Vector Spaces and SubSpaces

Linear Algebra MATH 2076

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

A *vector space* is a "bunch" of objects—that we call *vectors*—with the properties that we can add any two vectors and we can multiply any vector by any scalar.

Let $\ensuremath{\mathbb{V}}$ be a set. Suppose we have a way of

 $\bullet\,$ adding any two elements of $\mathbb V$

 $\bullet\,$ multiplying any element of $\mathbb V$ by any scalar That is,

• given \vec{v} and \vec{w} in \mathbb{V} , there is a $\vec{v} + \vec{w}$ in \mathbb{V}

• given \vec{v} in \mathbb{V} and any scalar *s*, there is a $s\vec{v}$ in \mathbb{V} Then we call \mathbb{V} a *vector space*, provided certain axioms hold. Some simple examples:

- **0** \mathbb{R}^n is a vector space $\ddot{-}$
- **2** $\mathbb{R}^{m \times n}$ is the vector space of all $m \times n$ matrices (given $m \times n$ matrices A and B, we know what A + B and sA are, right?)
- **③** \mathbb{C}^n is a vector space (here the coordinates are complex numbers)
- **4** Any vector subspace of \mathbb{R}^n is itself a vector space, right?
- **3** $\mathbb{R}^{\infty} = \{(x_n)_{n=1}^{\infty}\}$ is the vector space of all sequences (of real numbers)

Let \mathcal{X} be any set, and let $\mathbb{F}(\mathcal{X} \to \mathbb{R})$ be the family of all functions with domain \mathcal{X} and codomain \mathbb{R} .

Let \mathcal{X} be any set, and let $\mathbb{F}(\mathcal{X} \to \mathbb{R})$ be the family of all functions with domain \mathcal{X} and codomain \mathbb{R} .

Thus each object **f** in \mathbb{F} is a function $\mathcal{X} \xrightarrow{\mathbf{f}} \mathbb{R}$.

Let \mathcal{X} be any set, and let $\mathbb{F}(\mathcal{X} \to \mathbb{R})$ be the family of all functions with domain \mathcal{X} and codomain \mathbb{R} .

Thus each object **f** in \mathbb{F} is a function $\mathcal{X} \xrightarrow{\mathbf{f}} \mathbb{R}$.

Now let f and g be elements of \mathbb{F} . Can we: add?

Let \mathcal{X} be any set, and let $\mathbb{F}(\mathcal{X} \to \mathbb{R})$ be the family of all functions with domain \mathcal{X} and codomain \mathbb{R} .

Thus each object **f** in \mathbb{F} is a function $\mathcal{X} \xrightarrow{\mathbf{f}} \mathbb{R}$.

Now let f and g be elements of \mathbb{F} . Can we: add? multiply by scalars?

Let \mathcal{X} be any set, and let $\mathbb{F}(\mathcal{X} \to \mathbb{R})$ be the family of all functions with domain \mathcal{X} and codomain \mathbb{R} .

Thus each object **f** in \mathbb{F} is a function $\mathcal{X} \xrightarrow{f} \mathbb{R}$.

Now let f and g be elements of \mathbb{F} . Can we: add? multiply by scalars?

Let's define $\boldsymbol{f} + \boldsymbol{g}$ by the formula

Let \mathcal{X} be any set, and let $\mathbb{F}(\mathcal{X} \to \mathbb{R})$ be the family of all functions with domain \mathcal{X} and codomain \mathbb{R} .

Thus each object f in \mathbb{F} is a function $\mathcal{X} \xrightarrow{f} \mathbb{R}$.

Now let f and g be elements of \mathbb{F} . Can we: add? multiply by scalars?

Let's define f + g by the formula for each x in \mathcal{X} , (f + g)(x) := f(x) + g(x)

Let \mathcal{X} be any set, and let $\mathbb{F}(\mathcal{X} \to \mathbb{R})$ be the family of all functions with domain \mathcal{X} and codomain \mathbb{R} .

Thus each object **f** in \mathbb{F} is a function $\mathcal{X} \xrightarrow{f} \mathbb{R}$.

Now let f and g be elements of \mathbb{F} . Can we: add? multiply by scalars?

Let's define f + g by the formula for each x in \mathcal{X} , (f + g)(x) := f(x) + g(x)and then define sf by the formula

Let \mathcal{X} be any set, and let $\mathbb{F}(\mathcal{X} \to \mathbb{R})$ be the family of all functions with domain \mathcal{X} and codomain \mathbb{R} .

