Using Dimension to Find NS(A) & CS(A)

Linear Algebra MATH 2076

Let's "find" $\mathcal{NS}(A)$ and $\mathcal{CS}(A)$ where

$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \vec{a}_3 \ \vec{a}_4 \ \vec{a}_5 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 & 3 & 1 \\ 0 & 2 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}.$$

Let's "find" $\mathcal{NS}(A)$ and $\mathcal{CS}(A)$ where

$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \vec{a}_3 \ \vec{a}_4 \ \vec{a}_5 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 & 3 & 1 \\ 0 & 2 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}.$$

Here we utilize the following important facts:

Let's "find" $\mathcal{NS}(A)$ and $\mathcal{CS}(A)$ where

$$A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \vec{a_3} & \vec{a_4} & \vec{a_5} \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 & 3 & 1 \\ 0 & 2 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}.$$

Here we utilize the following important facts:

• rank(A) + null(A) = 5 (the number of columns of A)

Let's "find" $\mathcal{NS}(A)$ and $\mathcal{CS}(A)$ where

$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \vec{a}_3 \ \vec{a}_4 \ \vec{a}_5 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 & 3 & 1 \\ 0 & 2 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}.$$

Here we utilize the following important facts:

- rank(A) + null(A) = 5 (the number of columns of A)
- A maximal linearly independent set is a basis.

Let's "find" $\mathcal{NS}(A)$ and $\mathcal{CS}(A)$ where

$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \vec{a}_3 \ \vec{a}_4 \ \vec{a}_5 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 & 3 & 1 \\ 0 & 2 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}.$$

Here we utilize the following important facts:

- rank(A) + null(A) = 5 (the number of columns of A)
- A maximal linearly independent set is a basis.
- If dim $\mathbb{V} = p$, then any LI set of p vectors in \mathbb{V} is a basis for \mathbb{V} .

2 / 5

Let's "find" $\mathcal{NS}(A)$ and $\mathcal{CS}(A)$ where

$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \vec{a}_3 \ \vec{a}_4 \ \vec{a}_5 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 & 3 & 1 \\ 0 & 2 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}.$$

Here we utilize the following important facts:

- rank(A) + null(A) = 5 (the number of columns of A)
- A maximal linearly independent set is a basis.
- If dim $\mathbb{V} = p$, then any LI set of p vectors in \mathbb{V} is a basis for \mathbb{V} .

We could "find" $\mathcal{NS}(A)$ and $\mathcal{CS}(A)$ the usual way, but we want to illustrate how the above facts can be employed.

Let's "find" $\mathcal{NS}(A)$ and $\mathcal{CS}(A)$ where

$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \vec{a}_3 \ \vec{a}_4 \ \vec{a}_5 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 & 3 & 1 \\ 0 & 2 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}.$$

Here we utilize the following important facts:

- rank(A) + null(A) = 5 (the number of columns of A)
- A maximal linearly independent set is a basis.
- If dim $\mathbb{V} = p$, then any LI set of p vectors in \mathbb{V} is a basis for \mathbb{V} .

We could "find" NS(A) and CS(A) the usual way, but we want to illustrate how the above facts can be employed.

As A is a 3×5 matrix, we already know:

Let's "find" $\mathcal{NS}(A)$ and $\mathcal{CS}(A)$ where

$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \vec{a}_3 \ \vec{a}_4 \ \vec{a}_5 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 & 3 & 1 \\ 0 & 2 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}.$$

Here we utilize the following important facts:

- rank(A) + null(A) = 5 (the number of columns of A)
- A maximal linearly independent set is a basis.
- If dim $\mathbb{V} = p$, then any LI set of p vectors in \mathbb{V} is a basis for \mathbb{V} .

We could "find" NS(A) and CS(A) the usual way, but we want to illustrate how the above facts can be employed.

