Vector Spaces and SubSpaces

Linear Algebra MATH 2076

What is a Vector Space?

A *vector space* is a "bunch" of objects—that we call *vectors*—with the properties that we can add any two vectors and we can multiply any vector by any scalar.

Let V be a set. Suppose we have a way of

- ullet adding any two elements of ${\mathbb V}$
- ullet multiplying any element of ${\mathbb V}$ by any scalar

That is,

- given \vec{v} and \vec{w} in \mathbb{V} , there is a $\vec{v} + \vec{w}$ in \mathbb{V}
- given \vec{v} in \mathbb{V} and any scalar s, there is a $s\vec{v}$ in \mathbb{V}

Then we call $\mathbb V$ a *vector space*, provided certain axioms hold.

Examples of Vector Spaces

Some simple examples:

- lacktriangle \mathbb{R}^n is a vector space $\ddot{\ }$
- ② $\mathbb{R}^{m \times n}$ is the vector space of all $m \times n$ matrices (given $m \times n$ matrices A and B, we know what A + B and sA are, right?)
- **4** Any vector subspace of \mathbb{R}^n is itself a vector space, right?

Fundamental Example of a Vector Space

Let \mathcal{X} be any set, and let $\mathbb{F}(\mathcal{X} \to \mathbb{R})$ be the family of all functions with domain \mathcal{X} and codomain \mathbb{R} .

Thus each object f in \mathbb{F} is a function $\mathcal{X} \xrightarrow{f} \mathbb{R}$.

We define $\boldsymbol{f} + \boldsymbol{g}$ by the formula

for each
$$x$$
 in \mathcal{X} , $(\mathbf{f} + \mathbf{g})(x) := \mathbf{f}(x) + \mathbf{g}(x)$

and then define sf by the formula

for each
$$x$$
 in \mathcal{X} , $(s\mathbf{f})(x) := s\mathbf{f}(x)$.

With these ways of adding and multiplying by scalars, the family

$$\mathbb{F}(\mathcal{X} \to \mathbb{R}) = \left\{ \mathsf{all} \ \mathbf{\textit{f}} \ \mathsf{with} \ \mathcal{X} \xrightarrow{\mathbf{\textit{f}}} \mathbb{R} \right\}$$

of real-valued functions on ${\mathcal X}$ becomes a vector space.

What is a SubSpace of a Vector Space?

Let $\mathbb V$ be a vector space. We call $\mathbb W$ a *vector subspace* of $\mathbb V$ if and only if

- $\mathbf{0}$ $\vec{0}$ is in \mathbb{W} ,
- 2 \mathbb{W} closed wrt vector addition, $(\vec{u}, \vec{v} \text{ in } \mathbb{W} \implies \vec{u} + \vec{v} \text{ in } \mathbb{W})$,
- **3** \mathbb{W} closed wrt scalar mult (s scalar, \vec{v} in $\mathbb{W} \implies s\vec{v}$ in \mathbb{W}).

Note that

- (3) says that whenever \vec{w} is in \mathbb{W} , $\mathcal{S}pan\{\vec{w}\}$ lies in \mathbb{W} , and
- (2) and (3) together say that any LC of vectors in \mathbb{W} is in \mathbb{W} .

Basic Fact about Vector SubSpaces

Let \mathbb{W} be a vector subspace of a vector space \mathbb{V} . Suppose $\vec{w}_1, \vec{w}_2, \dots, \vec{w}_p$ are in \mathbb{W} . Then $\mathcal{S}pan\{\vec{w}_1, \vec{w}_2, \dots, \vec{w}_p\}$ lies in \mathbb{W} .

Homework: Explain why this fact is true.

Examples of Vector SubSpaces of a Vector Space?