Thus each object **f** in \mathbb{F} is a function $\mathcal{X} \xrightarrow{f} \mathbb{R}$.

Now let f and g be elements of \mathbb{F} . Can we: add? multiply by scalars?

Let's define $\mathbf{f} + \mathbf{g}$ by the formula for each x in \mathcal{X} , $(\mathbf{f} + \mathbf{g})(x) := \mathbf{f}(x) + \mathbf{g}(x)$ and then define $s\mathbf{f}$ by the formula for each x in \mathcal{X} , $(s\mathbf{f})(x) := s\mathbf{f}(x)$.

Let \mathcal{X} be any set, and let $\mathbb{F}(\mathcal{X} \to \mathbb{R})$ be the family of all functions with domain \mathcal{X} and codomain \mathbb{R} .

Thus each object **f** in \mathbb{F} is a function $\mathcal{X} \xrightarrow{f} \mathbb{R}$.

Now let f and g be elements of \mathbb{F} . Can we: add? multiply by scalars?

Let's define $\mathbf{f} + \mathbf{g}$ by the formula for each x in \mathcal{X} , $(\mathbf{f} + \mathbf{g})(x) := \mathbf{f}(x) + \mathbf{g}(x)$ and then define $s\mathbf{f}$ by the formula for each x in \mathcal{X} , $(s\mathbf{f})(x) := s\mathbf{f}(x)$.

With these ways of adding and multiplying by scalars,

Let \mathcal{X} be any set, and let $\mathbb{F}(\mathcal{X} \to \mathbb{R})$ be the family of all functions with domain \mathcal{X} and codomain \mathbb{R} .

Thus each object **f** in \mathbb{F} is a function $\mathcal{X} \xrightarrow{f} \mathbb{R}$.

Now let f and g be elements of \mathbb{F} . Can we: add? multiply by scalars?

Let's define f + g by the formula for each x in \mathcal{X} , (f + g)(x) := f(x) + g(x)and then define sf by the formula for each x in \mathcal{X} , (sf)(x) := sf(x).

With these ways of adding and multiplying by scalars, the family

$$\mathbb{F}(\mathcal{X} \to \mathbb{R}) = \left\{ \mathsf{all} \ \boldsymbol{f} \text{ with } \mathcal{X} \xrightarrow{\boldsymbol{f}} \mathbb{R} \right\}$$

of real-valued functions on $\mathcal X$ becomes a vector space.

Section 4.1.B

イロト 不聞と 不良と 不良と

Let \mathbb{V} be a vector space.

A D > A P > A B > A

Let $\mathbb V$ be a vector space. We call $\mathbb W$ a *vector subspace* of $\mathbb V$ if and only if

Let \mathbb{V} be a vector space. We call \mathbb{W} a *vector subspace* of \mathbb{V} if and only if **0** $\vec{0}$ is in \mathbb{W} ,

Let \mathbb{V} be a vector space. We call \mathbb{W} a *vector subspace* of \mathbb{V} if and only if

- $0 \vec{0} is in \mathbb{W},$
- 2 W closed wrt vector addition,

Let $\mathbb V$ be a vector space. We call $\mathbb W$ a vector subspace of $\mathbb V$ if and only if

- 0 is in W,
- **2** \mathbb{W} closed wrt vector addition, $(\vec{u}, \vec{v} \text{ in } \mathbb{W} \implies \vec{u} + \vec{v} \text{ in } \mathbb{W})$,

Let \mathbb{V} be a vector space. We call \mathbb{W} a *vector subspace* of \mathbb{V} if and only if

- $0 \vec{0} is in W,$
- **2** \mathbb{W} closed wrt vector addition, $(\vec{u}, \vec{v} \text{ in } \mathbb{W} \implies \vec{u} + \vec{v} \text{ in } \mathbb{W})$,
- I w closed wrt scalar mult

.

Let $\mathbb V$ be a vector space. We call $\mathbb W$ a *vector subspace* of $\mathbb V$ if and only if

- $\vec{0}$ is in \mathbb{W} ,
- **2** \mathbb{W} closed wrt vector addition, $(\vec{u}, \vec{v} \text{ in } \mathbb{W} \implies \vec{u} + \vec{v} \text{ in } \mathbb{W})$,
- **3** \mathbb{W} closed wrt scalar mult (s scalar, \vec{v} in $\mathbb{W} \implies s\vec{v}$ in \mathbb{W}).