As A is a 3×5 matrix, we already know:

ullet $\mathcal{NS}(A)$ is a vector subspace of \mathbb{R}^5

Let's "find" $\mathcal{NS}(A)$ and $\mathcal{CS}(A)$ where

$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \vec{a}_3 \ \vec{a}_4 \ \vec{a}_5 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 & 3 & 1 \\ 0 & 2 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}.$$

Here we utilize the following important facts:

- rank(A) + null(A) = 5 (the number of columns of A)
- A maximal linearly independent set is a basis.
- If dim $\mathbb{V} = p$, then any LI set of p vectors in \mathbb{V} is a basis for \mathbb{V} .

We could "find" NS(A) and CS(A) the usual way, but we want to illustrate how the above facts can be employed.

As A is a 3×5 matrix, we already know:

- $\mathcal{NS}(A)$ is a vector subspace of \mathbb{R}^5
- $\mathcal{CS}(A)$ is a vector subspace of \mathbb{R}^3 .

We already know $\mathcal{CS}(A)$ is a vector subspace of \mathbb{R}^3 .

$$A = \begin{bmatrix} \vec{a_1} \ \vec{a_2} \ \vec{a_3} \ \vec{a_4} \ \vec{a_5} \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 & 3 & 1 \\ 0 & 2 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

We already know CS(A) is a vector subspace of \mathbb{R}^3 .

Therefore, $rank(A) = dim \ \mathcal{CS}(A) \leq 3$.

$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \vec{a}_3 \ \vec{a}_4 \ \vec{a}_5 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 & 3 & 1 \\ 0 & 2 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

We already know CS(A) is a vector subspace of \mathbb{R}^3 .

Therefore, $rank(A) = dim \ \mathcal{CS}(A) \leq 3$.

Notice that $\{\vec{a}_1, \vec{a}_3, \vec{a}_5\}$ is clearly LI.

$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \vec{a}_3 \ \vec{a}_4 \ \vec{a}_5 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 & 3 & 1 \\ 0 & 2 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

We already know CS(A) is a vector subspace of \mathbb{R}^3 .

Therefore, $rank(A) = dim \ \mathcal{CS}(A) \leq 3$.

Notice that $\{\vec{a}_1,\vec{a}_3,\vec{a}_5\}$ is clearly LI. Thus this is a maximal LI set in $\mathcal{CS}(A)$, so

$$A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \vec{a_3} & \vec{a_4} & \vec{a_5} \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 & 3 & 1 \\ 0 & 2 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

We already know CS(A) is a vector subspace of \mathbb{R}^3 .

Therefore, $rank(A) = dim \ \mathcal{CS}(A) \leq 3$.

Notice that $\{\vec{a}_1, \vec{a}_3, \vec{a}_5\}$ is clearly LI. Thus this is a maximal LI set in $\mathcal{CS}(A)$, so it is a basis.

$$A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \vec{a_3} & \vec{a_4} & \vec{a_5} \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 & 3 & 1 \\ 0 & 2 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

We already know CS(A) is a vector subspace of \mathbb{R}^3 .

Therefore, $rank(A) = dim \ \mathcal{CS}(A) \leq 3$.

Notice that $\{\vec{a}_1, \vec{a}_3, \vec{a}_5\}$ is clearly LI. Thus this is a maximal LI set in $\mathcal{CS}(A)$, so it is a basis.

Therefore, rank(A) = 3, and hence $\mathcal{CS}(A) =$

$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \vec{a}_3 \ \vec{a}_4 \ \vec{a}_5 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 & 3 & 1 \\ 0 & 2 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

We already know CS(A) is a vector subspace of \mathbb{R}^3 .

Therefore, $rank(A) = dim \ \mathcal{CS}(A) \leq 3$.

Notice that $\{\vec{a}_1, \vec{a}_3, \vec{a}_5\}$ is clearly LI. Thus this is a maximal LI set in $\mathcal{CS}(A)$, so it is a basis.

Therefore, rank(A) = 3, and hence $CS(A) = \mathbb{R}^3$.

