A Hyperplane in \mathbb{P}_3

Linear Algebra MATH 2076

Hyperplane in \mathbb{P}_3

(日) (同) (三) (三)

The Problem and Our Strategy

Let \mathbb{W} be the space of all polynomials \boldsymbol{p} in \mathbb{P}_3 that satisfy $\boldsymbol{p}(2) = 0$.

The Problem and Our Strategy

Let \mathbb{W} be the space of all polynomials \boldsymbol{p} in \mathbb{P}_3 that satisfy $\boldsymbol{p}(2) = 0$. Here we:

The Problem and Our Strategy

Let \mathbb{W} be the space of all polynomials \boldsymbol{p} in \mathbb{P}_3 that satisfy $\boldsymbol{p}(2) = 0$. Here we:

• Explain why \mathbb{W} is a vector subspace of \mathbb{P}_3 .

- Explain why \mathbb{W} is a vector subspace of \mathbb{P}_3 .
- Find a basis $\mathcal B$ for $\mathbb W$ and determine the dimension of $\mathbb W$.

- Explain why \mathbb{W} is a vector subspace of \mathbb{P}_3 .
- Find a basis ${\mathcal B}$ for ${\mathbb W}$ and determine the dimension of ${\mathbb W}$.
- Find the \mathcal{B} -coordinate vector for $\boldsymbol{p}(t) = (t-1)(t-2)(t-3)$.

* E * * E *

- Explain why \mathbb{W} is a vector subspace of \mathbb{P}_3 .
- Find a basis $\mathcal B$ for $\mathbb W$ and determine the dimension of $\mathbb W$.
- Find the \mathcal{B} -coordinate vector for $\boldsymbol{p}(t) = (t-1)(t-2)(t-3)$.

We make extensive use of coordinate vectors, so you might want to review this material.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Explain why \mathbb{W} is a vector subspace of \mathbb{P}_3 .
- Find a basis $\mathcal B$ for $\mathbb W$ and determine the dimension of $\mathbb W$.
- Find the \mathcal{B} -coordinate vector for $\boldsymbol{p}(t) = (t-1)(t-2)(t-3)$.

We make extensive use of coordinate vectors, so you might want to review this material. In particular, remember that:

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- Explain why \mathbb{W} is a vector subspace of \mathbb{P}_3 .
- Find a basis $\mathcal B$ for $\mathbb W$ and determine the dimension of $\mathbb W$.
- Find the \mathcal{B} -coordinate vector for $\boldsymbol{p}(t) = (t-1)(t-2)(t-3)$.

We make extensive use of coordinate vectors, so you might want to review this material. In particular, remember that:

• vectors are LI if and only if their coordinate vectors are LI, and,

A = A = A

- Explain why \mathbb{W} is a vector subspace of \mathbb{P}_3 .
- Find a basis $\mathcal B$ for $\mathbb W$ and determine the dimension of $\mathbb W$.
- Find the \mathcal{B} -coordinate vector for $\boldsymbol{p}(t) = (t-1)(t-2)(t-3)$.

We make extensive use of coordinate vectors, so you might want to review this material. In particular, remember that:

- vectors are LI if and only if their coordinate vectors are LI, and,
- coordinate maps "preserve" all linear combinations.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

It is straightforward to check that \mathbb{W} is a vector subspace of \mathbb{P}_3 .

 \mathbb{W} is all polynomials \boldsymbol{p} in \mathbb{P}_3 that satisfy $\boldsymbol{p}(2) = 0$

0		
5	ection	<u> </u>
5	cetion	_

It is straightforward to check that \mathbb{W} is a vector subspace of \mathbb{P}_3 . Since the polynomial \boldsymbol{q}_1 , given by $\boldsymbol{q}_1(t) = t - 2$, belongs to \mathbb{W} , \mathbb{W} is not the zero subspace.

 $\mathbb W$ is all polynomials \boldsymbol{p} in $\mathbb P_3$ that satisfy $\boldsymbol{p}(2)=0$

It is straightforward to check that \mathbb{W} is a vector subspace of \mathbb{P}_3 .

Since the polynomial \boldsymbol{q}_1 , given by $\boldsymbol{q}_1(t) = t - 2$, belongs to \mathbb{W} , \mathbb{W} is not the zero subspace. Also, $\mathbb{W} \neq \mathbb{P}_3$ (for example, because t^3 is not in \mathbb{W}).

W is all polynomials \boldsymbol{p} in \mathbb{P}_3 that satisfy $\boldsymbol{p}(2) = 0$

It is straightforward to check that \mathbb{W} is a vector subspace of \mathbb{P}_3 .

Since the polynomial \boldsymbol{q}_1 , given by $\boldsymbol{q}_1(t) = t - 2$, belongs to \mathbb{W} , \mathbb{W} is not the zero subspace. Also, $\mathbb{W} \neq \mathbb{P}_3$ (for example, because t^3 is not in \mathbb{W}).

Since $\{\vec{0}\} \neq \mathbb{W} \neq \mathbb{P}_3$, $1 \leq \dim \mathbb{W} \leq 3$.

W is all polynomials \boldsymbol{p} in \mathbb{P}_3 that satisfy $\boldsymbol{p}(2) = 0$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

It is straightforward to check that \mathbb{W} is a vector subspace of \mathbb{P}_3 .