Let $\mathbb V$ be a vector space. We call $\mathbb W$ a *vector subspace* of $\mathbb V$ if and only if

- $\vec{0}$ is in \mathbb{W} ,
- **2** \mathbb{W} closed wrt vector addition, $(\vec{u}, \vec{v} \text{ in } \mathbb{W} \implies \vec{u} + \vec{v} \text{ in } \mathbb{W})$,

 $\textcircled{O} \ \mathbb{W} \ closed \ wrt \ scalar \ mult \ (s \ scalar \ , \ \vec{v} \ in \ \mathbb{W} \ \Longrightarrow \ s\vec{v} \ in \ \mathbb{W}).$ Note that

Let $\mathbb V$ be a vector space. We call $\mathbb W$ a *vector subspace* of $\mathbb V$ if and only if

- 0 is in W,
- **2** \mathbb{W} closed wrt vector addition, $(\vec{u}, \vec{v} \text{ in } \mathbb{W} \implies \vec{u} + \vec{v} \text{ in } \mathbb{W})$,
- $\textcircled{O} \ \mathbb{W} \ closed \ wrt \ scalar \ mult \ (s \ scalar \ , \ \vec{v} \ in \ \mathbb{W} \ \Longrightarrow \ s\vec{v} \ in \ \mathbb{W}).$ Note that
 - (3) says that whenever \vec{w} is in \mathbb{W} , $Span{\vec{w}}$ lies in \mathbb{W} , and

Let $\mathbb V$ be a vector space. We call $\mathbb W$ a *vector subspace* of $\mathbb V$ if and only if

- 0 is in W,
- **2** \mathbb{W} closed wrt vector addition, $(\vec{u}, \vec{v} \text{ in } \mathbb{W} \implies \vec{u} + \vec{v} \text{ in } \mathbb{W})$,

 $\textcircled{O} \ \mathbb{W} \ closed \ wrt \ scalar \ mult \ (s \ scalar \ , \ \vec{v} \ in \ \mathbb{W} \ \Longrightarrow \ s\vec{v} \ in \ \mathbb{W}).$ Note that

- (3) says that whenever \vec{w} is in \mathbb{W} , $Span{\vec{w}}$ lies in \mathbb{W} , and
- (2) and (3) together say that any LC of vectors in \mathbb{W} is in \mathbb{W} .

Let $\mathbb V$ be a vector space. We call $\mathbb W$ a *vector subspace* of $\mathbb V$ if and only if

- $\vec{0}$ is in \mathbb{W} ,
- **2** \mathbb{W} closed wrt vector addition, $(\vec{u}, \vec{v} \text{ in } \mathbb{W} \implies \vec{u} + \vec{v} \text{ in } \mathbb{W})$,

 $\textcircled{O} \ \mathbb{W} \ closed \ wrt \ scalar \ mult \ (s \ scalar \ , \ \vec{v} \ in \ \mathbb{W} \ \Longrightarrow \ s\vec{v} \ in \ \mathbb{W}).$ Note that

- (3) says that whenever \vec{w} is in \mathbb{W} , $Span\{\vec{w}\}$ lies in \mathbb{W} , and
- (2) and (3) together say that any LC of vectors in $\mathbb W$ is in $\mathbb W$.

Basic Fact about Vector SubSpaces

Let \mathbb{W} be a vector subspace of a vector space \mathbb{V} . Suppose $\vec{w_1}, \vec{w_2}, \ldots, \vec{w_p}$ are in \mathbb{W} . Then $Span{\vec{w_1}, \vec{w_2}, \ldots, \vec{w_p}$ lies in \mathbb{W} .

イロト イヨト イヨト

Let $\mathbb V$ be a vector space. We call $\mathbb W$ a *vector subspace* of $\mathbb V$ if and only if

- 0 is in W,
- **2** \mathbb{W} closed wrt vector addition, $(\vec{u}, \vec{v} \text{ in } \mathbb{W} \implies \vec{u} + \vec{v} \text{ in } \mathbb{W})$,

 $\textcircled{O} \ \mathbb{W} \ closed \ wrt \ scalar \ mult \ (s \ scalar \ , \ \vec{v} \ in \ \mathbb{W} \ \Longrightarrow \ s\vec{v} \ in \ \mathbb{W}).$ Note that

- (3) says that whenever \vec{w} is in \mathbb{W} , $Span\{\vec{w}\}$ lies in \mathbb{W} , and
- (2) and (3) together say that any LC of vectors in $\mathbb W$ is in $\mathbb W$.

