Vector Spaces and SubSpaces

Linear Algebra MATH 2076

A vector space is a "bunch" of objects—that we call vectors—with the properties that we can add any two vectors and we can multiply any vector by any scalar.

Let V be a set. Suppose we have a way of

• adding any two elements of V

• multiplying any element of V by any scalar That is,

- given \vec{v} and \vec{w} in ∇ , there is a $\vec{v} + \vec{w}$ in ∇
- **•** given \vec{v} in \vec{v} and any scalar s, there is a $s\vec{v}$ in \vec{v}

Then we call V a *vector space*, provided certain axioms hold.

Some simple examples:

- **D** \mathbb{R}^n is a vector space $\ddot{\smile}$
- **2** $\mathbb{R}^{m \times n}$ is the vector space of all $m \times n$ matrices (given $m \times n$ matrices A and B, we know what $A + B$ and sA are, right?)
- $\mathbf{S} \subset \mathbb{C}^n$ is a vector space (here the coordinates are complex numbers)
- Any vector subspace of \mathbb{R}^n is itself a vector space, right?
- $\mathbf{S} \ \ \mathbb{R}^\infty = \{ (x_n)_{n=1}^\infty \}$ is the vector space of all sequences (of real numbers)

Let X be any set, and let $\mathbb{F}(\mathcal{X} \to \mathbb{R})$ be the family of all functions with domain $\mathcal X$ and codomain $\mathbb R$.

Thus each object \boldsymbol{f} in $\mathbb F$ is a function $\mathcal X \xrightarrow{\boldsymbol{f}} \mathbb R.$ We define $f + g$ by the formula for each x in $\mathcal{X},~\bm(f + \bm g)(x) := \bm f(x) + \bm g(x)$ and then define sf by the formula for each x in X, $(sf)(x) := sf(x)$.

With these ways of adding and multiplying by scalars, the family

$$
\mathbb{F}(\mathcal{X}\rightarrow\mathbb{R})=\big\{\text{all } \text{$\text{$f$ with $\mathcal{X}\stackrel{\text{f}}{\rightarrow}\mathbb{R}$}\big\}
$$

of real-valued functions on X becomes a vector space.

What is a SubSpace of a Vector Space?

Let V be a vector space. We call W a vector subspace of V if and only if

- \bullet $\vec{0}$ is in W.
- **2** W closed wrt vector addition, (\vec{u}, \vec{v}) in W $\implies \vec{u} + \vec{v}$ in W),

 \bullet W closed wrt scalar mult (s scalar, \vec{v} in W \implies s \vec{v} in W). Note that

- \bullet (3) says that whenever \vec{w} is in W, $Span{\{\vec{w}\}}$ lies in W, and
- \bullet (2) and (3) together say that any LC of vectors in W is in W.

Basic Fact about Vector SubSpaces

Let W be a vector subspace of a vector space V. Suppose $\vec{w}_1, \vec{w}_2, \ldots, \vec{w}_p$ are in W. Then \mathcal{S} pan $\{\vec{w}_1,\vec{w}_2,\ldots,\vec{w}_p\}$ lies in W.

Homework: Explain why this fact is true.

Examples of Vector SubSpaces of a Vector Space?

Let V be a vector space. Here are some simple examples of vector subspaces of V .

- $\bullet \mathbb{W} = \{\vec{0}\}\$ is the *trivial* vector subspace
- \bullet W = V is a vector subspace of itself (also kinda trivial)

•
$$
\mathbb{W} = \text{Span}\{\vec{v}\} \text{ (for any } \vec{v} \text{ in } \mathbb{V}\text{)}
$$

 $\bullet \mathbb{W} = \mathcal{S}$ pan $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p\}$ (for any $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ in \mathbb{V})

In the last example above, we call W the *subspace spanned by* $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$, and then $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p\}$ is called a spanning set for W.

Example (Basic Vector SubSpace)

For any $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ in a vector space \mathbb{V} , \mathcal{S} pan $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p\}$ is the vector subspace of V spanned by $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$.

Recall that $\mathbb{R}^{m \times n}$ is the vector space of all $m \times n$ matrices. Which of the following are vectors subspaces of $\mathbb{R}^{n \times n}$? If not, why not?

- All upper triangular $n \times n$ matrices.
- All invertible $n \times n$ matrices.
- All $n \times n$ matrices A with det(A) = 1.
- All $n \times n$ matrices A with det(A) = 0.
- All $n \times n$ matrices A with $A^{\mathcal{T}} = A$ (the *symmetric* matrices).
- All $n \times n$ matrices A with $A^{\mathcal{T}} = -A$ (the *skew-symmetric* matrices).

Can you find spanning sets for the vector subspaces?

Function Spaces

Let $\mathbb{F}=\mathbb{F}(\mathbb{R}\to\mathbb{R})=\{$ all $\textbf{\textit{f}}$ with $\mathbb{R}\stackrel{\textbf{\textit{f}}}{\to}\mathbb{R}\}.$ This is a vector space with the usual ways of adding and multiplying by scalars:

• $f + g$ is defined by for each t in $\mathbb{R},$ $(\bm{f} + \bm{g})(t) := \bm{f}(t) + \bm{g}(t)$

• and sf is defined by

for each t in \mathbb{R} , $(sf)(t) := sf(t)$.

Notice that we use t for our variable instead of x .

Here are some important vector subspaces of \mathbb{F} .

- {all continuous f in \mathbb{F} }.
- {all differentiable f in \mathbb{F} }.
- {all twice differentiable f in \mathbb{F} }.
- \mathcal{S} pan $\{e^t\}$ (the solution set to $y'=y)$
- \mathcal{S} pan $\{e^t,e^{-t}\}$ (the solution set to $y''=y)$
- $Span\{\cos(t), \sin(t)\}\$ (the solution set to $y'' + y = 0$)

Let $\mathbb P$ be the family of all *polynomials*. Thus **p** is in $\mathbb P$ if and only if **p** is a function of the form

$$
\bm{p}(t) = c_0 + c_1 t + c_2 t^2 + \cdots + c_n t^n.
$$

Here c_0, c_1, \ldots, c_n are constants, called the *coefficients* of the polynomial **p**, and when $c_n \neq 0$ we say that **p** has degree n. (By definition, the zero polynomial has degree zero.)

Clearly the sum $p + q$ of two polys p and q is again a poly, as is any scalar multiple $s\boldsymbol{p}$. Thus, $\mathbb P$ is a vector subspace of $\mathbb F$.

Of course, $\mathbb P$ is also a vector space all by itself.

Let $\mathbb P$ be the family of all *polynomials*. Which of the following are vector subspaces of \mathbb{P} ? If not, why not?

- All polynomials of degree *n*.
- All polynomials of degree *n* or less. (We call this subspace \mathbb{P}_n .)
- All polynomials of even degree.
- All polynomials of odd degree.
- All polynomials **p** with $p(0) = 1$.
- All polynomials **p** with $p(0) = 0$.

Can you find spanning sets for the vector subspaces?