Since the polynomial \boldsymbol{q}_1 , given by $\boldsymbol{q}_1(t) = t - 2$, belongs to \mathbb{W} , \mathbb{W} is not the zero subspace. Also, $\mathbb{W} \neq \mathbb{P}_3$ (for example, because \boldsymbol{t}^3 is not in \mathbb{W}).

Since $\{\vec{0}\} \neq \mathbb{W} \neq \mathbb{P}_3$, $1 \leq \dim \mathbb{W} \leq 3$.

Let's find a few more polynomials in \mathbb{W} .

W is all polynomials \boldsymbol{p} in \mathbb{P}_3 that satisfy $\boldsymbol{p}(2) = 0$

> < 同> < 三> < 三>

It is straightforward to check that $\mathbb W$ is a vector subspace of $\mathbb P_3.$

Since the polynomial \boldsymbol{q}_1 , given by $\boldsymbol{q}_1(t) = t - 2$, belongs to \mathbb{W} , \mathbb{W} is not the zero subspace. Also, $\mathbb{W} \neq \mathbb{P}_3$ (for example, because t^3 is not in \mathbb{W}).

Since $\{\vec{0}\} \neq \mathbb{W} \neq \mathbb{P}_3$, $1 \leq \dim \mathbb{W} \leq 3$.

Let's find a few more polynomials in \mathbb{W} . Of course, sq_1 is in \mathbb{W} for any scalar *s*, but we want more than just scalar multiples.

W is all polynomials \boldsymbol{p} in \mathbb{P}_3 that satisfy $\boldsymbol{p}(2) = 0$

イロト イポト イヨト イヨト

It is straightforward to check that \mathbb{W} is a vector subspace of \mathbb{P}_3 .

Since the polynomial \boldsymbol{q}_1 , given by $\boldsymbol{q}_1(t) = t - 2$, belongs to \mathbb{W} , \mathbb{W} is not the zero subspace. Also, $\mathbb{W} \neq \mathbb{P}_3$ (for example, because \boldsymbol{t}^3 is not in \mathbb{W}).

Since $\{\vec{0}\} \neq \mathbb{W} \neq \mathbb{P}_3$, $1 \leq \dim \mathbb{W} \leq 3$.

Let's find a few more polynomials in \mathbb{W} . Of course, sq_1 is in \mathbb{W} for any scalar *s*, but we want more than just scalar multiples.

Notice that $\boldsymbol{q}_2 = \boldsymbol{t} \cdot \boldsymbol{q}_1$ and $\boldsymbol{q}_3 = \boldsymbol{t}^2 \cdot \boldsymbol{q}_1$ both belong to \mathbb{W} .

W is all polynomials \boldsymbol{p} in \mathbb{P}_3 that satisfy $\boldsymbol{p}(2) = 0$

It is straightforward to check that $\mathbb W$ is a vector subspace of $\mathbb P_3.$

Since the polynomial \boldsymbol{q}_1 , given by $\boldsymbol{q}_1(t) = t - 2$, belongs to \mathbb{W} , \mathbb{W} is not the zero subspace. Also, $\mathbb{W} \neq \mathbb{P}_3$ (for example, because t^3 is not in \mathbb{W}).

Since $\{\vec{0}\} \neq \mathbb{W} \neq \mathbb{P}_3$, $1 \leq \dim \mathbb{W} \leq 3$.

Let's find a few more polynomials in \mathbb{W} . Of course, sq_1 is in \mathbb{W} for any scalar *s*, but we want more than just scalar multiples.

Notice that $\boldsymbol{q}_2 = \boldsymbol{t} \cdot \boldsymbol{q}_1$ and $\boldsymbol{q}_3 = \boldsymbol{t}^2 \cdot \boldsymbol{q}_1$ both belong to \mathbb{W} .

So, we have three polynomials, $\boldsymbol{q}_1, \boldsymbol{q}_2, \boldsymbol{q}_3$, that are all in \mathbb{W} .

W is all polynomials \boldsymbol{p} in \mathbb{P}_3 that satisfy $\boldsymbol{p}(2) = 0$

It is straightforward to check that $\mathbb W$ is a vector subspace of $\mathbb P_3.$

Since the polynomial \boldsymbol{q}_1 , given by $\boldsymbol{q}_1(t) = t - 2$, belongs to \mathbb{W} , \mathbb{W} is not the zero subspace. Also, $\mathbb{W} \neq \mathbb{P}_3$ (for example, because t^3 is not in \mathbb{W}).

Since $\{\vec{0}\} \neq \mathbb{W} \neq \mathbb{P}_3$, $1 \leq \dim \mathbb{W} \leq 3$.

Let's find a few more polynomials in \mathbb{W} . Of course, sq_1 is in \mathbb{W} for any scalar *s*, but we want more than just scalar multiples.

Notice that $\boldsymbol{q}_2 = \boldsymbol{t} \cdot \boldsymbol{q}_1$ and $\boldsymbol{q}_3 = \boldsymbol{t}^2 \cdot \boldsymbol{q}_1$ both belong to \mathbb{W} .

So, we have three polynomials, $\boldsymbol{q}_1, \boldsymbol{q}_2, \boldsymbol{q}_3$, that are all in \mathbb{W} . Are these LI?

