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What is a Vector Space?

A vector space is a “bunch” of objects—that we call vectors—with the
properties that we can add any two vectors and we can multiply any vector
by any scalar.

Let V be a set. Suppose we have a way of

adding any two elements of V

multiplying any element of V by any scalar

That is,

given ~v and ~w in V, there is a ~v + ~w in V

given ~v in V and any scalar s, there is a s~v in V
Then we call V a vector space, provided certain axioms hold.
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Examples of Vector Spaces

Some simple examples:

1 Rn is a vector space ¨̂

2 Rm×n is the vector space of all m × n matrices (given m × n matrices
A and B, we know what A + B and sA are, right?)

3 Cn is a vector space (here the coordinates are complex numbers)

4 Any vector subspace of Rn is itself a vector space, right?

5 R∞ = {(xn)∞n=1} is the vector space of all sequences (of real numbers)
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Fundamental Example of a Vector Space

Let X be any set, and let F(X → R) be the family of all functions with
domain X and codomain R.

Thus each object f in F is a function X f−→ R.

Now let f and g be elements of F. Can we: add? multiply by scalars?

Let’s define f + g by the formula
for each x in X ,

(
f + g

)
(x) := f (x) + g(x)

and then define sf by the formula
for each x in X ,

(
sf

)
(x) := sf (x).

With these ways of adding and multiplying by scalars, the family

F(X → R) =
{

all f with X f−→ R
}

of real-valued functions on X becomes a vector space.
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What is a SubSpace of a Vector Space?

Let V be a vector space.

We call W a vector subspace of V if and only if

1 ~0 is in W,

2 W closed wrt vector addition,

(~u, ~v in W =⇒ ~u + ~v in W),

3 W closed wrt scalar mult

(s scalar , ~v in W =⇒ s~v in W)

.

Note that

(3) says that whenever ~w is in W, Span{~w} lies in W, and

(2) and (3) together say that any LC of vectors in W is in W.

Basic Fact about Vector SubSpaces

Let W be a vector subspace of a vector space V. Suppose ~w1, ~w2, . . . , ~wp

are in W. Then Span{~w1, ~w2, . . . , ~wp} lies in W.

Homework: Explain why this fact is true.
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Examples of Vector SubSpaces of a Vector Space?

Let V be a vector space.

Here are some simple examples of vector
subspaces of V.

W = {~0} is the trivial vector subspace

W = V is a vector subspace of itself (also kinda trivial)

W = Span{~v} (for any ~v in V)

W = Span{~v1, ~v2, . . . , ~vp} (for any ~v1, ~v2, . . . , ~vp in V)

In the last example above, we call W the subspace spanned by
~v1, ~v2, . . . , ~vp, and then {~v1, ~v2, . . . , ~vp} is called a spanning set for W.

Example (Basic Vector SubSpace)

For any ~v1, ~v2, . . . , ~vp in a vector space V, Span{~v1, ~v2, . . . , ~vp} is the
vector subspace of V spanned by ~v1, ~v2, . . . , ~vp.
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Vector Subspaces of Rm×n

Recall that Rm×n is the vector space of all m × n matrices.

Which of the
following are vectors subspaces of Rn×n?

If not, why not?

All upper triangular n × n matrices.

All invertible n × n matrices.

All n × n matrices A with det(A) = 1.

All n × n matrices A with det(A) = 0.

All n × n matrices A with AT = A (the symmetric matrices).

All n × n matrices A with AT = −A (the skew-symmetric matrices).

Can you find spanning sets for the vector subspaces?
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Can you find spanning sets for the vector subspaces?
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Function Spaces

Let F = F(R→ R) = {all f with R f−→ R}. This is a vector space with the
usual ways of adding and multiplying by scalars:

f + g is defined by

for each t in R,
(
f + g

)
(t) := f (t) + g(t)

and sf is defined by

for each t in R,
(
sf

)
(t) := sf (t).

Notice that we use t for our variable instead of x .

Here are some important vector subspaces of F.

{all continuous f in F}.
{all differentiable f in F}.
{all twice differentiable f in F}.
Span{et}

(the solution set to y ′ = y)

Span{et , e−t}

(the solution set to y ′′ = y)

Span{cos(t), sin(t)}

(the solution set to y ′′ + y = 0)
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The Space of all Polynomials

Let P be the family of all polynomials.

Thus p is in P if and only if p is a
function of the form

p(t) = c0 + c1t + c2t
2 + · · ·+ cnt

n.

Here c0, c1, . . . , cn are constants, called the coefficients of the polynomial
p, and when cn 6= 0 we say that p has degree n. (By definition, the zero
polynomial has degree zero.)

Clearly the sum p + q of two polys p and q is again a poly, as is any
scalar multiple sp. Thus, P is a vector subspace of F.

Of course, P is also a vector space all by itself.
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Subspaces of Polynomials

Let P be the family of all polynomials.

Which of the following are vector
subspaces of P? If not, why not?

All polynomials of degree n.

All polynomials of degree n or less.

(We call this subspace Pn.)

All polynomials of even degree.

All polynomials of odd degree.

All polynomials p with p(0) = 1.

All polynomials p with p(0) = 0.

Can you find spanning sets for the vector subspaces?
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