Vector Spaces—An Introduction

Linear Algebra MATH 2076

 \leftarrow

 $2Q$

What is a Vector Space?

画

K ロ ▶ K 個 ▶ K 듣 ▶ K 듣 ▶

 $\mathcal{O} \curvearrowright \curvearrowright$

What is a Vector Space?

A vector space is a "bunch" of objects—that we call vectors—with the property that we can add any two vectors and we can multiply any vector by any scalar.

What is a Vector Space?

A vector space is a "bunch" of objects—that we call vectors—with the property that we can add any two vectors and we can multiply any vector by any scalar.

Let V be a set.

Let V be a set. Suppose we have a way of

Let V be a set. Suppose we have a way of

• adding any two elements of V

Let V be a set. Suppose we have a way of

- adding any two elements of V
- multiplying any element of V by any scalar

Let V be a set. Suppose we have a way of

• adding any two elements of V

• multiplying any element of V by any scalar That is,

Let V be a set. Suppose we have a way of

• adding any two elements of V

• multiplying any element of V by any scalar That is,

• given \vec{v} and \vec{w} in ∇ , there is a $\vec{v} + \vec{w}$ in ∇

Let V be a set. Suppose we have a way of

• adding any two elements of V

• multiplying any element of V by any scalar That is,

- given \vec{v} and \vec{w} in ∇ , there is a $\vec{v} + \vec{w}$ in ∇
- **•** given \vec{v} in \vec{v} and any scalar s, there is a $s\vec{v}$ in \vec{v}

Let V be a set. Suppose we have a way of

• adding any two elements of V

• multiplying any element of V by any scalar That is,

- given \vec{v} and \vec{w} in ∇ , there is a $\vec{v} + \vec{w}$ in ∇
- **•** given \vec{v} in \vec{v} and any scalar s, there is a $s\vec{v}$ in \vec{v}

Then we call V a *vector space*, provided certain axioms hold.

Examples of Vector Spaces

Some simple examples:

4 ロ ▶ (母

 \triangleright \rightarrow \exists \rightarrow

Examples of Vector Spaces

Some simple examples:

D \mathbb{R}^n is a vector space $\ddot{\smile}$

4 D F

医间周

- **D** \mathbb{R}^n is a vector space $\ddot{\smile}$
- **2** $\mathbb{R}^{m \times n}$ is the vector space of all $m \times n$ matrices (given $m \times n$ matrices A and B, we know what $A + B$ and sA are, right?)

- **D** \mathbb{R}^n is a vector space $\ddot{\smile}$
- **2** $\mathbb{R}^{m \times n}$ is the vector space of all $m \times n$ matrices (given $m \times n$ matrices A and B, we know what $A + B$ and sA are, right?)
- $\mathbf{S} \subset \mathbb{C}^n$ is a vector space (here the coordinates are complex numbers)

 OQ

- **D** \mathbb{R}^n is a vector space $\ddot{\smile}$
- **2** $\mathbb{R}^{m \times n}$ is the vector space of all $m \times n$ matrices (given $m \times n$ matrices A and B, we know what $A + B$ and sA are, right?)
- $\mathbf{S} \subset \mathbb{C}^n$ is a vector space (here the coordinates are complex numbers)
- Any vector subspace of \mathbb{R}^n is itself a vector space, right?

- **D** \mathbb{R}^n is a vector space $\ddot{\smile}$
- **2** $\mathbb{R}^{m \times n}$ is the vector space of all $m \times n$ matrices (given $m \times n$ matrices A and B, we know what $A + B$ and sA are, right?)
- $\mathbf{S} \subset \mathbb{C}^n$ is a vector space (here the coordinates are complex numbers)
- Any vector subspace of \mathbb{R}^n is itself a vector space, right?
- $\mathbf{S} \ \ \mathbb{R}^\infty = \{ (x_n)_{n=1}^\infty \}$ is the vector space of all sequences (of real numbers)

 OQ

Let X be any set, and let F be the family of all functions with domain X and codomain R.

