Linear Algebra MATH 2076

The determinant of an $n \times n$ matrix A is given in terms of determinants of certain $(n-1) \times (n-1)$ matrices called the *minors* of A.

The determinant of an $n \times n$ matrix A is given in terms of determinants of certain $(n-1) \times (n-1)$ matrices called the *minors* of A.

The (i,j)-minor of A is the $(n-1)\times (n-1)$ matrix M_{ij} obtained by deleting both the i^{th} row and j^{th} column of A:

```
\begin{bmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{i1} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \dots & a_{nj} & \dots & a_{nn} \end{bmatrix}
```

The determinant of an $n \times n$ matrix A is given in terms of determinants of certain $(n-1) \times (n-1)$ matrices called the *minors* of A.

The (i,j)-minor of A is the $(n-1)\times(n-1)$ matrix M_{ij} obtained by deleting both the i^{th} row and i^{th} column of A:

$$\begin{bmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{i1} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \dots & a_{nj} & \dots & a_{nn} \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{i1} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{n1} & \dots & a_{nj} & \dots & a_{nn} \end{bmatrix}$$
 E.g., the (2,3) minor of
$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$
 is
$$\begin{bmatrix} a & b \\ g & h \end{bmatrix}.$$

The determinant of an $n \times n$ matrix A is given in terms of determinants of its minors of M_{ij} .

The determinant of an $n \times n$ matrix A is given in terms of determinants of its minors of M_{ij} . We have

$$\det(A) = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det(M_{1j})$$

$$= a_{11} |M_{11}| - a_{12} |M_{12}| + \dots + (-1)^{1+n} a_{1n} |M_{1n}|.$$

The determinant of an $n \times n$ matrix A is given in terms of determinants of its minors of M_{ij} . We have

$$\det(A) = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det(M_{1j})$$

$$= a_{11} |M_{11}| - a_{12} |M_{12}| + \dots + (-1)^{1+n} a_{1n} |M_{1n}|.$$

This is called *cofactor expansion across the first row*.

The determinant of an $n \times n$ matrix A is given in terms of determinants of its minors of M_{ij} . We have

$$\det(A) = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det(M_{1j})$$

$$= a_{11} |M_{11}| - a_{12} |M_{12}| + \dots + (-1)^{1+n} a_{1n} |M_{1n}|.$$

This is called *cofactor expansion across the first row*. In fact, we can calculate det(A) by expanding across any row

The determinant of an $n \times n$ matrix A is given in terms of determinants of its minors of M_{ij} . We have

$$\det(A) = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det(M_{1j})$$

$$= a_{11} |M_{11}| - a_{12} |M_{12}| + \dots + (-1)^{1+n} a_{1n} |M_{1n}|.$$

This is called *cofactor expansion across the first row*. In fact, we can calculate det(A) by expanding across any row

$$\det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det(M_{ij})$$
 (cofactor expansion across the i^{th} row)

Section 3.2 Properties of Dets 17 February 2017

The determinant of an $n \times n$ matrix A is given in terms of determinants of its minors of M_{ij} . We have

$$\det(A) = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det(M_{1j})$$

$$= a_{11} |M_{11}| - a_{12} |M_{12}| + \dots + (-1)^{1+n} a_{1n} |M_{1n}|.$$

This is called *cofactor expansion across the first row*. In fact, we can calculate det(A) by expanding across any row

$$\det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det(M_{ij})$$
 (cofactor expansion across the i^{th} row)

or by expanding down any column

Section 3.2

$$\det(A) = \sum_{i=1}^n (-1)^{i+j} a_{ij} \det(M_{ij})$$
 (cofactor expansion down the j^{th} column).

Recall that a square matrix is *upper triangular* if all of its entries below the main diagonal are zero.

Recall that a square matrix is *upper triangular* if all of its entries below the main diagonal are zero. Easy to see that for an upper triangular $n \times n$ matrix $A = [a_{ij}]$ we have

Recall that a square matrix is *upper triangular* if all of its entries below the main diagonal are zero. Easy to see that for an upper triangular $n \times n$ matrix $A = [a_{ij}]$ we have

$$\det(A)=a_{11}a_{22}\ldots a_{nn}.$$

Recall that a square matrix is *upper triangular* if all of its entries below the main diagonal are zero. Easy to see that for an upper triangular $n \times n$ matrix $A = [a_{ij}]$ we have

$$\det(A)=a_{11}a_{22}\ldots a_{nn}.$$

Recall that by repeatedly applying elem row ops, one at a time, we can convert any square matrix into an upper triangular matrix.

Recall that a square matrix is *upper triangular* if all of its entries below the main diagonal are zero. Easy to see that for an upper triangular $n \times n$ matrix $A = [a_{ij}]$ we have

$$\det(A) = a_{11}a_{22}\dots a_{nn}.$$

Recall that by repeatedly applying elem row ops, one at a time, we can convert any square matrix into an upper triangular matrix.

The following are allowable elementary row operations.

