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The Problem and Our Strategy

Let’s “find” NS(A) and CS(A) where

A =
[
~a1 ~a2 ~a3 ~a4 ~a5

]
=

1 3 1 3 1
0 2 1 2 1
0 0 0 1 1

 .

Here we utilize the following important facts:

rank(A) + null(A) = 5 (the number of columns of A)

A maximal linearly independent set is a basis.

If dim V = p, then any LI set of p vectors in V is a basis for V.

We could “find” NS(A) and CS(A) the usual way, but we want to
illustrate how the above facts can be employed.

As A is a 3× 5 matrix, we already know:

NS(A) is a vector subspace of R5

CS(A) is a vector subspace of R3.
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Finding the Column Space CS(A)

We already know CS(A) is a vector subspace of R3.

Therefore, rank(A) = dim CS(A) ≤ 3.

Notice that {~a1, ~a3, ~a5} is clearly LI. Thus this is a maximal LI set in
CS(A), so it is a basis.

Therefore, rank(A) = 3, and hence CS(A) =

R3.

Since rank(A) + null(A) = 5, we now get null(A) =

5− 3 = 2.

A =
[
~a1 ~a2 ~a3 ~a4 ~a5

]
=

1 3 1 3 1
0 2 1 2 1
0 0 0 1 1


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Finding the Null Space NS(A)
We already know NS(A) is a vector subspace of R5.

In fact, since
dim NS(A) = null(A) = 2, NS(A) is a 2-plane in R5. To find a basis for
NS(A), we need only find two LI vectors that are solutions to A~x = ~0.

Notice that ~a2 = ~a1 + 2~a3, so
~a1 − ~a2 + 2~a3 = ~0. So

~z1 =


1
−1
2
0
0

 is soln to A~x = ~0.

Notice that ~a4 = ~a1 + ~a3 + ~a5,
so ~a1 + ~a3 − ~a4 + ~a5 = ~0. So

~z2 =


1
0
1
−1
1

 is soln to A~x = ~0.

Thus {~z1, ~z2} is a LI set of vectors in the 2-dimensional space NS(A), so
it is a basis. We conclude that NS(A) = Span{~z1, ~z2}, a 2-plane in R5.

A =
[
~a1 ~a2 ~a3 ~a4 ~a5

]
=

1 3 1 3 1
0 2 1 2 1
0 0 0 1 1

 ,
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Conclusion

For the matrix

A =
[
~a1 ~a2 ~a3 ~a4 ~a5
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=

1 3 1 3 1
0 2 1 2 1
0 0 0 1 1



CS(A) = R3 (so, A~x = ~b has a solution for every ~b in R3), and
NS(A) is the 2-plane in R5 that is given by

NS(A) = Span{~z1, ~z2} = Span

{
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2
0
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