Basic Fact about Vector SubSpaces

Let \mathbb{W} be a vector subspace of a vector space \mathbb{V} . Suppose $\vec{w_1}, \vec{w_2}, \ldots, \vec{w_p}$ are in \mathbb{W} . Then $Span{\vec{w_1}, \vec{w_2}, \ldots, \vec{w_p}$ lies in \mathbb{W} .

Homework: Explain why this fact is true.

Section 4.1.B

メロン メロン メヨン

Let \mathbb{V} be a vector space.

0			Ē
Se	ction	4 1	в
00			-

.∃ →

A D > A P > A B > A

Let $\mathbb V$ be a vector space. Here are some simple examples of vector subspaces of $\mathbb V.$

< □ > < /□ > <</p>

Let $\mathbb V$ be a vector space. Here are some simple examples of vector subspaces of $\mathbb V.$

• $\mathbb{W} = \{\vec{0}\}$ is the *trivial* vector subspace

Let $\mathbb V$ be a vector space. Here are some simple examples of vector subspaces of $\mathbb V.$

- $\mathbb{W} = \{\vec{0}\}$ is the *trivial* vector subspace
- $\mathbb{W} = \mathbb{V}$ is a vector subspace of itself (also kinda *trivial*)

Let $\mathbb V$ be a vector space. Here are some simple examples of vector subspaces of $\mathbb V.$

- $\mathbb{W} = \{\vec{0}\}$ is the *trivial* vector subspace
- $\mathbb{W} = \mathbb{V}$ is a vector subspace of itself (also kinda *trivial*)
- $\mathbb{W} = Span\{\vec{v}\}$ (for any \vec{v} in \mathbb{V})

Let $\mathbb V$ be a vector space. Here are some simple examples of vector subspaces of $\mathbb V.$

- $\mathbb{W} = \{\vec{0}\}$ is the *trivial* vector subspace
- $\mathbb{W} = \mathbb{V}$ is a vector subspace of itself (also kinda *trivial*)
- $\mathbb{W} = Span\{\vec{v}\}$ (for any \vec{v} in \mathbb{V})
- $\mathbb{W} = Span\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ (for any $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$ in \mathbb{V})

Let $\mathbb V$ be a vector space. Here are some simple examples of vector subspaces of $\mathbb V.$

- $\mathbb{W} = \{\vec{0}\}$ is the *trivial* vector subspace
- $\mathbb{W} = \mathbb{V}$ is a vector subspace of itself (also kinda *trivial*)

•
$$\mathbb{W} = Span\{\vec{v}\}$$
 (for any \vec{v} in \mathbb{V})

• $\mathbb{W} = Span\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ (for any $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$ in \mathbb{V})

In the last example above, we call \mathbb{W} the subspace spanned by $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_p}$, and then $\{\vec{v_1}, \vec{v_2}, \ldots, \vec{v_p}\}$ is called a spanning set for \mathbb{W} .

Let $\mathbb V$ be a vector space. Here are some simple examples of vector subspaces of $\mathbb V.$

- $\mathbb{W} = \{\vec{0}\}$ is the *trivial* vector subspace
- $\mathbb{W} = \mathbb{V}$ is a vector subspace of itself (also kinda *trivial*)

•
$$\mathbb{W} = Span\{\vec{v}\}$$
 (for any \vec{v} in \mathbb{V})

• $\mathbb{W} = Span\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ (for any $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$ in \mathbb{V})

In the last example above, we call \mathbb{W} the subspace spanned by $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_p}$, and then $\{\vec{v_1}, \vec{v_2}, \ldots, \vec{v_p}\}$ is called a spanning set for \mathbb{W} .

Example (Basic Vector SubSpace)

For any $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_p}$ in a vector space \mathbb{V} , $\mathcal{S}pan\{\vec{v_1}, \vec{v_2}, \ldots, \vec{v_p}\}$ is the vector subspace of \mathbb{V} *spanned* by $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_p}$.

