addition, $(\vec{u}, \vec{v} \text{ in } \mathbb{W} \implies \vec{u} + \vec{v} \text{ in } \mathbb{W})$,
- $\textcircled{O} \ \mathbb{W} \ closed \ wrt \ scalar \ mult \ (s \ scalar \ , \ \vec{v} \ in \ \mathbb{W} \ \Longrightarrow \ s\vec{v} \ in \ \mathbb{W}).$ Note that
 - (3) says that whenever \vec{w} is in \mathbb{W} , $Span{\vec{w}}$ lies in \mathbb{W} , and
 - (2) and (3) together say that any LC of vectors in \mathbb{W} is in \mathbb{W} .

Let $\mathbb V$ be a vector space. We call $\mathbb W$ a *vector subspace* of $\mathbb V$ if and only if

- 0 is in W,
- **2** \mathbb{W} closed wrt vector addition, $(\vec{u}, \vec{v} \text{ in } \mathbb{W} \implies \vec{u} + \vec{v} \text{ in } \mathbb{W})$,
- $\textcircled{O} \ \mathbb{W} \ closed \ wrt \ scalar \ mult \ (s \ scalar \ , \ \vec{v} \ in \ \mathbb{W} \ \Longrightarrow \ s\vec{v} \ in \ \mathbb{W}).$ Note that
 - (3) says that whenever \vec{w} is in \mathbb{W} , $Span\{\vec{w}\}$ lies in \mathbb{W} , and
 - (2) and (3) together say that any LC of vectors in \mathbb{W} is in \mathbb{W} .

Example (Basic Vector SubSpace)

For any $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_p}$ in a vector space \mathbb{V} , $\mathcal{S}pan\{\vec{v_1}, \vec{v_2}, \ldots, \vec{v_p}\}$ is the vector subspace of \mathbb{V} *spanned* by $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_p}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Column Space of a Matrix

Let $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \dots & \vec{a_n} \end{bmatrix}$ be an $m \times n$ matrix; so,

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Column Space of a Matrix

Let $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \dots & \vec{a_n} \end{bmatrix}$ be an $m \times n$ matrix; so, each $\vec{a_j}$ is in

A D > A B > A B > A

The column space CS(A) of A is the span of the columns of A, i.e.,

Column Space of a Matrix

Let $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \dots & \vec{a_n} \end{bmatrix}$ be an $m \times n$ matrix; so, each $\vec{a_j}$ is in \mathbb{R}^m .

The column space CS(A) of A is the span of the columns of A, i.e., $CS(A) = Span\{\vec{a_1}, \vec{a_2}, \dots, \vec{a_n}\};$

The column space CS(A) of A is the span of the columns of A, i.e., $CS(A) = Span\{\vec{a}_1, \vec{a}_2, ..., \vec{a}_n\}$; this is a vector subspace of \mathbb{R}^m .

The column space CS(A) of A is the span of the columns of A, i.e., $CS(A) = Span\{\vec{a}_1, \vec{a}_2, ..., \vec{a}_n\}$; this is a vector subspace of \mathbb{R}^m .

Three Ways to View CS(A)

The column space CS(A) of $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \dots & \vec{a_n} \end{bmatrix}$ is:

・ 同 ト ・ ヨ ト ・ ヨ ト

The column space CS(A) of A is the span of the columns of A, i.e., $CS(A) = Span\{\vec{a_1}, \vec{a_2}, \dots, \vec{a_n}\}$; this is a vector subspace of \mathbb{R}^m .

Three Ways to View CS(A)

The column space
$$CS(A)$$
 of $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \dots & \vec{a_n} \end{bmatrix}$ is:

•
$$\mathcal{CS}(A) = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$$

The column space CS(A) of A is the span of the columns of A, i.e., $CS(A) = Span\{\vec{a_1}, \vec{a_2}, \dots, \vec{a_n}\}$; this is a vector subspace of \mathbb{R}^m .