$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \vec{a}_3 \ \vec{a}_4 \ \vec{a}_5 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 & 3 & 1 \\ 0 & 2 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

We already know CS(A) is a vector subspace of \mathbb{R}^3 .

Therefore, $rank(A) = dim \ \mathcal{CS}(A) \leq 3$.

Notice that $\{\vec{a}_1, \vec{a}_3, \vec{a}_5\}$ is clearly LI. Thus this is a maximal LI set in $\mathcal{CS}(A)$, so it is a basis.

Therefore, rank(A) = 3, and hence $CS(A) = \mathbb{R}^3$.

Since rank(A) + null(A) = 5, we now get null(A) =

$$A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \vec{a_3} & \vec{a_4} & \vec{a_5} \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 & 3 & 1 \\ 0 & 2 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

We already know $\mathcal{CS}(A)$ is a vector subspace of \mathbb{R}^3 .

Therefore, $rank(A) = dim \ \mathcal{CS}(A) \leq 3$.

Notice that $\{\vec{a}_1, \vec{a}_3, \vec{a}_5\}$ is clearly LI. Thus this is a maximal LI set in $\mathcal{CS}(A)$, so it is a basis.

Therefore, rank(A) = 3, and hence $CS(A) = \mathbb{R}^3$.

Since rank(A) + null(A) = 5, we now get null(A) = 5 - 3 = 2.

$$A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \vec{a_3} & \vec{a_4} & \vec{a_5} \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 & 3 & 1 \\ 0 & 2 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

We already know $\mathcal{NS}(A)$ is a vector subspace of \mathbb{R}^5 .

$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \vec{a}_3 \ \vec{a}_4 \ \vec{a}_5 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 & 3 & 1 \\ 0 & 2 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix},$$

We already know $\mathcal{NS}(A)$ is a vector subspace of \mathbb{R}^5 . In fact, since dim $\mathcal{NS}(A) = \text{null}(A) = 2$,

$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \vec{a}_3 \ \vec{a}_4 \ \vec{a}_5 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 & 3 & 1 \\ 0 & 2 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix},$$

We already know $\mathcal{NS}(A)$ is a vector subspace of \mathbb{R}^5 . In fact, since dim $\mathcal{NS}(A) = \text{null}(A) = 2$, $\mathcal{NS}(A)$ is a 2-plane in \mathbb{R}^5 .

$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \vec{a}_3 \ \vec{a}_4 \ \vec{a}_5 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 & 3 & 1 \\ 0 & 2 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix},$$

We already know $\mathcal{NS}(A)$ is a vector subspace of \mathbb{R}^5 . In fact, since dim $\mathcal{NS}(A) = \text{null}(A) = 2$, $\mathcal{NS}(A)$ is a 2-plane in \mathbb{R}^5 . To find a basis for $\mathcal{NS}(A)$, we need only find two LI vectors that are solutions to $A\vec{x} = \vec{0}$.

$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \vec{a}_3 \ \vec{a}_4 \ \vec{a}_5 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 & 3 & 1 \\ 0 & 2 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix},$$

We already know $\mathcal{NS}(A)$ is a vector subspace of \mathbb{R}^5 . In fact, since dim $\mathcal{NS}(A) = \text{null}(A) = 2$, $\mathcal{NS}(A)$ is a 2-plane in \mathbb{R}^5 . To find a basis for $\mathcal{NS}(A)$, we need only find two LI vectors that are solutions to $A\vec{x} = \vec{0}$.

Notice that $\vec{a}_2 = \vec{a}_1 + 2\vec{a}_3$,

$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \vec{a}_3 \ \vec{a}_4 \ \vec{a}_5 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 & 3 & 1 \\ 0 & 2 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix},$$

We already know $\mathcal{NS}(A)$ is a vector subspace of \mathbb{R}^5 . In fact, since dim $\mathcal{NS}(A) = \text{null}(A) = 2$, $\mathcal{NS}(A)$ is a 2-plane in \mathbb{R}^5 . To find a basis for $\mathcal{NS}(A)$, we need only find two LI vectors that are solutions to $A\vec{x} = \vec{0}$.

