# Vector Spaces—An Introduction

Linear Algebra MATH 2076



A *vector space* is a "bunch" of objects—that we call *vectors*—with the property that we can add any two vectors and we can multiply any vector by any scalar.

A *vector space* is a "bunch" of objects—that we call *vectors*—with the property that we can add any two vectors and we can multiply any vector by any scalar.

Let  $\mathbb{V}$  be a set.

A *vector space* is a "bunch" of objects—that we call *vectors*—with the property that we can add any two vectors and we can multiply any vector by any scalar.

Let  $\mathbb V$  be a set. Suppose we have a way of

A *vector space* is a "bunch" of objects—that we call *vectors*—with the property that we can add any two vectors and we can multiply any vector by any scalar.

Let  $\mathbb V$  be a set. Suppose we have a way of

ullet adding any two elements of  ${\mathbb V}$ 

A *vector space* is a "bunch" of objects—that we call *vectors*—with the property that we can add any two vectors and we can multiply any vector by any scalar.

Let  $\ensuremath{\mathbb{V}}$  be a set. Suppose we have a way of

- ullet adding any two elements of  ${\mathbb V}$
- ullet multiplying any element of  ${\mathbb V}$  by any scalar

A *vector space* is a "bunch" of objects—that we call *vectors*—with the property that we can add any two vectors and we can multiply any vector by any scalar.

Let  $\ensuremath{\mathbb{V}}$  be a set. Suppose we have a way of

- ullet adding any two elements of  ${\mathbb V}$
- ullet multiplying any element of  ${\mathbb V}$  by any scalar

That is,

A *vector space* is a "bunch" of objects—that we call *vectors*—with the property that we can add any two vectors and we can multiply any vector by any scalar.

Let V be a set. Suppose we have a way of

- ullet adding any two elements of  ${\mathbb V}$
- ullet multiplying any element of  ${\mathbb V}$  by any scalar

That is,

ullet given  $ec{v}$  and  $ec{w}$  in  $\mathbb{V}$ , there is a  $ec{v}+ec{w}$  in  $\mathbb{V}$ 

A *vector space* is a "bunch" of objects—that we call *vectors*—with the property that we can add any two vectors and we can multiply any vector by any scalar.

Let V be a set. Suppose we have a way of

- ullet adding any two elements of  ${\mathbb V}$
- ullet multiplying any element of  ${\mathbb V}$  by any scalar

That is,

- given  $\vec{v}$  and  $\vec{w}$  in  $\mathbb{V}$ , there is a  $\vec{v} + \vec{w}$  in  $\mathbb{V}$
- given  $\vec{v}$  in  $\mathbb V$  and any scalar s, there is a  $s\vec{v}$  in  $\mathbb V$

A *vector space* is a "bunch" of objects—that we call *vectors*—with the property that we can add any two vectors and we can multiply any vector by any scalar.

Let  $\ensuremath{\mathbb{V}}$  be a set. Suppose we have a way of

- ullet adding any two elements of  ${\mathbb V}$
- ullet multiplying any element of  ${\mathbb V}$  by any scalar

That is,

- given  $\vec{v}$  and  $\vec{w}$  in  $\mathbb{V}$ , there is a  $\vec{v} + \vec{w}$  in  $\mathbb{V}$
- given  $\vec{v}$  in  $\mathbb{V}$  and any scalar s, there is a  $s\vec{v}$  in  $\mathbb{V}$

Then we call  $\mathbb{V}$  a *vector space*, provided certain axioms hold.



Some simple examples:

**1**  $\mathbb{R}^n$  is a vector space  $\ddot{}$ 

- **1**  $\mathbb{R}^n$  is a vector space  $\ddot{}$
- ②  $\mathbb{R}^{m \times n}$  is the vector space of all  $m \times n$  matrices (given  $m \times n$  matrices A and B, we know what A + B and sA are, right?)

- $lackbox{0} \mathbb{R}^n$  is a vector space  $\ddot{\ }$
- ②  $\mathbb{R}^{m \times n}$  is the vector space of all  $m \times n$  matrices (given  $m \times n$  matrices A and B, we know what A + B and sA are, right?)
- lacktriangledown is a vector space (here the coordinates are complex numbers)

- $lackbox{0} \mathbb{R}^n$  is a vector space  $\ddot{\ }$
- ②  $\mathbb{R}^{m \times n}$  is the vector space of all  $m \times n$  matrices (given  $m \times n$  matrices A and B, we know what A + B and sA are, right?)
- lacktriangledown is a vector space (here the coordinates are complex numbers)
- **4** Any vector subspace of  $\mathbb{R}^n$  is itself a vector space, right?

- $lackbox{}{}^n$  is a vector space  $\ddot{}$
- ②  $\mathbb{R}^{m \times n}$  is the vector space of all  $m \times n$  matrices (given  $m \times n$  matrices A and B, we know what A + B and sA are, right?)
- **4** Any vector subspace of  $\mathbb{R}^n$  is itself a vector space, right?

Let  $\mathcal{X}$  be any set, and let  $\mathbb{F}$  be the family of all functions with domain  $\mathcal{X}$  and codomain  $\mathbb{R}$ .