W is all polynomials \boldsymbol{p} in \mathbb{P}_3 that satisfy $\boldsymbol{p}(2) = 0$

We have three polynomials, $\boldsymbol{q}_1, \boldsymbol{q}_2 = \boldsymbol{t} \cdot \boldsymbol{q}_1, \boldsymbol{q}_3 = \boldsymbol{t}^2 \cdot \boldsymbol{q}_1$ that are all in \mathbb{W} . Here

$$q_1(t) = t - 2 = -2 + t$$

$$q_2(t) = t(t - 2) = -2t + t^2$$

$$q_3(t) = t^2(t - 2) = -2t^2 + t^3.$$

 $\mathbb W$ is all polynomials ${\pmb p}$ in $\mathbb P_3$ that satisfy ${\pmb p}(2)=0$

We have three polynomials, $\boldsymbol{q}_1, \boldsymbol{q}_2 = \boldsymbol{t} \cdot \boldsymbol{q}_1, \boldsymbol{q}_3 = \boldsymbol{t}^2 \cdot \boldsymbol{q}_1$ that are all in \mathbb{W} . Here

$$q_1(t) = t - 2 = -2 + t$$

$$q_2(t) = t(t - 2) = -2t + t^2$$

$$q_3(t) = t^2(t - 2) = -2t^2 + t^3.$$

If these are LI, then they form a basis. Right? Why?

 $\mathbb W$ is all polynomials ${\pmb p}$ in $\mathbb P_3$ that satisfy ${\pmb p}(2)=0$

We have three polynomials, $\boldsymbol{q}_1, \boldsymbol{q}_2 = \boldsymbol{t} \cdot \boldsymbol{q}_1, \boldsymbol{q}_3 = \boldsymbol{t}^2 \cdot \boldsymbol{q}_1$ that are all in \mathbb{W} . Here

$$q_1(t) = t - 2 = -2 + t$$

$$q_2(t) = t(t - 2) = -2t + t^2$$

$$q_3(t) = t^2(t - 2) = -2t^2 + t^3.$$

If these are LI, then they form a basis. Right? Why?

To check for LI, we could look at $s_1 \boldsymbol{q}_1 + s_2 \boldsymbol{q}_2 + s_3 \boldsymbol{q}_3 = \boldsymbol{0}$ and explain why this means that $s_1 = s_2 = s_3 = 0$.

We have three polynomials, $\boldsymbol{q}_1, \boldsymbol{q}_2 = \boldsymbol{t} \cdot \boldsymbol{q}_1, \boldsymbol{q}_3 = \boldsymbol{t}^2 \cdot \boldsymbol{q}_1$ that are all in \mathbb{W} . Here

$$q_1(t) = t - 2 = -2 + t$$

$$q_2(t) = t(t - 2) = -2t + t^2$$

$$q_3(t) = t^2(t - 2) = -2t^2 + t^3.$$

If these are LI, then they form a basis. Right? Why?

To check for LI, we could look at $s_1 \boldsymbol{q}_1 + s_2 \boldsymbol{q}_2 + s_3 \boldsymbol{q}_3 = \boldsymbol{0}$ and explain why this means that $s_1 = s_2 = s_3 = 0$.

Instead, we use the fact that vectors are LI iff their coord vectors are LI.

We have three polynomials, $\boldsymbol{q}_1, \boldsymbol{q}_2 = \boldsymbol{t} \cdot \boldsymbol{q}_1, \boldsymbol{q}_3 = \boldsymbol{t}^2 \cdot \boldsymbol{q}_1$ that are all in \mathbb{W} . Here

$$q_1(t) = t - 2 = -2 + t$$

$$q_2(t) = t(t - 2) = -2t + t^2$$

$$q_3(t) = t^2(t - 2) = -2t^2 + t^3.$$

If these are LI, then they form a basis. Right? Why?

To check for LI, we could look at $s_1 \boldsymbol{q}_1 + s_2 \boldsymbol{q}_2 + s_3 \boldsymbol{q}_3 = \boldsymbol{0}$ and explain why this means that $s_1 = s_2 = s_3 = 0$.

Instead, we use the fact that vectors are LI iff their coord vectors are LI.

To employ this strategy, we need a basis for \mathbb{P}_3 .

We have three polynomials, $q_1, q_2 = t \cdot q_1, q_3 = t^2 \cdot q_1$ that are all in \mathbb{W} . Here

$$q_1(t) = t - 2 = -2 + t$$

$$q_2(t) = t(t - 2) = -2t + t^2$$

$$q_3(t) = t^2(t - 2) = -2t^2 + t^3.$$

If these are LI, then they form a basis. Right? Why?

To check for LI, we could look at $s_1 \boldsymbol{q}_1 + s_2 \boldsymbol{q}_2 + s_3 \boldsymbol{q}_3 = \boldsymbol{0}$ and explain why this means that $s_1 = s_2 = s_3 = 0$.

Instead, we use the fact that vectors are LI iff their coord vectors are LI.

To employ this strategy, we need a basis for \mathbb{P}_3 . We use the standard basis, $\mathcal{P} = \{1, t, t^2, t^3\}$.

