A Hyperplane in \mathbb{P}_3

Linear Algebra MATH 2076

4 0 8 4

E k K

 $2Q$

Let W be the space of all polynomials **p** in \mathbb{P}_3 that satisfy $p(2) = 0$.

 \leftarrow

 $2Q$

Let W be the space of all polynomials **p** in \mathbb{P}_3 that satisfy $p(2) = 0$. Here we:

 \leftarrow

 $2QQ$

Let W be the space of all polynomials **p** in \mathbb{P}_3 that satisfy $p(2) = 0$. Here we:

• Explain why W is a vector subspace of \mathbb{P}_3 .

 \leftarrow

 $2Q$

Let W be the space of all polynomials **p** in \mathbb{P}_3 that satisfy $p(2) = 0$. Here we:

- Explain why W is a vector subspace of \mathbb{P}_3 .
- \bullet Find a basis B for W and determine the dimension of W.

つのい

- Explain why W is a vector subspace of \mathbb{P}_3 .
- \bullet Find a basis B for W and determine the dimension of W.
- Find the B-coordinate vector for $p(t) = (t-1)(t-2)(t-3)$.

 PQQ

- Explain why W is a vector subspace of \mathbb{P}_3 .
- \bullet Find a basis B for W and determine the dimension of W
- Find the B-coordinate vector for $p(t) = (t-1)(t-2)(t-3)$.

We make extensive use of coordinate vectors, so you might want to review this material.

 299

- Explain why W is a vector subspace of \mathbb{P}_3 .
- \bullet Find a basis B for W and determine the dimension of W.
- Find the B-coordinate vector for $p(t) = (t-1)(t-2)(t-3)$.

We make extensive use of coordinate vectors, so you might want to review this material. In particular, remember that:

- Explain why W is a vector subspace of \mathbb{P}_3 .
- \bullet Find a basis B for W and determine the dimension of W
- Find the B-coordinate vector for $p(t) = (t-1)(t-2)(t-3)$.

We make extensive use of coordinate vectors, so you might want to review this material. In particular, remember that:

• vectors are LI if and only if their coordinate vectors are LI, and,

- Explain why W is a vector subspace of \mathbb{P}_3 .
- \bullet Find a basis B for W and determine the dimension of W
- Find the B-coordinate vector for $p(t) = (t-1)(t-2)(t-3)$.

We make extensive use of coordinate vectors, so you might want to review this material. In particular, remember that:

- **•** vectors are LI if and only if their coordinate vectors are LI, and,
- **o** coordinate maps "preserve" all linear combinations.

It is straightforward to check that W is a vector subspace of \mathbb{P}_3 .

W is all polynomials **p** in \mathbb{P}_3 that satisfy $p(2) = 0$

 \leftarrow

 $2Q$

It is straightforward to check that W is a vector subspace of \mathbb{P}_3 . Since the polynomial \boldsymbol{q}_1 , given by $\boldsymbol{q}_1(t)=t-2$, belongs to $\mathbb W$, $\mathbb W$ is not the zero subspace.

W is all polynomials **p** in \mathbb{P}_3 that satisfy $p(2) = 0$

 299

It is straightforward to check that W is a vector subspace of \mathbb{P}_3 .

Since the polynomial \boldsymbol{q}_1 , given by $\boldsymbol{q}_1(t)=t-2$, belongs to $\mathbb W$, $\mathbb W$ is not the zero subspace. Also, $\mathbb{W}\neq \mathbb{P}_3$ (for example, because $\boldsymbol{t^3}$ is not in $\mathbb{W}).$

W is all polynomials **p** in \mathbb{P}_3 that satisfy $p(2) = 0$

つひつ

It is straightforward to check that W is a vector subspace of \mathbb{P}_3 .

Since the polynomial \boldsymbol{q}_1 , given by $\boldsymbol{q}_1(t)=t-2$, belongs to $\mathbb W$, $\mathbb W$ is not the zero subspace. Also, $\mathbb{W}\neq \mathbb{P}_3$ (for example, because $\boldsymbol{t^3}$ is not in $\mathbb{W}).$

Since $\{\vec{0}\}\neq \mathbb{W}\neq \mathbb{P}_3$, $1 \leq \text{dim } \mathbb{W} \leq 3$.

W is all polynomials **p** in \mathbb{P}_3 that satisfy $p(2) = 0$

It is straightforward to check that W is a vector subspace of \mathbb{P}_3 .

Since the polynomial \boldsymbol{q}_1 , given by $\boldsymbol{q}_1(t)=t-2$, belongs to $\mathbb W$, $\mathbb W$ is not the zero subspace. Also, $\mathbb{W}\neq \mathbb{P}_3$ (for example, because $\boldsymbol{t^3}$ is not in $\mathbb{W}).$

Since $\{\vec{0}\}\neq \mathbb{W}\neq \mathbb{P}_3$, $1 \leq \text{dim } \mathbb{W} \leq 3$.