Three Ways to View CS(A)

The column space
$$CS(A)$$
 of $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \dots & \vec{a_n} \end{bmatrix}$ is:

•
$$\mathcal{CS}(A) = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$$

•
$$\mathcal{CS}(A) = \{ \vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution} \}$$

< 回 > < 三 > < 三 >

The column space CS(A) of A is the span of the columns of A, i.e., $CS(A) = Span\{\vec{a_1}, \vec{a_2}, \dots, \vec{a_n}\}$; this is a vector subspace of \mathbb{R}^m .

Three Ways to View CS(A)

The column space
$$CS(A)$$
 of $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \dots & \vec{a_n} \end{bmatrix}$ is:

•
$$\mathcal{CS}(A) = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$$

•
$$\mathcal{CS}(A) = \{ \vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution} \}$$

•
$$CS(A) = Rng(T)$$
 where $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$

The column space CS(A) of $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \dots & \vec{a_n} \end{bmatrix}$ is:

•
$$\mathcal{CS}(A) = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$$

•
$$\mathcal{CS}(A) = \{ \vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution} \}$$

• CS(A) = Rng(T) where $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The column space CS(A) of $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \dots & \vec{a_n} \end{bmatrix}$ is:

•
$$\mathcal{CS}(A) = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$$

•
$$\mathcal{CS}(A) = \{ \vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution} \}$$

•
$$CS(A) = Rng(T)$$
 where $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$

The column space CS(A) of $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \dots & \vec{a_n} \end{bmatrix}$ is:

•
$$\mathcal{CS}(A) = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$$

•
$$\mathcal{CS}(A) = \{ \vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution} \}$$

• CS(A) = Rng(T) where $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$

The column space CS(A) of $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \dots & \vec{a_n} \end{bmatrix}$ is:

•
$$\mathcal{CS}(A) = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$$

•
$$\mathcal{CS}(A) = \{ \vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution} \}$$

• CS(A) = Rng(T) where $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$

The column space CS(A) of $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \dots & \vec{a_n} \end{bmatrix}$ is:

•
$$\mathcal{CS}(A) = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$$

•
$$\mathcal{CS}(A) = \{ \vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution} \}$$

• CS(A) = Rng(T) where $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$

The column space CS(A) of $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \dots & \vec{a_n} \end{bmatrix}$ is:

•
$$\mathcal{CS}(A) = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$$

•
$$\mathcal{CS}(A) = \{ \vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution} \}$$

• $\mathcal{CS}(A) = \mathcal{R}ng(T)$ where $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$

The column space CS(A) of $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \dots & \vec{a_n} \end{bmatrix}$ is:

•
$$\mathcal{CS}(A) = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$$

•
$$\mathcal{CS}(A) = \{ \vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution} \}$$

• $\mathcal{CS}(A) = \mathcal{R}ng(T)$ where $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$

Again, let A be an $m \times n$ matrix.

<ロト < 回 > < 回 > 、 < 回 >

э

Again, let A be an $m \times n$ matrix. The null space $\mathcal{NS}(A)$ of A is

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Again, let A be an $m \times n$ matrix. The *null space* $\mathcal{NS}(A)$ of A is $\mathcal{NS}(A) = \{\vec{x} \mid A\vec{x} = \vec{0}\};$

3

(日) (同) (日) (日) (日)

Again, let A be an $m \times n$ matrix. The *null space* $\mathcal{NS}(A)$ of A is $\mathcal{NS}(A) = \{\vec{x} \mid A\vec{x} = \vec{0}\};$

just the solution set for the homogeneous equation $A\vec{x} = \vec{0}$.

Again, let A be an $m \times n$ matrix. The *null space* $\mathcal{NS}(A)$ of A is

$$\mathcal{NS}(A) = \{ \vec{x} \mid A\vec{x} = \vec{0} \};$$

just the solution set for the homogeneous equation $A\vec{x} = \vec{0}$. This is a vector subspace of

Again, let A be an $m \times n$ matrix. The *null space* $\mathcal{NS}(A)$ of A is

$$\mathcal{NS}(A) = \{\vec{x} \mid A\vec{x} = \vec{0}\};\$$

just the solution set for the homogeneous equation $A\vec{x} = \vec{0}$. This is a vector subspace of \mathbb{R}^n .