The three polynomials ${\pmb q}_1, {\pmb q}_2, {\pmb q}_3$ are in ${\mathbb W};$ here

$$q_1(t) = t - 2 = -2 + t$$

$$q_2(t) = t(t - 2) = -2t + t^2$$

$$q_3(t) = t^2(t - 2) = -2t^2 + t^3.$$

W is all polynomials \boldsymbol{p} in \mathbb{P}_3 that satisfy $\boldsymbol{p}(2) = 0$

The three polynomials ${\pmb q}_1, {\pmb q}_2, {\pmb q}_3$ are in ${\mathbb W};$ here

$$\begin{aligned} \mathbf{q}_1(t) &= t - 2 = -2 + t \\ \mathbf{q}_2(t) &= t(t - 2) = -2t + t^2 \\ \mathbf{q}_3(t) &= t^2(t - 2) = -2t^2 + t^3. \end{aligned}$$

Using the standard basis, $\mathcal{P} = \{1, t, t^2, t^3\}$, we see that the \mathcal{P} -coordinate vectors for $\boldsymbol{q}_1, \boldsymbol{q}_2, \boldsymbol{q}_3$ are

$$\begin{bmatrix} \boldsymbol{q}_1 \end{bmatrix}_{\mathcal{P}} = \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} \boldsymbol{q}_2 \end{bmatrix}_{\mathcal{P}} = \begin{bmatrix} 0\\-2\\1\\0 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} \boldsymbol{q}_3 \end{bmatrix}_{\mathcal{P}} = \begin{bmatrix} 0\\0\\-2\\1 \end{bmatrix}$$

W is all polynomials \boldsymbol{p} in \mathbb{P}_3 that satisfy $\boldsymbol{p}(2) = 0$, $\boldsymbol{p}_1, \boldsymbol{p}_2, \boldsymbol{p}_3, \boldsymbol{p}_3,$

The three polynomials ${\pmb q}_1, {\pmb q}_2, {\pmb q}_3$ are in ${\mathbb W};$ here

$$\begin{aligned} \mathbf{q}_1(t) &= t - 2 = -2 + t \\ \mathbf{q}_2(t) &= t(t - 2) = -2t + t^2 \\ \mathbf{q}_3(t) &= t^2(t - 2) = -2t^2 + t^3. \end{aligned}$$

Using the standard basis, $\mathcal{P} = \{1, t, t^2, t^3\}$, we see that the \mathcal{P} -coordinate vectors for $\boldsymbol{q}_1, \boldsymbol{q}_2, \boldsymbol{q}_3$ are

$$\begin{bmatrix} \boldsymbol{q}_1 \end{bmatrix}_{\mathcal{P}} = \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} \boldsymbol{q}_2 \end{bmatrix}_{\mathcal{P}} = \begin{bmatrix} 0\\-2\\1\\0 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} \boldsymbol{q}_3 \end{bmatrix}_{\mathcal{P}} = \begin{bmatrix} 0\\0\\-2\\1 \end{bmatrix}$$

How do we test these for linear independence?

W is all polynomials \boldsymbol{p} in \mathbb{P}_3 that satisfy $\boldsymbol{p}(2) = 0$, \boldsymbol{p}_1 , \boldsymbol{p}_2 , \boldsymbol{p}_3

The three polynomials ${\pmb q}_1, {\pmb q}_2, {\pmb q}_3$ are in ${\mathbb W};$ here

$$\begin{aligned} \mathbf{q}_1(t) &= t - 2 = -2 + t \\ \mathbf{q}_2(t) &= t(t - 2) = -2t + t^2 \\ \mathbf{q}_3(t) &= t^2(t - 2) = -2t^2 + t^3. \end{aligned}$$

Using the standard basis, $\mathcal{P} = \{1, t, t^2, t^3\}$, we see that the \mathcal{P} -coordinate vectors for q_1, q_2, q_3 are

$$\begin{bmatrix} \boldsymbol{q}_1 \end{bmatrix}_{\mathcal{P}} = \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix} \text{ and } \begin{bmatrix} \boldsymbol{q}_2 \end{bmatrix}_{\mathcal{P}} = \begin{bmatrix} 0\\-2\\1\\0 \end{bmatrix} \text{ and } \begin{bmatrix} \boldsymbol{q}_3 \end{bmatrix}_{\mathcal{P}} = \begin{bmatrix} 0\\0\\-2\\1 \end{bmatrix}$$

How do we test these for linear independence? They're just vectors in \mathbb{R}^4 .

W is all polynomials \boldsymbol{p} in \mathbb{P}_3 that satisfy $\boldsymbol{p}(2) = 0$, $\boldsymbol{p}_1, \boldsymbol{p}_2, \boldsymbol{p}_3, \boldsymbol{p}_3,$

The three polynomials ${\pmb q}_1, {\pmb q}_2, {\pmb q}_3$ are in ${\mathbb W};$ here

$$\begin{aligned} \mathbf{q}_1(t) &= t - 2 = -2 + t \\ \mathbf{q}_2(t) &= t(t - 2) = -2t + t^2 \\ \mathbf{q}_3(t) &= t^2(t - 2) = -2t^2 + t^3. \end{aligned}$$

Using the standard basis, $\mathcal{P} = \{1, t, t^2, t^3\}$, we see that the \mathcal{P} -coordinate vectors for q_1, q_2, q_3 are

$$\begin{bmatrix} \boldsymbol{q}_1 \end{bmatrix}_{\mathcal{P}} = \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix} \text{ and } \begin{bmatrix} \boldsymbol{q}_2 \end{bmatrix}_{\mathcal{P}} = \begin{bmatrix} 0\\-2\\1\\0 \end{bmatrix} \text{ and } \begin{bmatrix} \boldsymbol{q}_3 \end{bmatrix}_{\mathcal{P}} = \begin{bmatrix} 0\\0\\-2\\1 \end{bmatrix}$$

How do we test these for linear independence? They're just vectors in \mathbb{R}^4 .