Notice that
$$\vec{a_2} = \vec{a_1} + 2\vec{a_3}$$
, so $\vec{a_1} - \vec{a_2} + 2\vec{a_3} = \vec{0}$.

$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \vec{a}_3 \ \vec{a}_4 \ \vec{a}_5 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 & 3 & 1 \\ 0 & 2 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix},$$

We already know $\mathcal{NS}(A)$ is a vector subspace of \mathbb{R}^5 . In fact, since dim $\mathcal{NS}(A) = \text{null}(A) = 2$, $\mathcal{NS}(A)$ is a 2-plane in \mathbb{R}^5 . To find a basis for $\mathcal{NS}(A)$, we need only find two LI vectors that are solutions to $A\vec{x} = \vec{0}$.

Notice that
$$\vec{a}_2 = \vec{a}_1 + 2\vec{a}_3$$
, so $\vec{a}_1 - \vec{a}_2 + 2\vec{a}_3 = \vec{0}$. So $\vec{z}_1 = \begin{bmatrix} 1 \\ -1 \\ 2 \\ 0 \\ 0 \end{bmatrix}$ is soln to $A\vec{x} = \vec{0}$.

$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \vec{a}_3 \ \vec{a}_4 \ \vec{a}_5 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 & 3 & 1 \\ 0 & 2 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix},$$

We already know $\mathcal{NS}(A)$ is a vector subspace of \mathbb{R}^5 . In fact, since dim $\mathcal{NS}(A) = \text{null}(A) = 2$, $\mathcal{NS}(A)$ is a 2-plane in \mathbb{R}^5 . To find a basis for $\mathcal{NS}(A)$, we need only find two LI vectors that are solutions to $A\vec{x} = \vec{0}$.

Notice that
$$\vec{a}_2 = \vec{a}_1 + 2\vec{a}_3$$
, so $\vec{a}_1 - \vec{a}_2 + 2\vec{a}_3 = \vec{0}$. So $\vec{z}_1 = \begin{bmatrix} 1 \\ -1 \\ 2 \\ 0 \\ 0 \end{bmatrix}$ is soln to $A\vec{x} = \vec{0}$.

Notice that $\vec{a}_4 = \vec{a}_1 + \vec{a}_3 + \vec{a}_5$,

$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \vec{a}_3 \ \vec{a}_4 \ \vec{a}_5 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 & 3 & 1 \\ 0 & 2 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix},$$

We already know $\mathcal{NS}(A)$ is a vector subspace of \mathbb{R}^5 . In fact, since dim $\mathcal{NS}(A) = \text{null}(A) = 2$, $\mathcal{NS}(A)$ is a 2-plane in \mathbb{R}^5 . To find a basis for $\mathcal{NS}(A)$, we need only find two LI vectors that are solutions to $A\vec{x} = \vec{0}$.

Notice that
$$\vec{a}_2 = \vec{a}_1 + 2\vec{a}_3$$
, so $\vec{a}_1 - \vec{a}_2 + 2\vec{a}_3 = \vec{0}$. So $\vec{z}_1 = \begin{bmatrix} 1 \\ -1 \\ 2 \\ 0 \\ 0 \end{bmatrix}$ is soln to $A\vec{x} = \vec{0}$.

Notice that
$$\vec{a}_4 = \vec{a}_1 + \vec{a}_3 + \vec{a}_5$$
, so $\vec{a}_1 + \vec{a}_3 - \vec{a}_4 + \vec{a}_5 = \vec{0}$.