Let's find a few more polynomials in W.

W is all polynomials **p** in \mathbb{P}_3 that satisfy $p(2) = 0$

It is straightforward to check that W is a vector subspace of \mathbb{P}_3 .

Since the polynomial \boldsymbol{q}_1 , given by $\boldsymbol{q}_1(t)=t-2$, belongs to $\mathbb W$, $\mathbb W$ is not the zero subspace. Also, $\mathbb{W}\neq \mathbb{P}_3$ (for example, because $\boldsymbol{t^3}$ is not in $\mathbb{W}).$

Since $\{\vec{0}\}\neq \mathbb{W}\neq \mathbb{P}_3$, $1 \leq \text{dim } \mathbb{W} \leq 3$.

Let's find a few more polynomials in $\mathbb{W}.$ Of course, $s\bm{q}_1$ is in \mathbb{W} for any scalar s, but we want more than just scalar multiples.

W is all polynomials **p** in \mathbb{P}_3 that satisfy $p(2) = 0$

It is straightforward to check that W is a vector subspace of \mathbb{P}_3 .

Since the polynomial \boldsymbol{q}_1 , given by $\boldsymbol{q}_1(t)=t-2$, belongs to $\mathbb W$, $\mathbb W$ is not the zero subspace. Also, $\mathbb{W}\neq \mathbb{P}_3$ (for example, because $\boldsymbol{t^3}$ is not in $\mathbb{W}).$

Since $\{\vec{0}\}\neq \mathbb{W}\neq \mathbb{P}_3$, $1 \leq \text{dim } \mathbb{W} \leq 3$.

Let's find a few more polynomials in $\mathbb{W}.$ Of course, $s\bm{q}_1$ is in \mathbb{W} for any scalar s, but we want more than just scalar multiples.

Notice that $\bm{q}_2 = \bm{t} \cdot \bm{q}_1$ and $\bm{q}_3 = \bm{t^2} \cdot \bm{q}_1$ both belong to $\mathbb{W}.$

W is all polynomials **p** in \mathbb{P}_3 that satisfy $p(2) = 0$

 Ω

 4 ロ) 4 何) 4 ヨ) 4 ヨ)

It is straightforward to check that W is a vector subspace of \mathbb{P}_3 .

Since the polynomial \boldsymbol{q}_1 , given by $\boldsymbol{q}_1(t)=t-2$, belongs to $\mathbb W$, $\mathbb W$ is not the zero subspace. Also, $\mathbb{W}\neq \mathbb{P}_3$ (for example, because $\boldsymbol{t^3}$ is not in $\mathbb{W}).$

Since $\{\vec{0}\}\neq \mathbb{W}\neq \mathbb{P}_3$, $1 \leq \text{dim } \mathbb{W} \leq 3$.

Let's find a few more polynomials in $\mathbb{W}.$ Of course, $s\bm{q}_1$ is in \mathbb{W} for any scalar s, but we want more than just scalar multiples.

Notice that $\bm{q}_2 = \bm{t} \cdot \bm{q}_1$ and $\bm{q}_3 = \bm{t^2} \cdot \bm{q}_1$ both belong to $\mathbb{W}.$

So, we have three polynomials, $\boldsymbol{q}_1, \boldsymbol{q}_2, \boldsymbol{q}_3$, that are all in $\mathbb{W}.$

W is all polynomials **p** in \mathbb{P}_3 that satisfy $p(2) = 0$

 299

 ← ロ ▶ → 何 ▶ → ヨ ▶ → ヨ ▶

It is straightforward to check that W is a vector subspace of \mathbb{P}_3 .

Since the polynomial \boldsymbol{q}_1 , given by $\boldsymbol{q}_1(t)=t-2$, belongs to $\mathbb W$, $\mathbb W$ is not the zero subspace. Also, $\mathbb{W}\neq \mathbb{P}_3$ (for example, because $\boldsymbol{t^3}$ is not in $\mathbb{W}).$

Since $\{\vec{0}\}\neq \mathbb{W}\neq \mathbb{P}_3$, $1 \leq \text{dim } \mathbb{W} \leq 3$.

Let's find a few more polynomials in $\mathbb{W}.$ Of course, $s\bm{q}_1$ is in \mathbb{W} for any scalar s, but we want more than just scalar multiples.

Notice that $\bm{q}_2 = \bm{t} \cdot \bm{q}_1$ and $\bm{q}_3 = \bm{t^2} \cdot \bm{q}_1$ both belong to $\mathbb{W}.$

So, we have three polynomials, $\bm{q}_1, \bm{q}_2, \bm{q}_3$, that are all in $\mathbb W$. Are these LI?

