A Hyperplane in \mathbb{P}_3

Linear Algebra MATH 2076

The Problem and Our Strategy

Let \mathbb{W} be the space of all polynomials \boldsymbol{p} in \mathbb{P}_3 that satisfy $\boldsymbol{p}(2)=0$. Here we:

- Explain why \mathbb{W} is a vector subspace of \mathbb{P}_3 .
- ullet Find a basis ${\mathcal B}$ for ${\mathbb W}$ and determine the dimension of ${\mathbb W}$.
- Find the \mathcal{B} -coordinate vector for $\mathbf{p}(t) = (t-1)(t-2)(t-3)$.

We make extensive use of coordinate vectors, so you might want to review this material. In particular, remember that:

- vectors are LI if and only if their coordinate vectors are LI, and,
- coordinate maps "preserve" all linear combinations.

Finding Some Vectors in W

It is straightforward to check that \mathbb{W} is a vector subspace of \mathbb{P}_3 .

Since the polynomial \mathbf{q}_1 , given by $\mathbf{q}_1(t) = t - 2$, belongs to \mathbb{W} , \mathbb{W} is not the zero subspace. Also, $\mathbb{W} \neq \mathbb{P}_3$ (for example, because \mathbf{t}^3 is not in \mathbb{W}).

Since $\{\vec{0}\} \neq \mathbb{W} \neq \mathbb{P}_3$, $1 \leq \dim \mathbb{W} \leq 3$.

Let's find a few more polynomials in \mathbb{W} . Of course, $s \mathbf{q}_1$ is in \mathbb{W} for any scalar s, but we want more than just scalar multiples.

Notice that $q_2 = t \cdot q_1$ and $q_3 = t^2 \cdot q_1$ both belong to \mathbb{W} .

So, we have three polynomials, $\boldsymbol{q}_1, \boldsymbol{q}_2, \boldsymbol{q}_3$, that are all in \mathbb{W} . Are these LI?

Finding a Basis for W

We have three polynomials, $\mathbf{q}_1, \mathbf{q}_2 = \mathbf{t} \cdot \mathbf{q}_1, \mathbf{q}_3 = \mathbf{t}^2 \cdot \mathbf{q}_1$ that are all in \mathbb{W} . Here

$$\mathbf{q}_1(t) = t - 2 = -2 + t$$

 $\mathbf{q}_2(t) = t(t - 2) = -2t + t^2$
 $\mathbf{q}_3(t) = t^2(t - 2) = -2t^2 + t^3$.

If these are LI, then they form a basis. Right? Why?

To check for LI, we could look at $s_1 \mathbf{q}_1 + s_2 \mathbf{q}_2 + s_3 \mathbf{q}_3 = \mathbf{0}$ and explain why this means that $s_1 = s_2 = s_3 = 0$.

Instead, we use the fact that vectors are LI iff their coord vectors are LI.

To employ this strategy, we need a basis for \mathbb{P}_3 . We use the standard basis, $\mathcal{P} = \{1, t, t^2, t^3\}$.

Finding a Basis for W

The three polynomials $\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3$ are in \mathbb{W} ; here

$$\mathbf{q}_1(t) = t - 2 = -2 + t$$

 $\mathbf{q}_2(t) = t(t - 2) = -2t + t^2$
 $\mathbf{q}_3(t) = t^2(t - 2) = -2t^2 + t^3$

Using the standard basis, $\mathcal{P}=\{1,t,t^2,t^3\}$, we see that the \mathcal{P} -coordinate vectors for $\pmb{q}_1,\pmb{q}_2,\pmb{q}_3$ are

$$\begin{bmatrix} \boldsymbol{q}_1 \end{bmatrix}_{\mathcal{P}} = \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$
 and $\begin{bmatrix} \boldsymbol{q}_2 \end{bmatrix}_{\mathcal{P}} = \begin{bmatrix} 0 \\ -2 \\ 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} \boldsymbol{q}_3 \end{bmatrix}_{\mathcal{P}} = \begin{bmatrix} 0 \\ 0 \\ -2 \\ 1 \end{bmatrix}$.

How do we test these for linear independence? They're just vectors in \mathbb{R}^4 .

We look at the matrix $\left[\left[\boldsymbol{q}_1 \right]_{\mathcal{P}} \left[\boldsymbol{q}_2 \right]_{\mathcal{P}} \left[\boldsymbol{q}_3 \right]_{\mathcal{P}} \right]$.