$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \vec{a}_3 \ \vec{a}_4 \ \vec{a}_5 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 & 3 & 1 \\ 0 & 2 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix},$$

We already know $\mathcal{NS}(A)$ is a vector subspace of \mathbb{R}^5 . In fact, since dim $\mathcal{NS}(A) = \text{null}(A) = 2$, $\mathcal{NS}(A)$ is a 2-plane in \mathbb{R}^5 . To find a basis for $\mathcal{NS}(A)$, we need only find two LI vectors that are solutions to $A\vec{x} = \vec{0}$.

Notice that
$$\vec{a}_2 = \vec{a}_1 + 2\vec{a}_3$$
, so Notice that $\vec{a}_4 = \vec{a}_1 + \vec{a}_3 + \vec{a}_5$, so $\vec{a}_1 - \vec{a}_2 + 2\vec{a}_3 = \vec{0}$. So so $\vec{a}_1 + \vec{a}_3 - \vec{a}_4 + \vec{a}_5 = \vec{0}$. So $\vec{z}_1 = \begin{bmatrix} 1 \\ -1 \\ 2 \\ 0 \\ 0 \end{bmatrix}$ is soln to $A\vec{x} = \vec{0}$. $\vec{z}_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ -1 \\ 1 \end{bmatrix}$ is soln to $A\vec{x} = \vec{0}$.

Notice that
$$\vec{a}_4 = \vec{a}_1 + \vec{a}_3 + \vec{a}_5$$
, so $\vec{a}_1 + \vec{a}_3 - \vec{a}_4 + \vec{a}_5 = \vec{0}$. So $\vec{z}_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ -1 \\ 1 \end{bmatrix}$ is soln to $A\vec{x} = \vec{0}$.

$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \vec{a}_3 \ \vec{a}_4 \ \vec{a}_5 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 & 3 & 1 \\ 0 & 2 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix},$$

We already know $\mathcal{NS}(A)$ is a vector subspace of \mathbb{R}^5 . In fact, since dim $\mathcal{NS}(A) = \text{null}(A) = 2$, $\mathcal{NS}(A)$ is a 2-plane in \mathbb{R}^5 . To find a basis for $\mathcal{NS}(A)$, we need only find two LI vectors that are solutions to $A\vec{x} = \vec{0}$.

Notice that
$$\vec{a}_2 = \vec{a}_1 + 2\vec{a}_3$$
, so Notice that $\vec{a}_4 = \vec{a}_1 + \vec{a}_3 + \vec{a}_5$, so $\vec{a}_1 - \vec{a}_2 + 2\vec{a}_3 = \vec{0}$. So so $\vec{a}_1 + \vec{a}_3 - \vec{a}_4 + \vec{a}_5 = \vec{0}$. So $\vec{z}_1 = \begin{bmatrix} 1 \\ -1 \\ 2 \\ 0 \\ 0 \end{bmatrix}$ is soln to $A\vec{x} = \vec{0}$. $\vec{z}_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ -1 \\ 1 \end{bmatrix}$ is soln to $A\vec{x} = \vec{0}$.

Thus $\{\vec{z_1}, \vec{z_2}\}$ is a LI set of vectors in the 2-dimensional space $\mathcal{NS}(A)$, so

$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \vec{a}_3 \ \vec{a}_4 \ \vec{a}_5 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 & 3 & 1 \\ 0 & 2 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix},$$

We already know $\mathcal{NS}(A)$ is a vector subspace of \mathbb{R}^5 . In fact, since dim $\mathcal{NS}(A) = \text{null}(A) = 2$, $\mathcal{NS}(A)$ is a 2-plane in \mathbb{R}^5 . To find a basis for $\mathcal{NS}(A)$, we need only find two LI vectors that are solutions to $A\vec{x} = \vec{0}$.