W is all polynomials **p** in \mathbb{P}_3 that satisfy $p(2) = 0$

 QQQ

We have three polynomials, $\bm{q}_1, \bm{q}_2 = \bm{t} \cdot \bm{q}_1, \bm{q}_3 = \bm{t}^2 \cdot \bm{q}_1$ that are all in $\mathbb{W}.$ **Here**

$$
\mathbf{q}_1(t) = t - 2 = -2 + t
$$

\n
$$
\mathbf{q}_2(t) = t(t - 2) = -2t + t^2
$$

\n
$$
\mathbf{q}_3(t) = t^2(t - 2) = -2t^2 + t^3.
$$

W is all polynomials **p** in \mathbb{P}_3 that satisfy $p(2) = 0$

4 0 1

つのい

We have three polynomials, $\bm{q}_1, \bm{q}_2 = \bm{t} \cdot \bm{q}_1, \bm{q}_3 = \bm{t}^2 \cdot \bm{q}_1$ that are all in $\mathbb{W}.$ **Here**

$$
\mathbf{q}_1(t) = t - 2 = -2 + t
$$

\n
$$
\mathbf{q}_2(t) = t(t - 2) = -2t + t^2
$$

\n
$$
\mathbf{q}_3(t) = t^2(t - 2) = -2t^2 + t^3.
$$

If these are LI, then they form a basis. Right? Why?

W is all polynomials **p** in \mathbb{P}_3 that satisfy $p(2) = 0$

 200

We have three polynomials, $\bm{q}_1, \bm{q}_2 = \bm{t} \cdot \bm{q}_1, \bm{q}_3 = \bm{t}^2 \cdot \bm{q}_1$ that are all in $\mathbb{W}.$ **Here**

$$
\mathbf{q}_1(t) = t - 2 = -2 + t
$$

\n
$$
\mathbf{q}_2(t) = t(t - 2) = -2t + t^2
$$

\n
$$
\mathbf{q}_3(t) = t^2(t - 2) = -2t^2 + t^3.
$$

If these are LI, then they form a basis. Right? Why?

To check for LI, we could look at $s_1q_1 + s_2q_2 + s_3q_3 = 0$ and explain why this means that $s_1 = s_2 = s_3 = 0$.

We have three polynomials, $\bm{q}_1, \bm{q}_2 = \bm{t} \cdot \bm{q}_1, \bm{q}_3 = \bm{t}^2 \cdot \bm{q}_1$ that are all in $\mathbb{W}.$ **Here**

$$
\mathbf{q}_1(t) = t - 2 = -2 + t
$$

\n
$$
\mathbf{q}_2(t) = t(t - 2) = -2t + t^2
$$

\n
$$
\mathbf{q}_3(t) = t^2(t - 2) = -2t^2 + t^3.
$$

If these are LI, then they form a basis. Right? Why?

To check for LI, we could look at $s_1q_1 + s_2q_2 + s_3q_3 = 0$ and explain why this means that $s_1 = s_2 = s_3 = 0$.

Instead, we use the fact that vectors are LI iff their coord vectors are LI.

We have three polynomials, $\bm{q}_1, \bm{q}_2 = \bm{t} \cdot \bm{q}_1, \bm{q}_3 = \bm{t}^2 \cdot \bm{q}_1$ that are all in $\mathbb{W}.$ **Here**

$$
\mathbf{q}_1(t) = t - 2 = -2 + t
$$

\n
$$
\mathbf{q}_2(t) = t(t - 2) = -2t + t^2
$$

\n
$$
\mathbf{q}_3(t) = t^2(t - 2) = -2t^2 + t^3.
$$

If these are LI, then they form a basis. Right? Why?

To check for LI, we could look at $s_1q_1 + s_2q_2 + s_3q_3 = 0$ and explain why this means that $s_1 = s_2 = s_3 = 0$.

Instead, we use the fact that vectors are LI iff their coord vectors are LI.

To employ this strategy, we need a basis for \mathbb{P}_3 .

We have three polynomials, $\bm{q}_1, \bm{q}_2 = \bm{t} \cdot \bm{q}_1, \bm{q}_3 = \bm{t}^2 \cdot \bm{q}_1$ that are all in $\mathbb{W}.$ **Here**

$$
\mathbf{q}_1(t) = t - 2 = -2 + t
$$

\n
$$
\mathbf{q}_2(t) = t(t - 2) = -2t + t^2
$$

\n
$$
\mathbf{q}_3(t) = t^2(t - 2) = -2t^2 + t^3.
$$

If these are LI, then they form a basis. Right? Why?

To check for LI, we could look at $s_1q_1 + s_2q_2 + s_3q_3 = 0$ and explain why this means that $s_1 = s_2 = s_3 = 0$.

Instead, we use the fact that vectors are LI iff their coord vectors are LI.