Let $\mathbb V$ be a vector space. Here are some simple examples of vector subspaces of $\mathbb V.$

- $\mathbb{W} = \{\vec{0}\}$ is the *trivial* vector subspace
- $\mathbb{W} = \mathbb{V}$ is a vector subspace of itself (also kinda *trivial*)
- $\mathbb{W} = \mathcal{S}pan\{\vec{v}\}$ (for any \vec{v} in \mathbb{V})
- $\bullet \ \mathbb{W} = \mathcal{S}\textit{pan}\{\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_p\} \ (\text{for any } \vec{v}_1,\vec{v}_2,\ldots,\vec{v}_p \ \text{in } \mathbb{V})$

In the last example above, we call \mathbb{W} the subspace spanned by $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$, and then $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ is called a spanning set for \mathbb{W} .

Example (Basic Vector SubSpace)

For any $\vec{v_1}, \vec{v_2}, \dots, \vec{v_p}$ in a vector space \mathbb{V} , $\mathcal{S}pan\{\vec{v_1}, \vec{v_2}, \dots, \vec{v_p}\}$ is the vector subspace of \mathbb{V} spanned by $\vec{v_1}, \vec{v_2}, \dots, \vec{v_p}$.

Vector Subspaces of $\mathbb{R}^{m \times n}$

Recall that $\mathbb{R}^{m \times n}$ is the vector space of all $m \times n$ matrices. Which of the following are vectors subspaces of $\mathbb{R}^{n \times n}$? If not, why not?

- All upper triangular $n \times n$ matrices.
- All invertible $n \times n$ matrices.
- All $n \times n$ matrices A with det(A) = 1.
- All $n \times n$ matrices A with det(A) = 0.
- All $n \times n$ matrices A with $A^T = A$ (the symmetric matrices).
- All $n \times n$ matrices A with $A^T = -A$ (the *skew-symmetric* matrices).

Can you find spanning sets for the vector subspaces?

Function Spaces

Let $\mathbb{F} = \mathbb{F}(\mathbb{R} \to \mathbb{R}) = \{\text{all } \mathbf{f} \text{ with } \mathbb{R} \xrightarrow{\mathbf{f}} \mathbb{R}\}$. This is a vector space with the usual ways of adding and multiplying by scalars:

- $m{ightarrow} m{f} + m{g}$ is defined by for each t in \mathbb{R} , $m{ig(f+g)}(t) := m{f}(t) + m{g}(t)$
- ullet and $sm{f}$ is defined by for each t in \mathbb{R} , $(sm{f})(t) := sm{f}(t)$.

Notice that we use t for our variable instead of x.

Here are some important vector subspaces of \mathbb{F} .

- {all continuous f in \mathbb{F} }.
- {all differentiable f in \mathbb{F} }.
- {all twice differentiable f in \mathbb{F} }.
- $Span\{e^t\}$ (the solution set to y'=y)
- $Span\{e^t, e^{-t}\}$ (the solution set to y'' = y)
- $Span\{\cos(t), \sin(t)\}\$ (the solution set to y'' + y = 0)

The Space of all Polynomials

Let $\mathbb P$ be the family of all *polynomials*. Thus $\boldsymbol p$ is in $\mathbb P$ if and only if $\boldsymbol p$ is a function of the form

$$p(t) = c_0 + c_1 t + c_2 t^2 + \cdots + c_n t^n.$$

Here c_0, c_1, \ldots, c_n are constants, called the *coefficients* of the polynomial \boldsymbol{p} , and when $c_n \neq 0$ we say that \boldsymbol{p} has *degree n*. (By definition, the zero polynomial has degree zero.)

Clearly the sum p + q of two polys p and q is again a poly, as is any scalar multiple sp. Thus, \mathbb{P} is a vector subspace of \mathbb{F} .

Of course, \mathbb{P} is also a vector space all by itself.

Subspaces of Polynomials

Let \mathbb{P} be the family of all *polynomials*. Which of the following are vector subspaces of \mathbb{P} ? If not, why not?

- All polynomials of degree n.
- All polynomials of degree n or less. (We call this subspace \mathbb{P}_{n} .)
- All polynomials of even degree.
- All polynomials of odd degree.
- All polynomials \boldsymbol{p} with $\boldsymbol{p}(0) = 1$.
- All polynomials \boldsymbol{p} with $\boldsymbol{p}(0) = 0$.

Can you find spanning sets for the vector subspaces?