We look at the matrix
$$\Big[[oldsymbol{q}_1]_{\mathcal{P}} [oldsymbol{q}_2]_{\mathcal{P}} [oldsymbol{q}_3]_{\mathcal{P}} \Big].$$

W is all polynomials \boldsymbol{p} in \mathbb{P}_3 that satisfy $\boldsymbol{p}(2) = 0$, $\boldsymbol{p}_1, \boldsymbol{p}_2, \boldsymbol{p}_3, \boldsymbol{p}_3,$

The polynomials $\boldsymbol{q}_1, \boldsymbol{q}_2, \boldsymbol{q}_3$ are LI iff $[\boldsymbol{q}_1]_{\mathcal{P}}, [\boldsymbol{q}_2]_{\mathcal{P}}, [\boldsymbol{q}_3]_{\mathcal{P}}$ are LI. To see if these \mathcal{P} -coordinate vectors are LI, we look at the matrix

$$\left[\left[oldsymbol{q}_1
ight]_{\mathcal{P}} \left[oldsymbol{q}_2
ight]_{\mathcal{P}} \left[oldsymbol{q}_3
ight]_{\mathcal{P}}
ight]$$

The polynomials $\boldsymbol{q}_1, \boldsymbol{q}_2, \boldsymbol{q}_3$ are LI iff $[\boldsymbol{q}_1]_{\mathcal{P}}, [\boldsymbol{q}_2]_{\mathcal{P}}, [\boldsymbol{q}_3]_{\mathcal{P}}$ are LI. To see if these \mathcal{P} -coordinate vectors are LI, we look at the matrix

$$\left[\begin{bmatrix} \boldsymbol{q}_1 \end{bmatrix}_{\mathcal{P}} \begin{bmatrix} \boldsymbol{q}_2 \end{bmatrix}_{\mathcal{P}} \begin{bmatrix} \boldsymbol{q}_3 \end{bmatrix}_{\mathcal{P}} \right] = \begin{bmatrix} -2 & 0 & 0 \\ 1 & -2 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$

W is all polynomials \boldsymbol{p} in \mathbb{P}_3 that satisfy $\boldsymbol{p}(2) = 0$

The polynomials $\boldsymbol{q}_1, \boldsymbol{q}_2, \boldsymbol{q}_3$ are LI iff $[\boldsymbol{q}_1]_{\mathcal{P}}, [\boldsymbol{q}_2]_{\mathcal{P}}, [\boldsymbol{q}_3]_{\mathcal{P}}$ are LI. To see if these \mathcal{P} -coordinate vectors are LI, we look at the matrix

$$\begin{bmatrix} [\boldsymbol{q}_1]_{\mathcal{P}} [\boldsymbol{q}_2]_{\mathcal{P}} [\boldsymbol{q}_3]_{\mathcal{P}} \end{bmatrix} = \begin{bmatrix} -2 & 0 & 0 \\ 1 & -2 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

which has the indicated REF.

The polynomials $\boldsymbol{q}_1, \boldsymbol{q}_2, \boldsymbol{q}_3$ are LI iff $[\boldsymbol{q}_1]_{\mathcal{P}}, [\boldsymbol{q}_2]_{\mathcal{P}}, [\boldsymbol{q}_3]_{\mathcal{P}}$ are LI. To see if these \mathcal{P} -coordinate vectors are LI, we look at the matrix

$$\left[\begin{bmatrix} \boldsymbol{q}_1 \end{bmatrix}_{\mathcal{P}} \begin{bmatrix} \boldsymbol{q}_2 \end{bmatrix}_{\mathcal{P}} \begin{bmatrix} \boldsymbol{q}_3 \end{bmatrix}_{\mathcal{P}} \right] = \begin{bmatrix} -2 & 0 & 0 \\ 1 & -2 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

which has the indicated REF. Thus $\boldsymbol{q}_1, \boldsymbol{q}_2, \boldsymbol{q}_3$ are LI, so

W is all polynomials \boldsymbol{p} in \mathbb{P}_3 that satisfy $\boldsymbol{p}(2) = 0$

The polynomials $\boldsymbol{q}_1, \boldsymbol{q}_2, \boldsymbol{q}_3$ are LI iff $[\boldsymbol{q}_1]_{\mathcal{P}}, [\boldsymbol{q}_2]_{\mathcal{P}}, [\boldsymbol{q}_3]_{\mathcal{P}}$ are LI. To see if these \mathcal{P} -coordinate vectors are LI, we look at the matrix

$$\left[\begin{bmatrix} \boldsymbol{q}_1 \end{bmatrix}_{\mathcal{P}} \begin{bmatrix} \boldsymbol{q}_2 \end{bmatrix}_{\mathcal{P}} \begin{bmatrix} \boldsymbol{q}_3 \end{bmatrix}_{\mathcal{P}} \right] = \begin{bmatrix} -2 & 0 & 0 \\ 1 & -2 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

which has the indicated REF. Thus $\boldsymbol{q}_1, \boldsymbol{q}_2, \boldsymbol{q}_3$ are LI, so $\mathcal{B} = \{\boldsymbol{q}_1, \boldsymbol{q}_2, \boldsymbol{q}_3\}$ is a basis for \mathbb{W} .