To employ this strategy, we need a basis for \mathbb{P}_3 . We use the standard basis, $\mathcal{P} = \{\mathbf{1}, \mathbf{t}, \mathbf{t^2}, \mathbf{t^3}\}.$

The three polynomials $\bm{q}_1, \bm{q}_2, \bm{q}_3$ are in $\mathbb{W};$ here

$$
\mathbf{q}_1(t) = t - 2 = -2 + t
$$

\n
$$
\mathbf{q}_2(t) = t(t - 2) = -2t + t^2
$$

\n
$$
\mathbf{q}_3(t) = t^2(t - 2) = -2t^2 + t^3.
$$

W is all polynomials \boldsymbol{p} in \mathbb{P}_3 that satisfy $\boldsymbol{p}(2) = 0$ $\boldsymbol{p}(2) = 0$

 $2QQ$

The three polynomials $\bm{q}_1, \bm{q}_2, \bm{q}_3$ are in $\mathbb{W};$ here

$$
\mathbf{q}_1(t) = t - 2 = -2 + t
$$

\n
$$
\mathbf{q}_2(t) = t(t - 2) = -2t + t^2
$$

\n
$$
\mathbf{q}_3(t) = t^2(t - 2) = -2t^2 + t^3.
$$

Using the standard basis, $\mathcal{P} = \{\mathbf{1}, \mathbf{t}, \mathbf{t^2}, \mathbf{t^3}\}$, we see that the $\mathcal{P}\text{-coordinate}$ vectors for $\boldsymbol{q}_1, \boldsymbol{q}_2, \boldsymbol{q}_3$ are

$$
\begin{bmatrix} \mathbf{q}_1 \end{bmatrix}_{\mathcal{P}} = \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} \mathbf{q}_2 \end{bmatrix}_{\mathcal{P}} = \begin{bmatrix} 0 \\ -2 \\ 1 \\ 0 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} \mathbf{q}_3 \end{bmatrix}_{\mathcal{P}} = \begin{bmatrix} 0 \\ 0 \\ -2 \\ 1 \end{bmatrix}.
$$

W is all polynomials p in \mathbb{P}_3 that satisfy $p(2) = 0$ $p(2) = 0$

 ORO

The three polynomials $\bm{q}_1, \bm{q}_2, \bm{q}_3$ are in $\mathbb{W};$ here

$$
\mathbf{q}_1(t) = t - 2 = -2 + t
$$

\n
$$
\mathbf{q}_2(t) = t(t - 2) = -2t + t^2
$$

\n
$$
\mathbf{q}_3(t) = t^2(t - 2) = -2t^2 + t^3.
$$

Using the standard basis, $\mathcal{P} = \{\mathbf{1}, \mathbf{t}, \mathbf{t^2}, \mathbf{t^3}\}$, we see that the $\mathcal{P}\text{-coordinate}$ vectors for $\boldsymbol{q}_1, \boldsymbol{q}_2, \boldsymbol{q}_3$ are

$$
\begin{bmatrix} \mathbf{q}_1 \end{bmatrix}_{\mathcal{P}} = \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} \mathbf{q}_2 \end{bmatrix}_{\mathcal{P}} = \begin{bmatrix} 0 \\ -2 \\ 1 \\ 0 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} \mathbf{q}_3 \end{bmatrix}_{\mathcal{P}} = \begin{bmatrix} 0 \\ 0 \\ -2 \\ 1 \end{bmatrix}.
$$

How do we test these for linear independence?

The three polynomials $\bm{q}_1, \bm{q}_2, \bm{q}_3$ are in $\mathbb{W};$ here

$$
\mathbf{q}_1(t) = t - 2 = -2 + t
$$

\n
$$
\mathbf{q}_2(t) = t(t - 2) = -2t + t^2
$$

\n
$$
\mathbf{q}_3(t) = t^2(t - 2) = -2t^2 + t^3.
$$

Using the standard basis, $\mathcal{P} = \{\mathbf{1}, \mathbf{t}, \mathbf{t^2}, \mathbf{t^3}\}$, we see that the $\mathcal{P}\text{-coordinate}$ vectors for $\boldsymbol{q}_1, \boldsymbol{q}_2, \boldsymbol{q}_3$ are

$$
\begin{bmatrix} \mathbf{q}_1 \end{bmatrix}_{\mathcal{P}} = \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} \mathbf{q}_2 \end{bmatrix}_{\mathcal{P}} = \begin{bmatrix} 0 \\ -2 \\ 1 \\ 0 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} \mathbf{q}_3 \end{bmatrix}_{\mathcal{P}} = \begin{bmatrix} 0 \\ 0 \\ -2 \\ 1 \end{bmatrix}.
$$

How do we test these for linear independence? They're just vectors in \mathbb{R}^4 .