Vector Subspaces of $\mathbb{R}^{m \times n}$

Recall that $\mathbb{R}^{m \times n}$ is the vector space of all $m \times n$ matrices.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Recall that $\mathbb{R}^{m \times n}$ is the vector space of all $m \times n$ matrices. Which of the following are vectors subspaces of $\mathbb{R}^{n \times n}$?

イロト イポト イヨト イヨト

Recall that $\mathbb{R}^{m \times n}$ is the vector space of all $m \times n$ matrices. Which of the following are vectors subspaces of $\mathbb{R}^{n \times n}$? If not, why not?
• All upper triangular $n \times n$ matrices.

- All upper triangular $n \times n$ matrices.
- All invertible $n \times n$ matrices.

- All upper triangular $n \times n$ matrices.
- All invertible $n \times n$ matrices.
- All $n \times n$ matrices A with det(A) = 1.

- All upper triangular $n \times n$ matrices.
- All invertible $n \times n$ matrices.
- All $n \times n$ matrices A with det(A) = 1.
- All $n \times n$ matrices A with det(A) = 0.

- All upper triangular $n \times n$ matrices.
- All invertible $n \times n$ matrices.
- All $n \times n$ matrices A with det(A) = 1.
- All $n \times n$ matrices A with det(A) = 0.
- All $n \times n$ matrices A with $A^T = A$ (the symmetric matrices).

- All upper triangular $n \times n$ matrices.
- All invertible $n \times n$ matrices.
- All $n \times n$ matrices A with det(A) = 1.
- All $n \times n$ matrices A with det(A) = 0.
- All $n \times n$ matrices A with $A^T = A$ (the symmetric matrices).
- All $n \times n$ matrices A with $A^T = -A$ (the *skew-symmetric* matrices).

- All upper triangular $n \times n$ matrices.
- All invertible $n \times n$ matrices.
- All $n \times n$ matrices A with det(A) = 1.
- All $n \times n$ matrices A with det(A) = 0.
- All $n \times n$ matrices A with $A^T = A$ (the symmetric matrices).
- All $n \times n$ matrices A with $A^T = -A$ (the *skew-symmetric* matrices).

Can you find spanning sets for the vector subspaces?

Let $\mathbb{F} = \mathbb{F}(\mathbb{R} \to \mathbb{R}) = \{ \text{all } \mathbf{f} \text{ with } \mathbb{R} \xrightarrow{\mathbf{f}} \mathbb{R} \}$. This is a vector space with the usual ways of adding and multiplying by scalars:

Let $\mathbb{F} = \mathbb{F}(\mathbb{R} \to \mathbb{R}) = \{ \text{all } \mathbf{f} \text{ with } \mathbb{R} \xrightarrow{\mathbf{f}} \mathbb{R} \}$. This is a vector space with the usual ways of adding and multiplying by scalars:

• **f** + **g** is defined by

< < p>< < p>

Let $\mathbb{F} = \mathbb{F}(\mathbb{R} \to \mathbb{R}) = \{ \text{all } \mathbf{f} \text{ with } \mathbb{R} \xrightarrow{\mathbf{f}} \mathbb{R} \}$. This is a vector space with the usual ways of adding and multiplying by scalars:

• **f** + **g** is defined by

for each t in \mathbb{R} , $(\boldsymbol{f} + \boldsymbol{g})(t) := \boldsymbol{f}(t) + \boldsymbol{g}(t)$

Let $\mathbb{F} = \mathbb{F}(\mathbb{R} \to \mathbb{R}) = \{ \text{all } \mathbf{f} \text{ with } \mathbb{R} \xrightarrow{\mathbf{f}} \mathbb{R} \}$. This is a vector space with the usual ways of adding and multiplying by scalars:

•
$$f + g$$
 is defined by
for each t in \mathbb{R} , $(f + g)(t) := f(t) + g(t)$

and sf is defined by

Let $\mathbb{F} = \mathbb{F}(\mathbb{R} \to \mathbb{R}) = \{ \text{all } \mathbf{f} \text{ with } \mathbb{R} \xrightarrow{\mathbf{f}} \mathbb{R} \}$. This is a vector space with the usual ways of adding and multiplying by scalars:

for each t in \mathbb{R} , (sf)(t) := sf(t).