 \mathbb{W} is all polynomials ${m p}$ in \mathbb{P}_3 that satisfy ${m p}(2)=0$

Finding a Basis for \mathbb{W} and Determining dim \mathbb{W}

The polynomials $\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3$ are LI iff $[\mathbf{q}_1]_{\mathcal{P}}, [\mathbf{q}_2]_{\mathcal{P}}, [\mathbf{q}_3]_{\mathcal{P}}$ are LI. To see if these \mathcal{P} -coordinate vectors are LI, we look at the matrix

$$\left[\begin{bmatrix} \boldsymbol{q}_1 \end{bmatrix}_{\mathcal{P}} \begin{bmatrix} \boldsymbol{q}_2 \end{bmatrix}_{\mathcal{P}} \begin{bmatrix} \boldsymbol{q}_3 \end{bmatrix}_{\mathcal{P}} \right] = \begin{bmatrix} -2 & 0 & 0 \\ 1 & -2 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

which has the indicated REF. Thus $\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3$ are LI, so $\mathcal{B} = \{\mathbf{q}_1, \mathbf{q}_2, \mathbf{q}_3\}$ is a basis for \mathbb{W} .

Therefore, dim $\mathbb{W}=3$; \mathbb{W} is a 3-plane (aka, a hyperplane) in \mathbb{P}_3 .

Finding the \mathcal{B} -coordinate Vector for \mathbf{p}

The polynomial \boldsymbol{p} , given by $\boldsymbol{p}(t) = (t-1)(t-2)(t-3)$, has $\boldsymbol{p}(2) = 0$, so \boldsymbol{p} is a vector in \mathbb{W} . Therefore, we can write $\boldsymbol{p} = c_1 \boldsymbol{q}_1 + c_2 \boldsymbol{q}_2 + c_3 \boldsymbol{q}_3$, and c_1, c_2, c_3 are the \mathcal{B} -coordinates for \boldsymbol{p} .

How do we find these coordinates?

One way is to use the fact that coordinate vectors preserve LCs. Right?

This means that $p = c_1 q_1 + c_2 q_2 + c_3 q_3$ iff

$$egin{bmatrix} oldsymbol{\left[oldsymbol{g}
ight]}_{\mathcal{P}} = c_1 oldsymbol{\left[oldsymbol{q}_1
ight]}_{\mathcal{P}} + c_2 oldsymbol{\left[oldsymbol{q}_2
ight]}_{\mathcal{P}} + c_3 oldsymbol{\left[oldsymbol{q}_3
ight]}_{\mathcal{P}}$$

 $[{m p}]_{\mathcal P} = c_1 [{m q}_1]_{\mathcal P} + c_2 [{m q}_2]_{\mathcal P} + c_3 [{m q}_3]_{\mathcal P}.$ Now we're looking at vectors in $\mathbb R^4$, and we know how to solve this vector equation. Right?

Finding the \mathcal{B} -coordinate Vector for \boldsymbol{p}

We gotta solve $c_1 \big[\boldsymbol{q}_1 \big]_{\mathcal{P}} + c_2 \big[\boldsymbol{q}_2 \big]_{\mathcal{P}} + c_3 \big[\boldsymbol{q}_3 \big]_{\mathcal{P}} = \big[\boldsymbol{p} \big]_{\mathcal{P}}.$

Here
$$\mathbf{p}(t) = (t-1)(t-2)(t-3) = -6 + 11t - 6t^2 + t^3$$
, so $\begin{bmatrix} \mathbf{p} \end{bmatrix}_{\mathcal{P}} = \begin{bmatrix} -6 \\ 11 \\ -6 \\ 1 \end{bmatrix}$.

Remembering what $[{m q}_1]_{\mathcal P}, [{m q}_2]_{\mathcal P}, [{m q}_3]_{\mathcal P}$ are, we get the augmented matrix

$$\begin{bmatrix} -2 & 0 & 0 & -6 \\ 1 & -2 & 0 & 11 \\ 0 & 1 & -2 & -6 \\ 0 & 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & -4 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

and then some elem row ops produce the indicated REF. Right? So,

$$c_1=3, c_2=-4, c_3=1$$
 and therefore $\left[oldsymbol{p}
ight]_{\mathcal{B}}=\left[egin{array}{c}3\\-4\\1\end{array}
ight].$