Vector Spaces—An Introduction

Linear Algebra MATH 2076

What is a Vector Space?

A *vector space* is a "bunch" of objects—that we call *vectors*—with the property that we can add any two vectors and we can multiply any vector by any scalar.

Let $\ensuremath{\mathbb{V}}$ be a set. Suppose we have a way of

- ullet adding any two elements of ${\mathbb V}$

That is,

- given \vec{v} and \vec{w} in \mathbb{V} , there is a $\vec{v} + \vec{w}$ in \mathbb{V}
- given \vec{v} in \mathbb{V} and any scalar s, there is a $s\vec{v}$ in \mathbb{V}

Then we call \mathbb{V} a *vector space*, provided certain axioms hold.

Examples of Vector Spaces

Some simple examples:

- \mathbb{R}^n is a vector space $\ddot{}$
- ② $\mathbb{R}^{m \times n}$ is the vector space of all $m \times n$ matrices (given $m \times n$ matrices A and B, we know what A + B and sA are, right?)
- **4** Any vector subspace of \mathbb{R}^n is itself a vector space, right?

Fundamental Example of a Vector Space

Let $\mathcal X$ be any set, and let $\mathbb F$ be the family of all functions with domain $\mathcal X$ and codomain $\mathbb R$.

Thus each object f in \mathbb{F} is a function $\mathcal{X} \xrightarrow{f} \mathbb{R}$.

Now let f and g be elements of \mathbb{F} . Can we: add? multiply by scalars?

Let's define f + g by the formula

for each
$$x$$
 in \mathcal{X} , $(\mathbf{f} + \mathbf{g})(x) := \mathbf{f}(x) + \mathbf{g}(x)$

and then define s f by the formula

for each
$$x$$
 in \mathcal{X} , $(s\mathbf{f})(x) := s\mathbf{f}(x)$.

With these ways of adding and multiplying by scalars, the family $\mathbb F$ of real-valued functions on $\mathcal X$ becomes a vector space.

E.g., look at $3\sin(x) + 2\cos(5x)$.

Polynomials

Let $\mathbb P$ be the family of all *polynomials*. Thus $\boldsymbol p$ is in $\mathbb P$ if and only if $\boldsymbol p$ is a function of the form

$$\mathbf{p}(t) = c_0 + c_1 t + c_2 t^2 + \dots + c_n t^n.$$

Here c_0, c_1, \ldots, c_n are constants, called the *coefficients* of the polynomial p, and when $c_n \neq 0$ we say that p has degree n.

Clearly the sum p + q of two polys p and q is again a poly, as is any scalar multiple sp. Thus, \mathbb{P} is a vector space.