Let  $\mathcal X$  be any set, and let  $\mathbb F$  be the family of all functions with domain  $\mathcal X$  and codomain  $\mathbb R$ .

Thus each object f in  $\mathbb{F}$  is a function  $\mathcal{X} \xrightarrow{f} \mathbb{R}$ .

Let  $\mathcal X$  be any set, and let  $\mathbb F$  be the family of all functions with domain  $\mathcal X$  and codomain  $\mathbb R$ .

Thus each object f in  $\mathbb{F}$  is a function  $\mathcal{X} \xrightarrow{f} \mathbb{R}$ .

Now let f and g be elements of  $\mathbb{F}$ . Can we: add?

Let  $\mathcal X$  be any set, and let  $\mathbb F$  be the family of all functions with domain  $\mathcal X$  and codomain  $\mathbb R$ .

Thus each object f in  $\mathbb{F}$  is a function  $\mathcal{X} \xrightarrow{f} \mathbb{R}$ .

Now let f and g be elements of  $\mathbb{F}$ . Can we: add? multiply by scalars?

Let  $\mathcal X$  be any set, and let  $\mathbb F$  be the family of all functions with domain  $\mathcal X$  and codomain  $\mathbb R$ .

Thus each object f in  $\mathbb{F}$  is a function  $\mathcal{X} \xrightarrow{f} \mathbb{R}$ .

Now let f and g be elements of  $\mathbb{F}$ . Can we: add? multiply by scalars?

Let's define  $\boldsymbol{f} + \boldsymbol{g}$  by the formula

Let  $\mathcal X$  be any set, and let  $\mathbb F$  be the family of all functions with domain  $\mathcal X$  and codomain  $\mathbb R$ .

Thus each object f in  $\mathbb{F}$  is a function  $\mathcal{X} \xrightarrow{f} \mathbb{R}$ .

Now let  ${\it f}$  and  ${\it g}$  be elements of  ${\mathbb F}$ . Can we: add? multiply by scalars?

Let's define f + g by the formula for each x in  $\mathcal{X}$ , (f + g)(x) := f(x) + g(x)

Let  $\mathcal X$  be any set, and let  $\mathbb F$  be the family of all functions with domain  $\mathcal X$  and codomain  $\mathbb R$ .

Thus each object f in  $\mathbb{F}$  is a function  $\mathcal{X} \xrightarrow{f} \mathbb{R}$ .

Now let  ${\it f}$  and  ${\it g}$  be elements of  ${\mathbb F}$ . Can we: add? multiply by scalars?

Let's define  $\mathbf{f} + \mathbf{g}$  by the formula for each x in  $\mathcal{X}$ ,  $(\mathbf{f} + \mathbf{g})(x) := \mathbf{f}(x) + \mathbf{g}(x)$  and then define  $s\mathbf{f}$  by the formula

Let  $\mathcal X$  be any set, and let  $\mathbb F$  be the family of all functions with domain  $\mathcal X$  and codomain  $\mathbb R$ .

Thus each object f in  $\mathbb{F}$  is a function  $\mathcal{X} \xrightarrow{f} \mathbb{R}$ .

Now let  ${\it f}$  and  ${\it g}$  be elements of  ${\mathbb F}$ . Can we: add? multiply by scalars?

Let's define  $\mathbf{f} + \mathbf{g}$  by the formula

for each 
$$x$$
 in  $\mathcal{X}$ ,  $(\mathbf{f} + \mathbf{g})(x) := \mathbf{f}(x) + \mathbf{g}(x)$ 

and then define sf by the formula

for each 
$$x$$
 in  $\mathcal{X}$ ,  $(s\mathbf{f})(x) := s\mathbf{f}(x)$ .

Let  $\mathcal X$  be any set, and let  $\mathbb F$  be the family of all functions with domain  $\mathcal X$  and codomain  $\mathbb R$ .

Thus each object f in  $\mathbb{F}$  is a function  $\mathcal{X} \xrightarrow{f} \mathbb{R}$ .

Now let  ${\it f}$  and  ${\it g}$  be elements of  ${\mathbb F}$ . Can we: add? multiply by scalars?

Let's define  $\mathbf{f} + \mathbf{g}$  by the formula for each x in  $\mathcal{X}$ ,  $(\mathbf{f} + \mathbf{g})(x) := \mathbf{f}(x) + \mathbf{g}(x)$  and then define  $s\mathbf{f}$  by the formula for each x in  $\mathcal{X}$ ,  $(s\mathbf{f})(x) := s\mathbf{f}(x)$ .

With these ways of adding and multiplying by scalars,

Let  $\mathcal X$  be any set, and let  $\mathbb F$  be the family of all functions with domain  $\mathcal X$  and codomain  $\mathbb R$ .

Thus each object f in  $\mathbb{F}$  is a function  $\mathcal{X} \xrightarrow{f} \mathbb{R}$ .

Now let f and g be elements of  $\mathbb{F}$ . Can we: add? multiply by scalars?