W is all polynomials \boldsymbol{p} in \mathbb{P}_3 that satisfy $\boldsymbol{p}(2) = 0$

The polynomials $\boldsymbol{q}_1, \boldsymbol{q}_2, \boldsymbol{q}_3$ are LI iff $[\boldsymbol{q}_1]_{\mathcal{P}}, [\boldsymbol{q}_2]_{\mathcal{P}}, [\boldsymbol{q}_3]_{\mathcal{P}}$ are LI. To see if these \mathcal{P} -coordinate vectors are LI, we look at the matrix

$$\left[\begin{bmatrix} \boldsymbol{q}_1 \end{bmatrix}_{\mathcal{P}} \begin{bmatrix} \boldsymbol{q}_2 \end{bmatrix}_{\mathcal{P}} \begin{bmatrix} \boldsymbol{q}_3 \end{bmatrix}_{\mathcal{P}} \right] = \begin{bmatrix} -2 & 0 & 0 \\ 1 & -2 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

which has the indicated REF. Thus $\boldsymbol{q}_1, \boldsymbol{q}_2, \boldsymbol{q}_3$ are LI, so $\mathcal{B} = \{\boldsymbol{q}_1, \boldsymbol{q}_2, \boldsymbol{q}_3\}$ is a basis for \mathbb{W} .

Therefore, dim $\mathbb{W} = 3$; \mathbb{W} is a 3-plane (aka, a hyperplane) in \mathbb{P}_3 .

W is all polynomials \boldsymbol{p} in \mathbb{P}_3 that satisfy $\boldsymbol{p}(2) = 0$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The polynomial \boldsymbol{p} , given by $\boldsymbol{p}(t) = (t-1)(t-2)(t-3)$, has $\boldsymbol{p}(2) =$

 $\mathbb W$ is all polynomials \pmb{p} in $\mathbb P_3$ that satisfy $\pmb{p}(2)=0$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The polynomial \boldsymbol{p} , given by $\boldsymbol{p}(t) = (t-1)(t-2)(t-3)$, has $\boldsymbol{p}(2) = 0$, so

 $\mathbb W$ is all polynomials \pmb{p} in $\mathbb P_3$ that satisfy $\pmb{p}(2)=0$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The polynomial \boldsymbol{p} , given by $\boldsymbol{p}(t) = (t-1)(t-2)(t-3)$, has $\boldsymbol{p}(2) = 0$, so \boldsymbol{p} is a vector in \mathbb{W} .

 $\mathbb W$ is all polynomials \pmb{p} in $\mathbb P_3$ that satisfy $\pmb{p}(2)=0$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The polynomial p, given by p(t) = (t-1)(t-2)(t-3), has p(2) = 0, so p is a vector in \mathbb{W} . Therefore, we can write $p = c_1q_1 + c_2q_2 + c_3q_3$, and

The polynomial p, given by p(t) = (t-1)(t-2)(t-3), has p(2) = 0, so p is a vector in \mathbb{W} . Therefore, we can write $p = c_1q_1 + c_2q_2 + c_3q_3$, and c_1, c_2, c_3 are the \mathcal{B} -coordinates for p.

The polynomial p, given by p(t) = (t-1)(t-2)(t-3), has p(2) = 0, so p is a vector in \mathbb{W} . Therefore, we can write $p = c_1q_1 + c_2q_2 + c_3q_3$, and c_1, c_2, c_3 are the \mathcal{B} -coordinates for p.

How do we find these coordinates?

The polynomial p, given by p(t) = (t-1)(t-2)(t-3), has p(2) = 0, so p is a vector in \mathbb{W} . Therefore, we can write $p = c_1q_1 + c_2q_2 + c_3q_3$, and c_1, c_2, c_3 are the \mathcal{B} -coordinates for p.

How do we find these coordinates?

One way is to use the fact that coordinate vectors preserve LCs. Right?

W is all polynomials \boldsymbol{p} in \mathbb{P}_3 that satisfy $\boldsymbol{p}(2) = 0$

How do we find these coordinates?

One way is to use the fact that coordinate vectors preserve LCs. Right? This means that $p = c_1 q_1 + c_2 q_2 + c_3 q_3$ iff

 $\mathbb W$ is all polynomials \boldsymbol{p} in $\mathbb P_3$ that satisfy $\boldsymbol{p}(2)=0$

イロト イポト イヨト イヨト

How do we find these coordinates?

One way is to use the fact that coordinate vectors preserve LCs. Right? This means that $\boldsymbol{p} = c_1 \boldsymbol{q}_1 + c_2 \boldsymbol{q}_2 + c_3 \boldsymbol{q}_3$ iff $[\boldsymbol{p}]_{\mathcal{P}} = c_1 [\boldsymbol{q}_1]_{\mathcal{P}} + c_2 [\boldsymbol{q}_2]_{\mathcal{P}} + c_3 [\boldsymbol{q}_3]_{\mathcal{P}}.$

W is all polynomials \boldsymbol{p} in \mathbb{P}_3 that satisfy $\boldsymbol{p}(2) = 0$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

How do we find these coordinates?

One way is to use the fact that coordinate vectors preserve LCs. Right? This means that $\boldsymbol{p} = c_1 \boldsymbol{q}_1 + c_2 \boldsymbol{q}_2 + c_3 \boldsymbol{q}_3$ iff $[\boldsymbol{p}]_{\mathcal{P}} = c_1 [\boldsymbol{q}_1]_{\mathcal{P}} + c_2 [\boldsymbol{q}_2]_{\mathcal{P}} + c_3 [\boldsymbol{q}_3]_{\mathcal{P}}.$ Now we're looking at vectors in \mathbb{R}^4 , and we know how to solve this vector equation.