Again, let A be an $m \times n$ matrix. The *null space* $\mathcal{NS}(A)$ of A is $\mathcal{NS}(A) = \{\vec{x} \mid A\vec{x} = \vec{0}\};$

just the solution set for the homogeneous equation $A\vec{x} = \vec{0}$. This is a vector subspace of \mathbb{R}^n .

Null Space of a Matrix

Again, let A be an $m \times n$ matrix. The *null space* $\mathcal{NS}(A)$ of A is $\mathcal{NS}(A) = \{\vec{x} \mid A\vec{x} = \vec{0}\};$

just the solution set for the homogeneous equation $A\vec{x} = \vec{0}$. This is a vector subspace of \mathbb{R}^n .

Null Space of a Matrix

Again, let A be an $m \times n$ matrix. The *null space* $\mathcal{NS}(A)$ of A is $\mathcal{NS}(A) = \{\vec{x} \mid A\vec{x} = \vec{0}\};$

just the solution set for the homogeneous equation $A\vec{x} = \vec{0}$. This is a vector subspace of \mathbb{R}^n .

Null Space of a Matrix

Again, let A be an $m \times n$ matrix. The *null space* $\mathcal{NS}(A)$ of A is $\mathcal{NS}(A) = \{\vec{x} \mid A\vec{x} = \vec{0}\};$

just the solution set for the homogeneous equation $A\vec{x} = \vec{0}$. This is a vector subspace of \mathbb{R}^n .

 $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \dots & \vec{a_n} \end{bmatrix} \text{ an } m \times n \text{ matrix and } \mathbb{R}^n \xrightarrow{T} \mathbb{R}^m \text{ is } T(\vec{x}) = A\vec{x}$ $\mathcal{NS}(A) = \{ \vec{x} \mid A\vec{x} = \vec{0} \} \text{ and}$

 $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \dots & \vec{a_n} \end{bmatrix} \text{ an } m \times n \text{ matrix and } \mathbb{R}^n \xrightarrow{T} \mathbb{R}^m \text{ is } T(\vec{x}) = A\vec{x}$ $\mathcal{NS}(A) = \{ \vec{x} \mid A\vec{x} = \vec{0} \} \text{ and}$

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - の々で

 $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \dots & \vec{a_n} \end{bmatrix} \text{ an } m \times n \text{ matrix and } \mathbb{R}^n \xrightarrow{T} \mathbb{R}^m \text{ is } T(\vec{x}) = A\vec{x}$

$$NS(A) = \{\vec{x} \mid A\vec{x} = 0\} \text{ and} \\ CS(A) = Span\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\} \\ = \{\vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution}\} \\ = CS(A) = \mathcal{R}ng(T)$$

 $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \dots & \vec{a_n} \end{bmatrix} \text{ an } m \times n \text{ matrix and } \mathbb{R}^n \xrightarrow{T} \mathbb{R}^m \text{ is } T(\vec{x}) = A\vec{x}$

$$NS(A) = \{\vec{x} \mid A\vec{x} = 0\} \text{ and} \\ CS(A) = Span\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\} \\ = \{\vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution}\} \\ = CS(A) = \mathcal{R}ng(T)$$

 $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \dots & \vec{a}_n \end{bmatrix} \text{ an } m \times n \text{ matrix and } \mathbb{R}^n \xrightarrow{T} \mathbb{R}^m \text{ is } T(\vec{x}) = A\vec{x}$

$$\mathcal{NS}(A) = \{ \vec{x} \mid A\vec{x} = 0 \} \text{ and} \\ \mathcal{CS}(A) = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n \} \\ = \{ \vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution} \} \\ = \mathcal{CS}(A) = \mathcal{R}ng(T)$$