Notice that
$$\vec{a}_2 = \vec{a}_1 + 2\vec{a}_3$$
, so Notice that $\vec{a}_4 = \vec{a}_1 + \vec{a}_3 + \vec{a}_5$, so $\vec{a}_1 - \vec{a}_2 + 2\vec{a}_3 = \vec{0}$. So so $\vec{a}_1 + \vec{a}_3 - \vec{a}_4 + \vec{a}_5 = \vec{0}$. So $\vec{z}_1 = \begin{bmatrix} 1 \\ -1 \\ 2 \\ 0 \\ 0 \end{bmatrix}$ is soln to $A\vec{x} = \vec{0}$. $\vec{z}_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ -1 \\ 1 \end{bmatrix}$ is soln to $A\vec{x} = \vec{0}$.

Thus $\{\vec{z_1}, \vec{z_2}\}$ is a LI set of vectors in the 2-dimensional space $\mathcal{NS}(A)$, so it is a basis.

$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \vec{a}_3 \ \vec{a}_4 \ \vec{a}_5 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 & 3 & 1 \\ 0 & 2 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix},$$

We already know $\mathcal{NS}(A)$ is a vector subspace of \mathbb{R}^5 . In fact, since dim $\mathcal{NS}(A) = \text{null}(A) = 2$, $\mathcal{NS}(A)$ is a 2-plane in \mathbb{R}^5 . To find a basis for $\mathcal{NS}(A)$, we need only find two LI vectors that are solutions to $A\vec{x} = \vec{0}$.

Notice that
$$\vec{a}_2 = \vec{a}_1 + 2\vec{a}_3$$
, so Notice that $\vec{a}_4 = \vec{a}_1 + \vec{a}_3 + \vec{a}_5$, so $\vec{a}_1 - \vec{a}_2 + 2\vec{a}_3 = \vec{0}$. So so $\vec{a}_1 + \vec{a}_3 - \vec{a}_4 + \vec{a}_5 = \vec{0}$. So $\vec{z}_1 = \begin{bmatrix} 1 \\ -1 \\ 2 \\ 0 \\ 0 \end{bmatrix}$ is soln to $A\vec{x} = \vec{0}$. $\vec{z}_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ -1 \\ 1 \end{bmatrix}$ is soln to $A\vec{x} = \vec{0}$.

Thus $\{\vec{z}_1, \vec{z}_2\}$ is a LI set of vectors in the 2-dimensional space $\mathcal{NS}(A)$, so it is a basis. We conclude that $\mathcal{NS}(A) = \mathcal{S}pan\{\vec{z}_1, \vec{z}_2\}$, a 2-plane in \mathbb{R}^5 .

$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \vec{a}_3 \ \vec{a}_4 \ \vec{a}_5 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 & 3 & 1 \\ 0 & 2 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix},$$

Conclusion

For the matrix

$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \vec{a}_3 \ \vec{a}_4 \ \vec{a}_5 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 & 3 & 1 \\ 0 & 2 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

Conclusion

For the matrix

$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \vec{a}_3 \ \vec{a}_4 \ \vec{a}_5 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 & 3 & 1 \\ 0 & 2 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

 $\mathcal{CS}(A)=\mathbb{R}^3$ (so, $A\vec{x}=\vec{b}$ has a solution for every \vec{b} in \mathbb{R}^3), and

Conclusion

For the matrix

$$A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \vec{a_3} & \vec{a_4} & \vec{a_5} \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 & 3 & 1 \\ 0 & 2 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

 $\mathcal{CS}(A)=\mathbb{R}^3$ (so, $A\vec{x}=\vec{b}$ has a solution for every \vec{b} in \mathbb{R}^3), and $\mathcal{NS}(A)$ is the 2-plane in \mathbb{R}^5 that is given by

$$\mathcal{NS}(A) = \mathcal{S}\mathit{pan}\{ec{z_1}, ec{z_2}\} = \mathcal{S}\mathit{pan}\left\{ egin{array}{c|c} 1 \\ -1 \\ 2 \\ 0 \\ 0 \end{array}, egin{array}{c|c} 1 \\ 0 \\ 1 \\ -1 \\ 1 \end{array}
ight\}.$$