Let $\mathbb{F} = \mathbb{F}(\mathbb{R} \to \mathbb{R}) = \{ \text{all } \mathbf{f} \text{ with } \mathbb{R} \xrightarrow{\mathbf{f}} \mathbb{R} \}$. This is a vector space with the usual ways of adding and multiplying by scalars:

• f + g is defined by for each t in \mathbb{R} , (f + g)(t) := f(t) + g(t)

and sf is defined by

for each t in \mathbb{R} , (sf)(t) := sf(t).

Notice that we use t for our variable instead of x.

Let $\mathbb{F} = \mathbb{F}(\mathbb{R} \to \mathbb{R}) = \{ \text{all } \mathbf{f} \text{ with } \mathbb{R} \xrightarrow{\mathbf{f}} \mathbb{R} \}$. This is a vector space with the usual ways of adding and multiplying by scalars:

• f + g is defined by for each t in \mathbb{R} , (f + g)(t) := f(t) + g(t)

and sf is defined by

for each t in \mathbb{R} , (sf)(t) := sf(t).

Notice that we use t for our variable instead of x.

Here are some important vector subspaces of \mathbb{F} .

Let $\mathbb{F} = \mathbb{F}(\mathbb{R} \to \mathbb{R}) = \{ \text{all } \mathbf{f} \text{ with } \mathbb{R} \xrightarrow{\mathbf{f}} \mathbb{R} \}$. This is a vector space with the usual ways of adding and multiplying by scalars:

• f + g is defined by for each t in \mathbb{R} , (f + g)(t) := f(t) + g(t)

and sf is defined by

for each t in \mathbb{R} , (sf)(t) := sf(t).

Notice that we use t for our variable instead of x.

Here are some important vector subspaces of \mathbb{F} .

• {all continuous f in \mathbb{F} }.

Let $\mathbb{F} = \mathbb{F}(\mathbb{R} \to \mathbb{R}) = \{ \text{all } \mathbf{f} \text{ with } \mathbb{R} \xrightarrow{\mathbf{f}} \mathbb{R} \}$. This is a vector space with the usual ways of adding and multiplying by scalars:

•
$$f + g$$
 is defined by
for each t in \mathbb{R} , $(f + g)(t) := f(t) + g(t)$

- and sf is defined by
 - for each t in \mathbb{R} , (sf)(t) := sf(t).

Notice that we use t for our variable instead of x.

- {all continuous f in \mathbb{F} }.
- {all differentiable f in \mathbb{F} }.

Let $\mathbb{F} = \mathbb{F}(\mathbb{R} \to \mathbb{R}) = \{ \text{all } \mathbf{f} \text{ with } \mathbb{R} \xrightarrow{\mathbf{f}} \mathbb{R} \}$. This is a vector space with the usual ways of adding and multiplying by scalars:

• f + g is defined by for each t in \mathbb{R} , (f + g)(t) := f(t) + g(t)

and sf is defined by

for each t in \mathbb{R} , (sf)(t) := sf(t).

Notice that we use t for our variable instead of x.

- {all continuous f in \mathbb{F} }.
- {all differentiable f in \mathbb{F} }.
- {all twice differentiable f in \mathbb{F} }.

Let $\mathbb{F} = \mathbb{F}(\mathbb{R} \to \mathbb{R}) = \{ \text{all } \mathbf{f} \text{ with } \mathbb{R} \xrightarrow{\mathbf{f}} \mathbb{R} \}$. This is a vector space with the usual ways of adding and multiplying by scalars:

•
$$f + g$$
 is defined by
for each t in \mathbb{R} , $(f + g)(t) := f(t) + g(t)$

and sf is defined by

for each
$$t$$
 in \mathbb{R} , $(sf)(t) := sf(t)$.

Notice that we use t for our variable instead of x.

Here are some important vector subspaces of $\ensuremath{\mathbb{F}}.$

- {all continuous f in \mathbb{F} }.
- {all differentiable f in \mathbb{F} }.
- {all twice differentiable f in \mathbb{F} }.

• Span{e^t}

Let $\mathbb{F} = \mathbb{F}(\mathbb{R} \to \mathbb{R}) = \{ \text{all } \mathbf{f} \text{ with } \mathbb{R} \xrightarrow{\mathbf{f}} \mathbb{R} \}$. This is a vector space with the usual ways of adding and multiplying by scalars:

• f + g is defined by for each t in \mathbb{R} , (f + g)(t) := f(t) + g(t)

and sf is defined by

for each t in \mathbb{R} , (sf)(t) := sf(t).