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - の々で

 $A = \begin{bmatrix} \vec{a_1} \ \vec{a_2} \ \dots \ \vec{a_n} \end{bmatrix}$ an $m \times n$ matrix and $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$

$$\mathcal{NS}(A) = \{ \vec{x} \mid A\vec{x} = \vec{0} \} \text{ and}$$
$$\mathcal{CS}(A) = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n \}$$
$$= \{ \vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution} \}$$
$$= \mathcal{CS}(A) = \mathcal{R}ng(T)$$

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - の々で

 $A = \begin{bmatrix} \vec{a_1} \ \vec{a_2} \ \dots \ \vec{a_n} \end{bmatrix}$ an $m \times n$ matrix and $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$

$$\mathcal{NS}(A) = \{ \vec{x} \mid A\vec{x} = \vec{0} \} \text{ and} \\ \mathcal{CS}(A) = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\} \\ = \{ \vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution} \} \\ = \mathcal{CS}(A) = \mathcal{R}ng(T)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

< 4 **₽** ► <

To "find" the null space \$\mathcal{NS}(A)\$ and column space \$\mathcal{CS}(A)\$ of a matrix \$A\$:
row reduce \$A\$ to \$E\$, a REF (or RREF) for \$A\$

• row reduce A to E, a REF (or RREF) for A

• columns of E containing row leaders correspond to pivot columns of A

- row reduce A to E, a REF (or RREF) for A
- columns of E containing row leaders correspond to pivot columns of A
- the *pivot* columns of A are LI and span CS(A)

- row reduce A to E, a REF (or RREF) for A
- columns of E containing row leaders correspond to pivot columns of A
- the *pivot* columns of A are LI and span CS(A)
- write the SS for $A\vec{x} = \vec{0}$ in parametric vector form

- row reduce A to E, a REF (or RREF) for A
- columns of E containing row leaders correspond to pivot columns of A
- the *pivot* columns of A are LI and span CS(A)
- write the SS for $A\vec{x} = \vec{0}$ in parametric vector form
- identify LI vectors that span $\mathcal{NS}(A)$

- row reduce A to E, a REF (or RREF) for A
- columns of E containing row leaders correspond to pivot columns of A
- the *pivot* columns of A are LI and span CS(A)
- write the SS for $A\vec{x} = \vec{0}$ in parametric vector form
- identify LI vectors that span $\mathcal{NS}(A)$
- So, "find" means to find a *linearly independent spanning* set.

• $\mathcal{NS}(A) = \{\vec{0}\}.$

イロト イポト イヨト イヨト

•
$$\mathcal{NS}(A) = \{\vec{0}\}.$$

• The only solution to $A\vec{x} = \vec{0}$ is $\vec{x} = \vec{0}$.

- $\mathcal{NS}(A) = \{\vec{0}\}.$
- The only solution to $A\vec{x} = \vec{0}$ is $\vec{x} = \vec{0}$.
- The columns of A are LI.

- $\mathcal{NS}(A) = \{\vec{0}\}.$
- The only solution to $A\vec{x} = \vec{0}$ is $\vec{x} = \vec{0}$.
- The columns of A are LI.
- The LT $\vec{x} \mapsto A\vec{x}$ is one-to-one.

Find the null space and column space of

$$A = \begin{bmatrix} 1 & -1 & 1 & 2 \\ 1 & 0 & 1 & 1 \\ 1 & 2 & 1 & -1 \end{bmatrix} \text{ and determine when } \vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \text{ belongs to } \mathcal{CS}(A).$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Vector Subspaces—Basic Fact

Recall that a collection V of vectors (in \mathbb{R}^n) is a *vector subspace* (of \mathbb{R}^n) if and only if

3

글 돈 옷 글 돈

< □ > < /□ > <</p>

Vector Subspaces—Basic Fact

Recall that a collection V of vectors (in \mathbb{R}^n) is a *vector subspace* (of \mathbb{R}^n) if and only if