The three polynomials $\bm{q}_1, \bm{q}_2, \bm{q}_3$ are in $\mathbb{W};$ here

$$
\mathbf{q}_1(t) = t - 2 = -2 + t
$$

\n
$$
\mathbf{q}_2(t) = t(t - 2) = -2t + t^2
$$

\n
$$
\mathbf{q}_3(t) = t^2(t - 2) = -2t^2 + t^3.
$$

Using the standard basis, $\mathcal{P} = \{\mathbf{1}, \mathbf{t}, \mathbf{t^2}, \mathbf{t^3}\}$, we see that the $\mathcal{P}\text{-coordinate}$ vectors for $\boldsymbol{q}_1, \boldsymbol{q}_2, \boldsymbol{q}_3$ are

$$
\begin{bmatrix} \mathbf{q}_1 \end{bmatrix}_{\mathcal{P}} = \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} \mathbf{q}_2 \end{bmatrix}_{\mathcal{P}} = \begin{bmatrix} 0 \\ -2 \\ 1 \\ 0 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} \mathbf{q}_3 \end{bmatrix}_{\mathcal{P}} = \begin{bmatrix} 0 \\ 0 \\ -2 \\ 1 \end{bmatrix}.
$$

How do we test these for linear independence? They're just vectors in \mathbb{R}^4 .

We look at the matrix
$$
\left[\left[\textbf{\textit{q}}_{1}\right]_{\mathcal{P}}\left[\textbf{\textit{q}}_{2}\right]_{\mathcal{P}}\left[\textbf{\textit{q}}_{3}\right]_{\mathcal{P}}\right].
$$

The polynomials $\bm{q}_1,\bm{q}_2,\bm{q}_3$ are LI iff $\left[\bm{q}_1\right]_{\mathcal{P}},\left[\bm{q}_2\right]_{\mathcal{P}},\left[\bm{q}_3\right]_{\mathcal{P}}$ are LI. To see if these P -coordinate vectors are LI, we look at the matrix

$$
\left[\left[\textbf{\textit{q}}_{1}\right]_{\mathcal{P}}\left[\textbf{\textit{q}}_{2}\right]_{\mathcal{P}}\left[\textbf{\textit{q}}_{3}\right]_{\mathcal{P}}\right]
$$

W is all polynomials **p** in \mathbb{P}_3 that satisfy $p(2) = 0$

つのい

The polynomials $\bm{q}_1,\bm{q}_2,\bm{q}_3$ are LI iff $\left[\bm{q}_1\right]_{\mathcal{P}},\left[\bm{q}_2\right]_{\mathcal{P}},\left[\bm{q}_3\right]_{\mathcal{P}}$ are LI. To see if these P -coordinate vectors are LI, we look at the matrix

$$
\begin{bmatrix} \left[\boldsymbol{q}_1\right]_{\mathcal{P}} \left[\boldsymbol{q}_2\right]_{\mathcal{P}} \left[\boldsymbol{q}_3\right]_{\mathcal{P}} \end{bmatrix} = \begin{bmatrix} -2 & 0 & 0 \\ 1 & -2 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}
$$

W is all polynomials **p** in \mathbb{P}_3 that satisfy $p(2) = 0$

つのい

The polynomials $\bm{q}_1,\bm{q}_2,\bm{q}_3$ are LI iff $\left[\bm{q}_1\right]_{\mathcal{P}},\left[\bm{q}_2\right]_{\mathcal{P}},\left[\bm{q}_3\right]_{\mathcal{P}}$ are LI. To see if these P -coordinate vectors are LI, we look at the matrix

$$
\left[\left[\mathbf{q}_1\right]_{\mathcal{P}}\left[\mathbf{q}_2\right]_{\mathcal{P}}\left[\mathbf{q}_3\right]_{\mathcal{P}}\right] = \begin{bmatrix} -2 & 0 & 0 \\ 1 & -2 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}
$$

which has the indicated REF.

The polynomials $\bm{q}_1,\bm{q}_2,\bm{q}_3$ are LI iff $\left[\bm{q}_1\right]_{\mathcal{P}},\left[\bm{q}_2\right]_{\mathcal{P}},\left[\bm{q}_3\right]_{\mathcal{P}}$ are LI. To see if these P -coordinate vectors are LI, we look at the matrix

$$
\begin{bmatrix} \left[\mathbf{q}_1\right]_{\mathcal{P}} \left[\mathbf{q}_2\right]_{\mathcal{P}} \left[\mathbf{q}_3\right]_{\mathcal{P}} \end{bmatrix} = \begin{bmatrix} -2 & 0 & 0 \\ 1 & -2 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}
$$

which has the indicated REF. Thus $\boldsymbol{q}_1, \boldsymbol{q}_2, \boldsymbol{q}_3$ <u>are</u> LI, so

The polynomials $\bm{q}_1,\bm{q}_2,\bm{q}_3$ are LI iff $\left[\bm{q}_1\right]_{\mathcal{P}},\left[\bm{q}_2\right]_{\mathcal{P}},\left[\bm{q}_3\right]_{\mathcal{P}}$ are LI. To see if these P -coordinate vectors are LI, we look at the matrix

$$
\begin{bmatrix} \left[\mathbf{q}_1\right]_{\mathcal{P}} \left[\mathbf{q}_2\right]_{\mathcal{P}} \left[\mathbf{q}_3\right]_{\mathcal{P}} \end{bmatrix} = \begin{bmatrix} -2 & 0 & 0 \\ 1 & -2 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}
$$

which has the indicated REF. Thus $\bm{q}_1,\bm{q}_2,\bm{q}_3$ <u>are</u> LI, so $\ \mathcal{B}=\{\bm{q}_1,\bm{q}_2,\bm{q}_3\}$ is a basis for W.