Let's define  $\boldsymbol{f} + \boldsymbol{g}$  by the formula

for each 
$$x$$
 in  $\mathcal{X}$ ,  $(\mathbf{f} + \mathbf{g})(x) := \mathbf{f}(x) + \mathbf{g}(x)$ 

and then define sf by the formula

for each 
$$x$$
 in  $\mathcal{X}$ ,  $(s\mathbf{f})(x) := s\mathbf{f}(x)$ .

With these ways of adding and multiplying by scalars, the family  $\mathbb F$  of real-valued functions on  $\mathcal X$  becomes a vector space.

Let  $\mathcal X$  be any set, and let  $\mathbb F$  be the family of all functions with domain  $\mathcal X$  and codomain  $\mathbb R$ .

Thus each object f in  $\mathbb{F}$  is a function  $\mathcal{X} \xrightarrow{f} \mathbb{R}$ .

Now let f and g be elements of  $\mathbb{F}$ . Can we: add? multiply by scalars?

Let's define f + g by the formula

for each 
$$x$$
 in  $\mathcal{X}$ ,  $(\mathbf{f} + \mathbf{g})(x) := \mathbf{f}(x) + \mathbf{g}(x)$ 

and then define sf by the formula

for each 
$$x$$
 in  $\mathcal{X}$ ,  $(s\mathbf{f})(x) := s\mathbf{f}(x)$ .

With these ways of adding and multiplying by scalars, the family  $\mathbb F$  of real-valued functions on  $\mathcal X$  becomes a vector space.

E.g., look at  $3\sin(x) + 2\cos(5x)$ .



Let  $\mathbb P$  be the family of all *polynomials*.

Let  $\mathbb P$  be the family of all *polynomials*. Thus  $\pmb p$  is in  $\mathbb P$  if and only if  $\pmb p$  is a function of the form

Let  $\mathbb P$  be the family of all *polynomials*. Thus  $\boldsymbol p$  is in  $\mathbb P$  if and only if  $\boldsymbol p$  is a function of the form

$$\mathbf{p}(t) = c_0 + c_1 t + c_2 t^2 + \dots + c_n t^n.$$

Here  $c_0, c_1, \ldots, c_n$  are constants, called the *coefficients* of the polynomial p, and when  $c_n \neq 0$  we say that p has degree n.

Let  $\mathbb P$  be the family of all *polynomials*. Thus  $\boldsymbol p$  is in  $\mathbb P$  if and only if  $\boldsymbol p$  is a function of the form

$$\mathbf{p}(t) = c_0 + c_1 t + c_2 t^2 + \dots + c_n t^n.$$

Here  $c_0, c_1, \ldots, c_n$  are constants, called the *coefficients* of the polynomial p, and when  $c_n \neq 0$  we say that p has degree n.

Clearly the sum p + q of two polys p and q is again a poly, as is any scalar multiple sp.

Let  $\mathbb P$  be the family of all *polynomials*. Thus  $\pmb p$  is in  $\mathbb P$  if and only if  $\pmb p$  is a function of the form

$$\mathbf{p}(t) = c_0 + c_1 t + c_2 t^2 + \dots + c_n t^n.$$

Here  $c_0, c_1, \ldots, c_n$  are constants, called the *coefficients* of the polynomial p, and when  $c_n \neq 0$  we say that p has degree n.

Let  $\mathbb P$  be the family of all *polynomials*. Thus  $\pmb p$  is in  $\mathbb P$  if and only if  $\pmb p$  is a function of the form

$$\mathbf{p}(t) = c_0 + c_1 t + c_2 t^2 + \dots + c_n t^n.$$

Here  $c_0, c_1, \ldots, c_n$  are constants, called the *coefficients* of the polynomial p, and when  $c_n \neq 0$  we say that p has degree n.

Let  $\mathbb P$  be the family of all *polynomials*. Thus  $\pmb p$  is in  $\mathbb P$  if and only if  $\pmb p$  is a function of the form

$$\mathbf{p}(t) = c_0 + c_1 t + c_2 t^2 + \dots + c_n t^n.$$

Here  $c_0, c_1, \ldots, c_n$  are constants, called the *coefficients* of the polynomial p, and when  $c_n \neq 0$  we say that p has degree n.

Let  $\mathbb P$  be the family of all *polynomials*. Thus  $\pmb p$  is in  $\mathbb P$  if and only if  $\pmb p$  is a function of the form

$$\mathbf{p}(t) = c_0 + c_1 t + c_2 t^2 + \dots + c_n t^n.$$

Here  $c_0, c_1, \ldots, c_n$  are constants, called the *coefficients* of the polynomial p, and when  $c_n \neq 0$  we say that p has degree n.

Let  $\mathbb P$  be the family of all *polynomials*. Thus  $\boldsymbol p$  is in  $\mathbb P$  if and only if  $\boldsymbol p$  is a function of the form

$$\mathbf{p}(t) = c_0 + c_1 t + c_2 t^2 + \dots + c_n t^n.$$

Here  $c_0, c_1, \ldots, c_n$  are constants, called the *coefficients* of the polynomial p, and when  $c_n \neq 0$  we say that p has degree n.