Notice that we use t for our variable instead of x.

- {all continuous f in \mathbb{F} }.
- {all differentiable f in \mathbb{F} }.
- {all twice differentiable f in \mathbb{F} }.
- $Span\{e^t\}$ (the solution set to y' = y)

Let $\mathbb{F} = \mathbb{F}(\mathbb{R} \to \mathbb{R}) = \{ \text{all } \mathbf{f} \text{ with } \mathbb{R} \xrightarrow{\mathbf{f}} \mathbb{R} \}$. This is a vector space with the usual ways of adding and multiplying by scalars:

• f + g is defined by for each t in \mathbb{R} , (f + g)(t) := f(t) + g(t)

and sf is defined by

for each t in \mathbb{R} , (sf)(t) := sf(t).

Notice that we use t for our variable instead of x.

- {all continuous f in \mathbb{F} }.
- {all differentiable f in \mathbb{F} }.
- {all twice differentiable f in \mathbb{F} }.
- $Span\{e^t\}$ (the solution set to y' = y)
- $Span\{e^t, e^{-t}\}$

Let $\mathbb{F} = \mathbb{F}(\mathbb{R} \to \mathbb{R}) = \{ \text{all } \mathbf{f} \text{ with } \mathbb{R} \xrightarrow{\mathbf{f}} \mathbb{R} \}$. This is a vector space with the usual ways of adding and multiplying by scalars:

• f + g is defined by for each t in \mathbb{R} , (f + g)(t) := f(t) + g(t)

and sf is defined by

for each t in \mathbb{R} , (sf)(t) := sf(t).

Notice that we use t for our variable instead of x.

- {all continuous f in \mathbb{F} }.
- {all differentiable f in \mathbb{F} }.
- {all twice differentiable f in \mathbb{F} }.
- $Span\{e^t\}$ (the solution set to y' = y)
- $Span\{e^t, e^{-t}\}$ (the solution set to y'' = y)

Let $\mathbb{F} = \mathbb{F}(\mathbb{R} \to \mathbb{R}) = \{ \text{all } \mathbf{f} \text{ with } \mathbb{R} \xrightarrow{\mathbf{f}} \mathbb{R} \}$. This is a vector space with the usual ways of adding and multiplying by scalars:

• f + g is defined by for each t in \mathbb{R} , (f + g)(t) := f(t) + g(t)

and sf is defined by

for each t in \mathbb{R} , (sf)(t) := sf(t).

Notice that we use t for our variable instead of x.

- {all continuous f in \mathbb{F} }.
- {all differentiable f in \mathbb{F} }.
- {all twice differentiable f in \mathbb{F} }.
- $Span\{e^t\}$ (the solution set to y' = y)
- $Span\{e^t, e^{-t}\}$ (the solution set to y'' = y)
- $Span{cos(t), sin(t)}$

Let $\mathbb{F} = \mathbb{F}(\mathbb{R} \to \mathbb{R}) = \{ \text{all } \mathbf{f} \text{ with } \mathbb{R} \xrightarrow{\mathbf{f}} \mathbb{R} \}$. This is a vector space with the usual ways of adding and multiplying by scalars:

• f + g is defined by for each t in \mathbb{R} , (f + g)(t) := f(t) + g(t)

and sf is defined by

for each t in \mathbb{R} , (sf)(t) := sf(t).

Notice that we use t for our variable instead of x.

Here are some important vector subspaces of $\ensuremath{\mathbb{F}}.$

- {all continuous f in \mathbb{F} }.
- {all differentiable f in \mathbb{F} }.
- {all twice differentiable f in \mathbb{F} }.
- $Span\{e^t\}$ (the solution set to y' = y)
- $Span\{e^t, e^{-t}\}$ (the solution set to y'' = y)

• $Span\{\cos(t), \sin(t)\}$ (the solution set to y'' + y = 0)

The Space of all Polynomials

Let \mathbb{P} be the family of all *polynomials*.