• $\vec{0}$ is in \mathbb{V} ,

< □ > < A > >
- $\vec{0}$ is in \mathbb{V} ,
- \mathbb{V} closed with respect to vector addition

- $\vec{0}$ is in \mathbb{V} ,
- \mathbb{V} closed with respect to vector addition $(\vec{u}, \vec{v} \text{ in } \mathbb{V} \implies \vec{u} + \vec{v} \text{ in } \mathbb{V})$

- $\vec{0}$ is in \mathbb{V} ,
- \mathbb{V} closed with respect to vector addition $(\vec{u}, \vec{v} \text{ in } \mathbb{V} \implies \vec{u} + \vec{v} \text{ in } \mathbb{V})$
- \mathbb{V} closed with respect to scalar mult

- $\vec{0}$ is in \mathbb{V} ,
- \mathbb{V} closed with respect to vector addition $(\vec{u}, \vec{v} \text{ in } \mathbb{V} \implies \vec{u} + \vec{v} \text{ in } \mathbb{V})$
- \mathbb{V} closed with respect to scalar mult (s scalar, \vec{v} in $\mathbb{V} \implies s\vec{v}$ in \mathbb{V})

Recall that a collection V of vectors (in \mathbb{R}^n) is a *vector subspace* (of \mathbb{R}^n) if and only if

- $\vec{0}$ is in \mathbb{V} ,
- \mathbb{V} closed with respect to vector addition $(\vec{u}, \vec{v} \text{ in } \mathbb{V} \implies \vec{u} + \vec{v} \text{ in } \mathbb{V})$
- \mathbb{V} closed with respect to scalar mult (s scalar, \vec{v} in $\mathbb{V} \implies s\vec{v}$ in \mathbb{V})

If $\mathbb V$ is a vector subspace; $\vec{v_1}, \vec{v_2}, \dots, \vec{v_p}$ in $\mathbb V$; s_1, s_2, \dots, s_p are scalars: then

Recall that a collection V of vectors (in \mathbb{R}^n) is a *vector subspace* (of \mathbb{R}^n) if and only if

- $\vec{0}$ is in \mathbb{V} ,
- \mathbb{V} closed with respect to vector addition $(\vec{u}, \vec{v} \text{ in } \mathbb{V} \implies \vec{u} + \vec{v} \text{ in } \mathbb{V})$
- \mathbb{V} closed with respect to scalar mult (s scalar, \vec{v} in $\mathbb{V} \implies s\vec{v}$ in \mathbb{V})

If \mathbb{V} is a vector subspace; $\vec{v_1}, \vec{v_2}, \dots, \vec{v_p}$ in \mathbb{V} ; s_1, s_2, \dots, s_p are scalars: then $s_1\vec{v_1}, s_2\vec{v_2}, \dots, s_p\vec{v_p}$ are all in \mathbb{V} , so

Recall that a collection V of vectors (in \mathbb{R}^n) is a *vector subspace* (of \mathbb{R}^n) if and only if

- $\vec{0}$ is in \mathbb{V} ,
- \mathbb{V} closed with respect to vector addition $(\vec{u}, \vec{v} \text{ in } \mathbb{V} \implies \vec{u} + \vec{v} \text{ in } \mathbb{V})$
- \mathbb{V} closed with respect to scalar mult (s scalar, \vec{v} in $\mathbb{V} \implies s\vec{v}$ in \mathbb{V})

If \mathbb{V} is a vector subspace; $\vec{v_1}, \vec{v_2}, \dots, \vec{v_p}$ in \mathbb{V} ; s_1, s_2, \dots, s_p are scalars: then $s_1\vec{v_1}, s_2\vec{v_2}, \dots, s_p\vec{v_p}$ are all in \mathbb{V} , so $s_1\vec{v_1} + s_2\vec{v_2} + \dots + s_p\vec{v_p}$ is in \mathbb{V} .