The polynomials $\bm{q}_1,\bm{q}_2,\bm{q}_3$ are LI iff $\left[\bm{q}_1\right]_{\mathcal{P}},\left[\bm{q}_2\right]_{\mathcal{P}},\left[\bm{q}_3\right]_{\mathcal{P}}$ are LI. To see if these P -coordinate vectors are LI, we look at the matrix

$$
\begin{bmatrix} \left[\mathbf{q}_1\right]_{\mathcal{P}} \left[\mathbf{q}_2\right]_{\mathcal{P}} \left[\mathbf{q}_3\right]_{\mathcal{P}} \end{bmatrix} = \begin{bmatrix} -2 & 0 & 0 \\ 1 & -2 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}
$$

which has the indicated REF. Thus $\bm{q}_1,\bm{q}_2,\bm{q}_3$ <u>are</u> LI, so $\ \mathcal{B}=\{\bm{q}_1,\bm{q}_2,\bm{q}_3\}$ is a basis for W.

Therefore, dim $W = 3$; W is a 3-plane (aka, a hyperplane) in \mathbb{P}_3 .

W is all polynomials **p** in \mathbb{P}_3 that satisfy $p(2) = 0$

The polynomial **p**, given by $p(t) = (t-1)(t-2)(t-3)$, has $p(2) =$

W is all polynomials **p** in \mathbb{P}_3 that satisfy $p(2) = 0$

∢ □ ▶ ∢ [†]

 OQ

The polynomial p , given by $p(t) = (t-1)(t-2)(t-3)$, has $p(2) = 0$, so

W is all polynomials **p** in \mathbb{P}_3 that satisfy $p(2) = 0$

 OQ

The polynomial **p**, given by $p(t) = (t-1)(t-2)(t-3)$, has $p(2) = 0$, so \boldsymbol{p} is a vector in \mathbb{W} .

W is all polynomials **p** in \mathbb{P}_3 that satisfy $p(2) = 0$

 PQQ

The polynomial **p**, given by $p(t) = (t-1)(t-2)(t-3)$, has $p(2) = 0$, so \bm{p} is a vector in $\mathbb{W}.$ Therefore, we can write $\bm{p}=c_1\bm{q}_1+c_2\bm{q}_2+c_3\bm{q}_3$, and

W is all polynomials **p** in \mathbb{P}_3 that satisfy $p(2) = 0$

The polynomial **p**, given by $p(t) = (t-1)(t-2)(t-3)$, has $p(2) = 0$, so \bm{p} is a vector in $\mathbb{W}.$ Therefore, we can write $\bm{p}=c_1\bm{q}_1+c_2\bm{q}_2+c_3\bm{q}_3$, and c_1, c_2, c_3 are the B-coordinates for **p**.

W is all polynomials **p** in \mathbb{P}_3 that satisfy $p(2) = 0$

The polynomial **p**, given by $p(t) = (t-1)(t-2)(t-3)$, has $p(2) = 0$, so \bm{p} is a vector in $\mathbb{W}.$ Therefore, we can write $\bm{p}=c_1\bm{q}_1+c_2\bm{q}_2+c_3\bm{q}_3$, and c_1, c_2, c_3 are the B-coordinates for **p**.

How do we find these coordinates?

W is all polynomials **p** in \mathbb{P}_3 that satisfy $p(2) = 0$

How do we find these coordinates?

One way is to use the fact that coordinate vectors preserve LCs. Right?

W is all polynomials **p** in \mathbb{P}_3 that satisfy $p(2) = 0$

How do we find these coordinates?

One way is to use the fact that coordinate vectors preserve LCs. Right? This means that $\boldsymbol{p}=c_1\boldsymbol{q}_1+c_2\boldsymbol{q}_2+c_3\boldsymbol{q}_3$ iff

W is all polynomials **p** in \mathbb{P}_3 that satisfy $p(2) = 0$

How do we find these coordinates?

One way is to use the fact that coordinate vectors preserve LCs. Right? This means that $\boldsymbol{p}=c_1\boldsymbol{q}_1+c_2\boldsymbol{q}_2+c_3\boldsymbol{q}_3$ iff $\left[\pmb{\rho}\right]_{\mathcal{P}}=c_1\big[\pmb{q}_1\big]_{\mathcal{P}}+c_2\big[\pmb{q}_2\big]_{\mathcal{P}}+c_3\big[\pmb{q}_3\big]_{\mathcal{P}}.$

W is all polynomials **p** in \mathbb{P}_3 that satisfy $p(2) = 0$

How do we find these coordinates?

