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What is a Vector Space?

A vector space is a “bunch” of objects—that we call vectors—with the
property that we can add any two vectors and we can multiply any vector
by any scalar.

Let V be a set. Suppose we have a way of

adding any two elements of V

multiplying any element of V by any scalar

That is,

given ~v and ~w in V, there is a ~v + ~w in V

given ~v in V and any scalar s, there is a s~v in V
Then we call V a vector space, provided certain axioms hold.
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Examples of Vector Spaces

Some simple examples:

1 Rn is a vector space ¨̂

2 Rm×n is the vector space of all m × n matrices (given m × n matrices
A and B, we know what A + B and sA are, right?)

3 Cn is a vector space (here the coordinates are complex numbers)

4 Any vector subspace of Rn is itself a vector space, right?

5 R∞ = {(xn)∞n=1} is the vector space of all sequences (of real numbers)
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Fundamental Example of a Vector Space

Let X be any set, and let F be the family of all functions with domain X
and codomain R.

Thus each object f in F is a function X f−→ R.

Now let f and g be elements of F. Can we: add? multiply by scalars?

Let’s define f + g by the formula
for each x in X ,

(
f + g

)
(x) := f (x) + g(x)

and then define sf by the formula
for each x in X ,

(
sf

)
(x) := sf (x).

With these ways of adding and multiplying by scalars, the family F of
real-valued functions on X becomes a vector space.

E.g., look at 3 sin(x) + 2 cos(5x).
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Polynomials

Let P be the family of all polynomials.

Thus p is in P if and only if p is a
function of the form

p(t) = c0 + c1t + c2t
2 + · · ·+ cnt

n.

Here c0, c1, . . . , cn are constants, called the coefficients of the polynomial
p, and when cn 6= 0 we say that p has degree n.

Clearly the sum p + q of two polys p and q is again a poly, as is any
scalar multiple sp. Thus, P is a vector space.
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