 \leftarrow

 OQ

Let X be any set, and let F be the family of all functions with domain X and codomain R.

Thus each object \boldsymbol{f} in $\mathbb F$ is a function $\mathcal X \xrightarrow{\boldsymbol{f}} \mathbb R.$

Let X be any set, and let F be the family of all functions with domain X and codomain R.

Thus each object \boldsymbol{f} in $\mathbb F$ is a function $\mathcal X \xrightarrow{\boldsymbol{f}} \mathbb R.$

Now let f and g be elements of $\mathbb F$. Can we: add?

Let X be any set, and let F be the family of all functions with domain X and codomain R.

Thus each object \boldsymbol{f} in $\mathbb F$ is a function $\mathcal X \xrightarrow{\boldsymbol{f}} \mathbb R.$

Now let f and g be elements of \mathbb{F} . Can we: add? multiply by scalars?

つのい

Let X be any set, and let F be the family of all functions with domain X and codomain R.

Thus each object \boldsymbol{f} in $\mathbb F$ is a function $\mathcal X \xrightarrow{\boldsymbol{f}} \mathbb R.$

Now let f and g be elements of \mathbb{F} . Can we: add? multiply by scalars?

Let's define $f + g$ by the formula

つのい

Let X be any set, and let F be the family of all functions with domain X and codomain R.

Thus each object \boldsymbol{f} in $\mathbb F$ is a function $\mathcal X \xrightarrow{\boldsymbol{f}} \mathbb R.$

Now let f and g be elements of \mathbb{F} . Can we: add? multiply by scalars?

Let's define $f + g$ by the formula for each x in X, $(\bm{f} + \bm{g})(x) := \bm{f}(x) + \bm{g}(x)$

 299

Let X be any set, and let F be the family of all functions with domain X and codomain R.

Thus each object \boldsymbol{f} in $\mathbb F$ is a function $\mathcal X \xrightarrow{\boldsymbol{f}} \mathbb R.$

Now let f and g be elements of \mathbb{F} . Can we: add? multiply by scalars?

Let's define $f + g$ by the formula for each x in X, $(\bm{f} + \bm{g})(x) := \bm{f}(x) + \bm{g}(x)$ and then define sf by the formula

つのい

Let X be any set, and let F be the family of all functions with domain X and codomain R.

Thus each object \boldsymbol{f} in $\mathbb F$ is a function $\mathcal X \xrightarrow{\boldsymbol{f}} \mathbb R.$

Now let f and g be elements of \mathbb{F} . Can we: add? multiply by scalars?

Let's define $f + g$ by the formula for each x in X, $(\bm{f} + \bm{g})(x) := \bm{f}(x) + \bm{g}(x)$ and then define sf by the formula for each x in X, $(sf)(x) := sf(x)$.

Let X be any set, and let F be the family of all functions with domain X and codomain R.

Thus each object \boldsymbol{f} in $\mathbb F$ is a function $\mathcal X \xrightarrow{\boldsymbol{f}} \mathbb R.$

Now let f and g be elements of \mathbb{F} . Can we: add? multiply by scalars?

Let's define $f + g$ by the formula for each x in X, $(\bm{f} + \bm{g})(x) := \bm{f}(x) + \bm{g}(x)$ and then define sf by the formula for each x in X, $(sf)(x) := sf(x)$.

With these ways of adding and multiplying by scalars,

Let X be any set, and let F be the family of all functions with domain X and codomain R.

Thus each object \boldsymbol{f} in $\mathbb F$ is a function $\mathcal X \xrightarrow{\boldsymbol{f}} \mathbb R.$

Now let f and g be elements of \mathbb{F} . Can we: add? multiply by scalars?

Let's define $f + g$ by the formula for each x in X, $(\bm{f} + \bm{g})(x) := \bm{f}(x) + \bm{g}(x)$ and then define sf by the formula for each x in X, $(sf)(x) := sf(x)$.

With these ways of adding and multiplying by scalars, the family $\mathbb F$ of real-valued functions on X becomes a vector space.