W is all polynomials \boldsymbol{p} in \mathbb{P}_3 that satisfy $\boldsymbol{p}(2) = 0$

イロト イポト イヨト イヨト

How do we find these coordinates?

One way is to use the fact that coordinate vectors preserve LCs. Right? This means that $\boldsymbol{p} = c_1 \boldsymbol{q}_1 + c_2 \boldsymbol{q}_2 + c_3 \boldsymbol{q}_3$ iff $[\boldsymbol{p}]_{\mathcal{P}} = c_1 [\boldsymbol{q}_1]_{\mathcal{P}} + c_2 [\boldsymbol{q}_2]_{\mathcal{P}} + c_3 [\boldsymbol{q}_3]_{\mathcal{P}}.$ Now we're looking at vectors in \mathbb{R}^4 , and we know how to solve this vector equation. Right?

W is all polynomials \boldsymbol{p} in \mathbb{P}_3 that satisfy $\boldsymbol{p}(2) = 0$

We gotta solve
$$c_1[\boldsymbol{q}_1]_{\mathcal{P}} + c_2[\boldsymbol{q}_2]_{\mathcal{P}} + c_3[\boldsymbol{q}_3]_{\mathcal{P}} = [\boldsymbol{p}]_{\mathcal{P}}.$$

$\mathbb W$ is all polynomials ${m p}$ in $\mathbb P_3$ that satisfy ${m p}(2)=0_{a}$, ${}_{e^{a}}$,

We gotta solve
$$c_1[\boldsymbol{q}_1]_{\mathcal{P}} + c_2[\boldsymbol{q}_2]_{\mathcal{P}} + c_3[\boldsymbol{q}_3]_{\mathcal{P}} = [\boldsymbol{p}]_{\mathcal{P}}.$$

Here
$$\boldsymbol{p}(t) = (t-1)(t-2)(t-3) = -6 + 11t - 6t^2 + t^3$$
, so

W is all polynomials \boldsymbol{p} in \mathbb{P}_3 that satisfy $\boldsymbol{p}(2) = \mathbb{Q}_{a}$

We gotta solve
$$c_1[\boldsymbol{q}_1]_{\mathcal{P}} + c_2[\boldsymbol{q}_2]_{\mathcal{P}} + c_3[\boldsymbol{q}_3]_{\mathcal{P}} = [\boldsymbol{p}]_{\mathcal{P}}.$$

Here $\boldsymbol{p}(t) = (t-1)(t-2)(t-3) = -6 + 11t - 6t^2 + t^3$, so $[\boldsymbol{p}]_{\mathcal{P}} = \begin{bmatrix} -6\\11\\-6\\1 \end{bmatrix}$

$\mathbb W$ is all polynomials \pmb{p} in $\mathbb P_3$ that satisfy $\pmb{p}(2) = 0$

We gotta solve
$$c_1[\boldsymbol{q}_1]_{\mathcal{P}} + c_2[\boldsymbol{q}_2]_{\mathcal{P}} + c_3[\boldsymbol{q}_3]_{\mathcal{P}} = [\boldsymbol{p}]_{\mathcal{P}}.$$

Here $\boldsymbol{p}(t) = (t-1)(t-2)(t-3) = -6 + 11t - 6t^2 + t^3$, so $[\boldsymbol{p}]_{\mathcal{P}} = \begin{bmatrix} -6\\11\\-6\\1 \end{bmatrix}$

Remembering what $[\pmb{q}_1]_{\mathcal{P}}, [\pmb{q}_2]_{\mathcal{P}}, [\pmb{q}_3]_{\mathcal{P}}$ are, we get the augmented matrix

$$\begin{bmatrix} -2 & 0 & 0 & | & -6 \\ 1 & -2 & 0 & 11 \\ 0 & 1 & -2 & -6 \\ 0 & 0 & 1 & | & 1 \end{bmatrix}$$

 $\mathbb W$ is all polynomials \pmb{p} in $\mathbb P_3$ that satisfy $\pmb{p}(2) = \emptyset_{\square}$, where $\mathbb P_3$ is all polynomials \pmb{p} in $\mathbb P_3$ that satisfy $\pmb{p}(2) = \emptyset_{\square}$, where $\mathbb P_3$ is a satisfy $p(2) = \emptyset_{\square}$, where $\mathbb P_3$ is a satisfy $p(2) = \emptyset_{\square}$, where $\mathbb P_3$ is a satisfy $p(2) = \emptyset_{\square}$.

We gotta solve
$$c_1[\boldsymbol{q}_1]_{\mathcal{P}} + c_2[\boldsymbol{q}_2]_{\mathcal{P}} + c_3[\boldsymbol{q}_3]_{\mathcal{P}} = [\boldsymbol{p}]_{\mathcal{P}}.$$

Here $\boldsymbol{p}(t) = (t-1)(t-2)(t-3) = -6 + 11t - 6t^2 + t^3$, so $[\boldsymbol{p}]_{\mathcal{P}} = \begin{bmatrix} -6\\11\\-6\\1 \end{bmatrix}$

Remembering what $[\pmb{q}_1]_{\mathcal{P}}, [\pmb{q}_2]_{\mathcal{P}}, [\pmb{q}_3]_{\mathcal{P}}$ are, we get the augmented matrix

$$\begin{bmatrix} -2 & 0 & 0 & | & -6 \\ 1 & -2 & 0 & 11 \\ 0 & 1 & -2 & -6 \\ 0 & 0 & 1 & | & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & | & 3 \\ 0 & 1 & 0 & | & -4 \\ 0 & 0 & 1 & | & 1 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

and then some elem row ops produce the indicated REF.