> < (10) > < (10) > < (10) >

Recall that a collection V of vectors (in \mathbb{R}^n) is a *vector subspace* (of \mathbb{R}^n) if and only if

- $\vec{0}$ is in \mathbb{V} ,
- \mathbb{V} closed with respect to vector addition $(\vec{u}, \vec{v} \text{ in } \mathbb{V} \implies \vec{u} + \vec{v} \text{ in } \mathbb{V})$
- \mathbb{V} closed with respect to scalar mult (s scalar, \vec{v} in $\mathbb{V} \implies s\vec{v}$ in \mathbb{V})

If \mathbb{V} is a vector subspace; $\vec{v_1}, \vec{v_2}, \dots, \vec{v_p}$ in \mathbb{V} ; s_1, s_2, \dots, s_p are scalars: then $s_1\vec{v_1}, s_2\vec{v_2}, \dots, s_p\vec{v_p}$ are all in \mathbb{V} , so $s_1\vec{v_1} + s_2\vec{v_2} + \dots + s_p\vec{v_p}$ is in \mathbb{V} .

Any LC of vectors in a VSS V is a vector in V!

> < </p>

Recall that a collection V of vectors (in \mathbb{R}^n) is a *vector subspace* (of \mathbb{R}^n) if and only if

- $\vec{0}$ is in \mathbb{V} ,
- \mathbb{V} closed with respect to vector addition $(\vec{u}, \vec{v} \text{ in } \mathbb{V} \implies \vec{u} + \vec{v} \text{ in } \mathbb{V})$
- \mathbb{V} closed with respect to scalar mult (s scalar, \vec{v} in $\mathbb{V} \implies s\vec{v}$ in \mathbb{V})
- If \mathbb{V} is a vector subspace; $\vec{v_1}, \vec{v_2}, \dots, \vec{v_p}$ in \mathbb{V} ; s_1, s_2, \dots, s_p are scalars: then $s_1\vec{v_1}, s_2\vec{v_2}, \dots, s_p\vec{v_p}$ are all in \mathbb{V} , so $s_1\vec{v_1} + s_2\vec{v_2} + \dots + s_p\vec{v_p}$ is in \mathbb{V} .

Any LC of vectors in a VSS V is a vector in V!

Basic Fact about Vector SubSpaces

Let \mathbb{V} be a vector subspace. Suppose $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_p}$ are in \mathbb{V} . Then each vector in $Span{\vec{v_1}, \vec{v_2}, \ldots, \vec{v_p}}$ lies in \mathbb{V} .

11 / 11

• $\mathbb{V} = \{0\}$, or

•
$$\mathbb{V} = \{0\}$$
, or

•
$$\mathbb{V}=\mathbb{R}^2$$
, or

- $\mathbb{V} = \{0\}$, or
- $\mathbb{V}=\mathbb{R}^2$, or
- $\mathbb V$ is a line thru $\vec 0.$

< 🗗 🕨

- $\mathbb{V} = \{0\}$, or
- $\mathbb{V}=\mathbb{R}^3$, or
- ${\scriptstyle \bullet}~ \mathbb V$ is a line thru $\vec 0,$ or

- $\mathbb{V} = \{0\}$, or
- $\mathbb{V}=\mathbb{R}^3$, or
- $\bullet~\mathbb{V}$ is a line thru $\vec{0},$ or
- $\mathbb V$ is a plane thru $\vec 0.$

- $\mathbb{V} = \{0\}$, or
- $\mathbb{V} = \mathbb{R}^n$, or
- $\bullet~\mathbb{V}$ is a line thru $\vec{0},$ or

< 4 **1 1** ► <

- $\mathbb{V} = \{0\}$, or
- $\mathbb{V} = \mathbb{R}^n$, or
- $\bullet~\mathbb{V}$ is a line thru $\vec{0},$ or
- \mathbb{V} is a k-plane thru $\vec{0}$ (for some 1 < k < n).