Vector Subspaces of \mathbb{R}^n Column Space & Null Space

> Linear Algebra MATH 2076

Vector SubSpace of a Vector Space

Let $\mathbb V$ be a vector space. Recall that $\mathbb W$ a vector subspace of $\mathbb V$ if and only if

- ❶ ổ is in ₩
- **2** \mathbb{W} closed wrt vector addition $(\vec{u}, \vec{v} \text{ in } \mathbb{W} \implies \vec{u} + \vec{v} \text{ in } \mathbb{W})$
- $I W closed wrt scalar mult (s scalar, <math>\vec{v} \text{ in } W \implies s\vec{v} \text{ in } W).$

Example (Basic Vector SubSpace)

For any $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_p}$ in a vector space \mathbb{V} , $\mathcal{S}pan\{\vec{v_1}, \vec{v_2}, \ldots, \vec{v_p}\}$ is the vector subspace of \mathbb{V} *spanned* by $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_p}$.

Basic Fact about Vector SubSpaces

Let \mathbb{W} be a vector subspace of a vector space \mathbb{V} . Suppose $\vec{w_1}, \vec{w_2}, \ldots, \vec{w_p}$ are in \mathbb{W} . Then $Span{\vec{w_1}, \vec{w_2}, \ldots, \vec{w_p}}$ is a vector subspace of \mathbb{W} .

Let $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \dots & \vec{a_n} \end{bmatrix}$ be an $m \times n$ matrix; so, each $\vec{a_j}$ is in \mathbb{R}^m .

The column space CS(A) of A is the span of the columns of A, i.e., $CS(A) = Span\{\vec{a_1}, \vec{a_2}, \dots, \vec{a_n}\}$; this is a vector subspace of \mathbb{R}^m .

Three Ways to View CS(A)

The column space
$$CS(A)$$
 of $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \dots & \vec{a_n} \end{bmatrix}$ is:

•
$$\mathcal{CS}(A) = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$$

•
$$\mathcal{CS}(A) = \{ \vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution} \}$$

•
$$CS(A) = Rng(T)$$
 where $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$

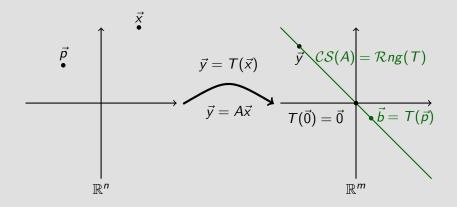
Three Ways to View the Column Space CS(A)

The column space CS(A) of $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \dots & \vec{a_n} \end{bmatrix}$ is:

•
$$CS(A) = Span\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$$

•
$$CS(A) = \{b \text{ in } \mathbb{R}^m \mid A\vec{x} = b \text{ has a solution}\}$$

•
$$\mathcal{CS}(A) = \mathcal{R}ng(T)$$
 where $\mathbb{R}^n \xrightarrow{I} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$

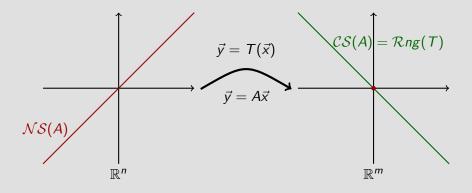


Null Space of a Matrix

Again, let A be an $m \times n$ matrix. The null space $\mathcal{NS}(A)$ of A is

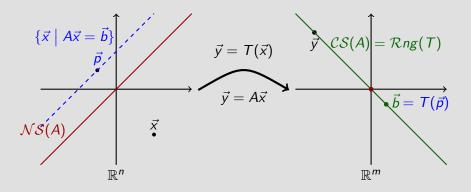
$$\mathcal{NS}(A) = \{\vec{x} \mid A\vec{x} = \vec{0}\}$$

which is the solution set for the homogeneous equation $A\vec{x} = \vec{0}$. This is a vector subspace of \mathbb{R}^n .



 $A = \begin{bmatrix} \vec{a_1} \ \vec{a_2} \ \dots \ \vec{a_n} \end{bmatrix}$ an $m \times n$ matrix and $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$

$$\mathcal{NS}(A) = \{ \vec{x} \mid A\vec{x} = \vec{0} \} \text{ and}$$
$$\mathcal{CS}(A) = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$$
$$= \{ \vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution} \}$$
$$= \mathcal{R}ng(T)$$



"Finding" Null Space and Column Space

To "find" the null space $\mathcal{NS}(A)$ and column space $\mathcal{CS}(A)$ of a matrix A:

- row reduce A to E, a REF (or RREF) for A
- columns of E containing row leaders correspond to pivot columns of A
- the *pivot* columns of A are LI and span CS(A)
- write the SS for $A\vec{x} = \vec{0}$ in parametric vector form
- identify LI vectors that span $\mathcal{NS}(A)$

So, "find" means to find a *linearly independent spanning* set. Such a set—a *linearly independent spanning set*—is called a *basis*.

7 / 10

For any matrix A, these are equivalent:

- $\mathcal{NS}(A) = \{\vec{0}\}.$
- The only solution to $A\vec{x} = \vec{0}$ is $\vec{x} = \vec{0}$.
- The columns of A are LI.
- The LT $\vec{x} \mapsto A\vec{x}$ is one-to-one.

Find the null space and column space of

$$A = \begin{bmatrix} 1 & -1 & 1 & 2 \\ 1 & 0 & 1 & 1 \\ 1 & 2 & 1 & -1 \end{bmatrix} \text{ and determine when } \vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \text{ belongs to } \mathcal{CS}(A).$$

Please study the table on page 206 in the textbook! This is full of excellent info, and you should understand all of what is written there.

Also, please review **all** that we did back in Chapter 2, Section 8. There are four videos, but you can review by looking at the associated pdfs.