 $\mathbb W$ is all polynomials $\boldsymbol p$ in $\mathbb P_3$ that satisfy $\boldsymbol p(2) = \mathbb Q_{a}$, $\mathbb P_{a}$

We gotta solve
$$c_1[\boldsymbol{q}_1]_{\mathcal{P}} + c_2[\boldsymbol{q}_2]_{\mathcal{P}} + c_3[\boldsymbol{q}_3]_{\mathcal{P}} = [\boldsymbol{p}]_{\mathcal{P}}.$$

Here $\boldsymbol{p}(t) = (t-1)(t-2)(t-3) = -6 + 11t - 6t^2 + t^3$, so $[\boldsymbol{p}]_{\mathcal{P}} = \begin{bmatrix} -6\\11\\-6\\1 \end{bmatrix}$

Remembering what $[\pmb{q}_1]_{\mathcal{P}}, [\pmb{q}_2]_{\mathcal{P}}, [\pmb{q}_3]_{\mathcal{P}}$ are, we get the augmented matrix

$$\begin{bmatrix} -2 & 0 & 0 & | & -6 \\ 1 & -2 & 0 & 11 \\ 0 & 1 & -2 & -6 \\ 0 & 0 & 1 & | & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & | & 3 \\ 0 & 1 & 0 & | & -4 \\ 0 & 0 & 1 & | & 1 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

and then some elem row ops produce the indicated REF. Right?

 $\mathbb W$ is all polynomials \pmb{p} in $\mathbb P_3$ that satisfy $\pmb{p}(2) = 0_{a}$, a_{a} ,

We gotta solve
$$c_1[\boldsymbol{q}_1]_{\mathcal{P}} + c_2[\boldsymbol{q}_2]_{\mathcal{P}} + c_3[\boldsymbol{q}_3]_{\mathcal{P}} = [\boldsymbol{p}]_{\mathcal{P}}.$$

Here $\boldsymbol{p}(t) = (t-1)(t-2)(t-3) = -6 + 11t - 6t^2 + t^3$, so $[\boldsymbol{p}]_{\mathcal{P}} = \begin{bmatrix} -6\\11\\-6\\1 \end{bmatrix}$

Remembering what $[\pmb{q}_1]_{\mathcal{P}}, [\pmb{q}_2]_{\mathcal{P}}, [\pmb{q}_3]_{\mathcal{P}}$ are, we get the augmented matrix

$$egin{bmatrix} -2 & 0 & 0 & | & -6 \ 1 & -2 & 0 & 11 \ 0 & 1 & -2 & -6 \ 0 & 0 & 1 & | & 1 \end{bmatrix} \sim egin{bmatrix} 1 & 0 & 0 & | & 3 \ 0 & 1 & 0 & | & -4 \ 0 & 0 & 1 & | & 1 \ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

and then some elem row ops produce the indicated REF. Right? So,

$$c_1 = 3, c_2 = -4, c_3 = 1$$
 and

W is all polynomials \boldsymbol{p} in \mathbb{P}_3 that satisfy $\boldsymbol{p}(2) = 0_{n}$, \boldsymbol{p}_{n} , \boldsymbol{p}

We gotta solve
$$c_1[\boldsymbol{q}_1]_{\mathcal{P}} + c_2[\boldsymbol{q}_2]_{\mathcal{P}} + c_3[\boldsymbol{q}_3]_{\mathcal{P}} = [\boldsymbol{p}]_{\mathcal{P}}.$$

Here $\boldsymbol{p}(t) = (t-1)(t-2)(t-3) = -6 + 11t - 6t^2 + t^3$, so $[\boldsymbol{p}]_{\mathcal{P}} = \begin{bmatrix} -6\\11\\-6\\1 \end{bmatrix}$

Remembering what $[\pmb{q}_1]_{\mathcal{P}}, [\pmb{q}_2]_{\mathcal{P}}, [\pmb{q}_3]_{\mathcal{P}}$ are, we get the augmented matrix

$$egin{bmatrix} -2 & 0 & 0 & | & -6 \ 1 & -2 & 0 & | & 11 \ 0 & 1 & -2 & | & -6 \ 0 & 0 & 1 & | & 1 \end{bmatrix} \sim egin{bmatrix} 1 & 0 & 0 & | & 3 \ 0 & 1 & 0 & | & -4 \ 0 & 0 & 1 & | & 1 \ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

and then some elem row ops produce the indicated REF. Right? So, $c_1 = 3, c_2 = -4, c_3 = 1$ and therefore $\begin{bmatrix} \boldsymbol{p} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 3 \\ -4 \\ 1 \end{bmatrix}$.

 \mathbb{W} is all polynomials \boldsymbol{p} in \mathbb{P}_3 that satisfy $\boldsymbol{p}(2) = \mathbb{Q}_2$, \boldsymbol{p}_2 , \boldsymbol{p}_3 , \boldsymbol{p}_3