Let X be any set, and let F be the family of all functions with domain X and codomain R.

Thus each object \boldsymbol{f} in $\mathbb F$ is a function $\mathcal X \xrightarrow{\boldsymbol{f}} \mathbb R.$

Now let f and g be elements of \mathbb{F} . Can we: add? multiply by scalars?

Let's define $f + g$ by the formula for each x in X, $(\bm{f} + \bm{g})(x) := \bm{f}(x) + \bm{g}(x)$ and then define sf by the formula for each x in X, $(sf)(x) := sf(x)$.

With these ways of adding and multiplying by scalars, the family $\mathbb F$ of real-valued functions on X becomes a vector space.

E.g., look at $3\sin(x) + 2\cos(5x)$.

Let P be the family of all *polynomials*.

 \mathbb{B} + Ε

 4 O \rightarrow 4 \overline{m} \rightarrow 4 \overline{m} \rightarrow 4

4 **D F**

 $|b| = 4$

 $2Q$

$$
\bm{p}(t) = c_0 + c_1 t + c_2 t^2 + \cdots + c_n t^n.
$$

Here c_0, c_1, \ldots, c_n are constants, called the *coefficients* of the polynomial **p**, and when $c_n \neq 0$ we say that **p** has degree n.

 PQQ

$$
\bm{p}(t) = c_0 + c_1 t + c_2 t^2 + \cdots + c_n t^n.
$$

Here c_0, c_1, \ldots, c_n are constants, called the *coefficients* of the polynomial **p**, and when $c_n \neq 0$ we say that **p** has degree n.

Clearly the sum $p + q$ of two polys p and q is again a poly, as is any scalar multiple sp.

 299

$$
\bm{p}(t) = c_0 + c_1 t + c_2 t^2 + \cdots + c_n t^n.
$$

Here c_0, c_1, \ldots, c_n are constants, called the *coefficients* of the polynomial **p**, and when $c_n \neq 0$ we say that **p** has degree n.

Clearly the sum $p + q$ of two polys p and q is again a poly, as is any scalar multiple $s\boldsymbol{p}$. Thus, $\mathbb P$ is a vector space.

$$
\bm{p}(t) = c_0 + c_1 t + c_2 t^2 + \cdots + c_n t^n.
$$

Here c_0, c_1, \ldots, c_n are constants, called the *coefficients* of the polynomial **p**, and when $c_n \neq 0$ we say that **p** has degree n.

Clearly the sum $p + q$ of two polys p and q is again a poly, as is any scalar multiple $s\boldsymbol{p}$. Thus, $\mathbb P$ is a vector space.

$$
\bm{p}(t) = c_0 + c_1 t + c_2 t^2 + \cdots + c_n t^n.
$$

Here c_0, c_1, \ldots, c_n are constants, called the *coefficients* of the polynomial **p**, and when $c_n \neq 0$ we say that **p** has degree n.

Clearly the sum $p + q$ of two polys p and q is again a poly, as is any scalar multiple $s\boldsymbol{p}$. Thus, $\mathbb P$ is a vector space.

$$
\bm{p}(t) = c_0 + c_1 t + c_2 t^2 + \cdots + c_n t^n.
$$

Here c_0, c_1, \ldots, c_n are constants, called the *coefficients* of the polynomial **p**, and when $c_n \neq 0$ we say that **p** has degree n.

Clearly the sum $p + q$ of two polys p and q is again a poly, as is any scalar multiple $s\boldsymbol{p}$. Thus, $\mathbb P$ is a vector space.

$$
\bm{p}(t) = c_0 + c_1 t + c_2 t^2 + \cdots + c_n t^n.
$$

Here c_0, c_1, \ldots, c_n are constants, called the *coefficients* of the polynomial **p**, and when $c_n \neq 0$ we say that **p** has degree n.

Clearly the sum $p + q$ of two polys p and q is again a poly, as is any scalar multiple $s\boldsymbol{p}$. Thus, $\mathbb P$ is a vector space.