Image: A match a ma

The Space of all Polynomials

Let \mathbb{P} be the family of all *polynomials*. Thus **p** is in \mathbb{P} if and only if **p** is a function of the form

< < p>< < p>

The Space of all Polynomials

Let \mathbb{P} be the family of all *polynomials*. Thus **p** is in \mathbb{P} if and only if **p** is a function of the form

$$p(t) = c_0 + c_1 t + c_2 t^2 + \cdots + c_n t^n.$$

Let \mathbb{P} be the family of all *polynomials*. Thus **p** is in \mathbb{P} if and only if **p** is a function of the form

$$p(t) = c_0 + c_1 t + c_2 t^2 + \dots + c_n t^n.$$

Here c_0, c_1, \ldots, c_n are constants, called the *coefficients* of the polynomial p, and when $c_n \neq 0$ we say that p has *degree n*. (By definition, the zero polynomial has degree zero.)

Let \mathbb{P} be the family of all *polynomials*. Thus **p** is in \mathbb{P} if and only if **p** is a function of the form

$$p(t) = c_0 + c_1 t + c_2 t^2 + \cdots + c_n t^n.$$

Here c_0, c_1, \ldots, c_n are constants, called the *coefficients* of the polynomial p, and when $c_n \neq 0$ we say that p has *degree n*. (By definition, the zero polynomial has degree zero.)

Clearly the sum p + q of two polys p and q is again a poly, as is any scalar multiple sp.

Let \mathbb{P} be the family of all *polynomials*. Thus **p** is in \mathbb{P} if and only if **p** is a function of the form

$$p(t) = c_0 + c_1 t + c_2 t^2 + \cdots + c_n t^n.$$

Here c_0, c_1, \ldots, c_n are constants, called the *coefficients* of the polynomial p, and when $c_n \neq 0$ we say that p has *degree n*. (By definition, the zero polynomial has degree zero.)

Clearly the sum p + q of two polys p and q is again a poly, as is any scalar multiple sp. Thus, \mathbb{P} is a vector subspace of \mathbb{F} .

Let $\mathbb P$ be the family of all *polynomials*. Thus \pmb{p} is in $\mathbb P$ if and only if \pmb{p} is a function of the form

$$p(t) = c_0 + c_1 t + c_2 t^2 + \cdots + c_n t^n.$$

Here c_0, c_1, \ldots, c_n are constants, called the *coefficients* of the polynomial p, and when $c_n \neq 0$ we say that p has *degree n*. (By definition, the zero polynomial has degree zero.)

Clearly the sum p + q of two polys p and q is again a poly, as is any scalar multiple sp. Thus, \mathbb{P} is a vector subspace of \mathbb{F} .

Of course, \mathbb{P} is also a vector space all by itself.

(日) (同) (三) (三) (三)

Subspaces of Polynomials

Let \mathbb{P} be the family of all *polynomials*.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Subspaces of Polynomials

Let \mathbb{P} be the family of all *polynomials*. Which of the following are vector subspaces of \mathbb{P} ? If not, why not?

イロト イポト イヨト イヨト

• All polynomials of degree n.

< A → <

- All polynomials of degree n.
- All polynomials of degree *n* or less.

- All polynomials of degree n.
- All polynomials of degree *n* or less.
- All polynomials of even degree.

- All polynomials of degree n.
- All polynomials of degree *n* or less.
- All polynomials of even degree.
- All polynomials of odd degree.
- All polynomials of degree n.
- All polynomials of degree *n* or less.
- All polynomials of even degree.
- All polynomials of odd degree.
- All polynomials \boldsymbol{p} with $\boldsymbol{p}(0) = 1$.

- All polynomials of degree n.
- All polynomials of degree *n* or less.
- All polynomials of even degree.
- All polynomials of odd degree.
- All polynomials \boldsymbol{p} with $\boldsymbol{p}(0) = 1$.
- All polynomials \boldsymbol{p} with $\boldsymbol{p}(0) = 0$.

- All polynomials of degree n.
- All polynomials of degree n or less. (We call this subspace \mathbb{P}_{n} .)
- All polynomials of even degree.
- All polynomials of odd degree.
- All polynomials \boldsymbol{p} with $\boldsymbol{p}(0) = 1$.
- All polynomials \boldsymbol{p} with $\boldsymbol{p}(0) = 0$.

- All polynomials of degree n.
- All polynomials of degree n or less. (We call this subspace \mathbb{P}_{n} .)
- All polynomials of even degree.
- All polynomials of odd degree.
- All polynomials \boldsymbol{p} with $\boldsymbol{p}(0) = 1$.
- All polynomials \boldsymbol{p} with $\boldsymbol{p}(0) = 0$.

Can you find spanning sets for the vector subspaces?