One way is to use the fact that coordinate vectors preserve LCs. Right? This means that $\boldsymbol{p}=c_1\boldsymbol{q}_1+c_2\boldsymbol{q}_2+c_3\boldsymbol{q}_3$ iff $\left[\pmb{\rho}\right]_{\mathcal{P}}=c_1\big[\pmb{q}_1\big]_{\mathcal{P}}+c_2\big[\pmb{q}_2\big]_{\mathcal{P}}+c_3\big[\pmb{q}_3\big]_{\mathcal{P}}.$ Now we're looking at vectors in \mathbb{R}^4 , and we know how to solve this vector equation.

W is all polynomials \boldsymbol{p} in \mathbb{P}_3 that satisfy $\boldsymbol{p}(2) = 0$

How do we find these coordinates?

One way is to use the fact that coordinate vectors preserve LCs. Right? This means that $\boldsymbol{p}=c_1\boldsymbol{q}_1+c_2\boldsymbol{q}_2+c_3\boldsymbol{q}_3$ iff $\left[\pmb{\rho}\right]_{\mathcal{P}}=c_1\big[\pmb{q}_1\big]_{\mathcal{P}}+c_2\big[\pmb{q}_2\big]_{\mathcal{P}}+c_3\big[\pmb{q}_3\big]_{\mathcal{P}}.$ Now we're looking at vectors in \mathbb{R}^4 , and we know how to solve this vector equation. Right?

W is all polynomials \boldsymbol{p} in \mathbb{P}_3 that satisfy $\boldsymbol{p}(2) = 0$

We gotta solve
$$
c_1[\mathbf{q}_1]_{\mathcal{P}} + c_2[\mathbf{q}_2]_{\mathcal{P}} + c_3[\mathbf{q}_3]_{\mathcal{P}} = [\mathbf{p}]_{\mathcal{P}}
$$
.

W is all polynomials \boldsymbol{p} in \mathbb{P}_3 that satisfy $\boldsymbol{p}(2) = 0$ $\boldsymbol{p}(2) = 0$

 $2QQ$

We gotta solve
$$
c_1[\mathbf{q}_1]_{\mathcal{P}} + c_2[\mathbf{q}_2]_{\mathcal{P}} + c_3[\mathbf{q}_3]_{\mathcal{P}} = [\mathbf{p}]_{\mathcal{P}}
$$
.

Here
$$
\mathbf{p}(t) = (t-1)(t-2)(t-3) = -6 + 11t - 6t^2 + t^3
$$
, so

W is all polynomials \boldsymbol{p} in \mathbb{P}_3 that satisfy $\boldsymbol{p}(2) = 0$ $\boldsymbol{p}(2) = 0$

 OQ

We gotta solve
$$
c_1[\mathbf{q}_1]_p + c_2[\mathbf{q}_2]_p + c_3[\mathbf{q}_3]_p = [\mathbf{p}]_p
$$
.
\nHere $\mathbf{p}(t) = (t-1)(t-2)(t-3) = -6 + 11t - 6t^2 + t^3$, so $[\mathbf{p}]_p = \begin{bmatrix} -6 \\ 11 \\ -6 \\ 1 \end{bmatrix}$

W is all polynomials \boldsymbol{p} in \mathbb{P}_3 that satisfy $\boldsymbol{p}(2) = 0$ $\boldsymbol{p}(2) = 0$

 $2QQ$

.

We gotta solve
$$
c_1[\mathbf{q}_1]_p + c_2[\mathbf{q}_2]_p + c_3[\mathbf{q}_3]_p = [\mathbf{p}]_p
$$
.
\nHere $\mathbf{p}(t) = (t-1)(t-2)(t-3) = -6 + 11t - 6t^2 + t^3$, so $[\mathbf{p}]_p = \begin{bmatrix} -6 \\ 11 \\ -6 \\ 1 \end{bmatrix}$.

Remembering what $\left[\bm{q}_1\right]_{\mathcal{P}}, \left[\bm{q}_2\right]_{\mathcal{P}}, \left[\bm{q}_3\right]_{\mathcal{P}}$ are, we get the augmented matrix

$$
\begin{bmatrix} -2 & 0 & 0 & -6 \ 1 & -2 & 0 & 11 \ 0 & 1 & -2 & -6 \ 0 & 0 & 1 & 1 \end{bmatrix}
$$

W is all polynomials **p** in \mathbb{P}_3 that satisfy $p(2) = 0$ $p(2) = 0$

 $2QQ$

We gotta solve
$$
c_1[\mathbf{q}_1]_p + c_2[\mathbf{q}_2]_p + c_3[\mathbf{q}_3]_p = [\mathbf{p}]_p
$$
.
\nHere $\mathbf{p}(t) = (t-1)(t-2)(t-3) = -6 + 11t - 6t^2 + t^3$, so $[\mathbf{p}]_p = \begin{bmatrix} -6 \\ 11 \\ -6 \\ 1 \end{bmatrix}$.

Remembering what $\left[\bm{q}_1\right]_{\mathcal{P}}, \left[\bm{q}_2\right]_{\mathcal{P}}, \left[\bm{q}_3\right]_{\mathcal{P}}$ are, we get the augmented matrix

$$
\begin{bmatrix} -2 & 0 & 0 & | & -6 \\ 1 & -2 & 0 & | & 11 \\ 0 & 1 & -2 & | & -6 \\ 0 & 0 & 1 & | & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & | & 3 \\ 0 & 1 & 0 & | & -4 \\ 0 & 0 & 1 & | & 1 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}
$$

and then some elem row ops produce the indicated REF.

W is all polynomials \boldsymbol{p} in \mathbb{P}_3 that satisfy $\boldsymbol{p}(2) = 0$ $\boldsymbol{p}(2) = 0$

We gotta solve
$$
c_1[\mathbf{q}_1]_p + c_2[\mathbf{q}_2]_p + c_3[\mathbf{q}_3]_p = [\mathbf{p}]_p
$$
.
\nHere $\mathbf{p}(t) = (t-1)(t-2)(t-3) = -6 + 11t - 6t^2 + t^3$, so $[\mathbf{p}]_p = \begin{bmatrix} -6 \\ 11 \\ -6 \\ 1 \end{bmatrix}$.

Remembering what $\left[\bm{q}_1\right]_{\mathcal{P}}, \left[\bm{q}_2\right]_{\mathcal{P}}, \left[\bm{q}_3\right]_{\mathcal{P}}$ are, we get the augmented matrix

$$
\begin{bmatrix} -2 & 0 & 0 & -6 \\ 1 & -2 & 0 & 11 \\ 0 & 1 & -2 & -6 \\ 0 & 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & -4 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}
$$

and then some elem row ops produce the indicated REF. Right?

We gotta solve
$$
c_1[\mathbf{q}_1]_p + c_2[\mathbf{q}_2]_p + c_3[\mathbf{q}_3]_p = [\mathbf{p}]_p
$$
.
\nHere $\mathbf{p}(t) = (t-1)(t-2)(t-3) = -6 + 11t - 6t^2 + t^3$, so $[\mathbf{p}]_p = \begin{bmatrix} -6 \\ 11 \\ -6 \\ 1 \end{bmatrix}$.

Remembering what $\left[\bm{q}_1\right]_{\mathcal{P}}, \left[\bm{q}_2\right]_{\mathcal{P}}, \left[\bm{q}_3\right]_{\mathcal{P}}$ are, we get the augmented matrix

$$
\begin{bmatrix} -2 & 0 & 0 & | & -6 \\ 1 & -2 & 0 & | & 11 \\ 0 & 1 & -2 & | & -6 \\ 0 & 0 & 1 & | & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & | & 3 \\ 0 & 1 & 0 & | & -4 \\ 0 & 0 & 1 & | & 1 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}
$$

and then some elem row ops produce the indicated REF. Right? So,

$$
c_1=3, c_2=-4, c_3=1 \text{ and }
$$

W is all polynomials **p** in \mathbb{P}_3 that satisfy $p(2) = 0$ $p(2) = 0$

We gotta solve
$$
c_1[\mathbf{q}_1]_p + c_2[\mathbf{q}_2]_p + c_3[\mathbf{q}_3]_p = [\mathbf{p}]_p
$$
.
\nHere $\mathbf{p}(t) = (t-1)(t-2)(t-3) = -6 + 11t - 6t^2 + t^3$, so $[\mathbf{p}]_p = \begin{bmatrix} -6 \\ 11 \\ -6 \\ 1 \end{bmatrix}$.

Remembering what $\left[\bm{q}_1\right]_{\mathcal{P}}, \left[\bm{q}_2\right]_{\mathcal{P}}, \left[\bm{q}_3\right]_{\mathcal{P}}$ are, we get the augmented matrix

$$
\begin{bmatrix} -2 & 0 & 0 & -6 \ 1 & -2 & 0 & 11 \ 0 & 1 & -2 & -6 \ 0 & 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 3 \ 0 & 1 & 0 & -4 \ 0 & 0 & 1 & 1 \ 0 & 0 & 0 & 0 \end{bmatrix}
$$

and then some elem row ops produce the indicated REF. Right? So, $c_1=3, c_2=-4, c_3=1$ and therefore $\left[\boldsymbol{\rho}\right]_{\mathcal{B}}=$ $\sqrt{ }$ $\overline{1}$ 3 −4 1 1 $\vert \cdot$

W is all polynomials p in \mathbb{P}_3 that satisfy $p(2) = \overline{\mathbb{Q}}_{p+1}$