Recall that a square matrix is *upper triangular* if all of its entries below the main diagonal are zero. Easy to see that for an upper triangular $n \times n$ matrix $A = [a_{ij}]$ we have

$$\det(A)=a_{11}a_{22}\ldots a_{nn}.$$

Recall that by repeatedly applying elem row ops, one at a time, we can convert any square matrix into an upper triangular matrix.

The following are allowable elementary row operations.

• Add a multiple of one row to another.

Recall that a square matrix is *upper triangular* if all of its entries below the main diagonal are zero. Easy to see that for an upper triangular $n \times n$ matrix $A = [a_{ij}]$ we have

$$\det(A)=a_{11}a_{22}\ldots a_{nn}.$$

Recall that by repeatedly applying elem row ops, one at a time, we can convert any square matrix into an upper triangular matrix.

The following are allowable elementary row operations.

- Add a multiple of one row to another.
- Multiply one row by a non-zero constant.

Recall that a square matrix is *upper triangular* if all of its entries below the main diagonal are zero. Easy to see that for an upper triangular $n \times n$ matrix $A = [a_{ij}]$ we have

$$\det(A)=a_{11}a_{22}\ldots a_{nn}.$$

Recall that by repeatedly applying elem row ops, one at a time, we can convert any square matrix into an upper triangular matrix.

The following are allowable elementary row operations.

- Add a multiple of one row to another.
- Multiply one row by a non-zero constant.
- Interchange two rows.

Recall that a square matrix is upper triangular if all of its entries below the main diagonal are zero. Easy to see that for an upper triangular $n \times n$ matrix $A = [a_{ii}]$ we have

$$\det(A)=a_{11}a_{22}\ldots a_{nn}.$$

Recall that by repeatedly applying elem row ops, one at a time, we can convert any square matrix into an upper triangular matrix.

The following are allowable elementary row operations.

- Add a multiple of one row to another.
- Multiply one row by a non-zero constant.
- Interchange two rows.

What is the effect of these elem row ops on the determinant?

The following are allowable elementary row operations.

- Add a multiple of one row to another.
- ② Multiply one row by a *non-zero* constant k.
- Interchange two rows.

The following are allowable elementary row operations.

- Add a multiple of one row to another.
- ② Multiply one row by a *non-zero* constant k.
- Interchange two rows.

What is the effect of these elem row ops on the determinant?

The following are allowable elementary row operations.

- Add a multiple of one row to another.
- **4** Multiply one row by a *non-zero* constant k.
- Interchange two rows.

What is the effect of these elem row ops on the determinant?

Let A be a square matrix; so $\det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det(M_{ij})$.

The following are allowable elementary row operations.

- Add a multiple of one row to another.
- ② Multiply one row by a *non-zero* constant k.
- Interchange two rows.

What is the effect of these elem row ops on the determinant?

The following are allowable elementary row operations.

- Add a multiple of one row to another.
- ② Multiply one row by a *non-zero* constant k.
- Interchange two rows.

What is the effect of these elem row ops on the determinant?

Let A be a square matrix; so $\det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det(M_{ij})$. Suppose we perform an elem row op on A to get B. Then:

• det(B) = -det(A) for a type (3) elem row op

The following are allowable elementary row operations.

- Add a multiple of one row to another.
- ② Multiply one row by a *non-zero* constant k.
- Interchange two rows.

What is the effect of these elem row ops on the determinant?

- det(B) = k det(A) for a type (2) elem row op
- det(B) = -det(A) for a type (3) elem row op

The following are allowable elementary row operations.

- Add a multiple of one row to another.
- ② Multiply one row by a *non-zero* constant k.
- Interchange two rows.

What is the effect of these elem row ops on the determinant?

- det(B) = det(A) for a type (1) elem row op
- det(B) = k det(A) for a type (2) elem row op
- det(B) = -det(A) for a type (3) elem row op

The following are allowable elementary row operations.

- Add a multiple of one row to another.
- ② Multiply one row by a *non-zero* constant k.
- Interchange two rows.

What is the effect of these elem row ops on the determinant?

- ullet det $(B)=\det(A)$ for a type (1) elem row op $(\ddot{\ })$
- det(B) = k det(A) for a type (2) elem row op
- det(B) = -det(A) for a type (3) elem row op

Examples

Find the determinants of

$$A = \begin{bmatrix} 1 & 2 & -1 & 0 & 3 \\ 3 & 4 & 1 & 0 & -1 \\ 6 & 4 & 2 & 1 & -2 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & 0 & 2 & 3 & 0 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 1 & 0 & 3 & 4 \\ 3 & 0 & 0 & 1 & 2 \\ 0 & 2 & 1 & 1 & 1 \end{bmatrix}.$$

Examples

Find the determinants of

$$A = \begin{bmatrix} 1 & 2 & -1 & 0 & 3 \\ 3 & 4 & 1 & 0 & -1 \\ 6 & 4 & 2 & 1 & -2 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & 0 & 2 & 3 & 0 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 1 & 0 & 3 & 4 \\ 3 & 0 & 0 & 1 & 2 \\ 0 & 2 & 1 & 1 & 1 \end{bmatrix}.$$

Answers: det(A) = 18 and det(B) = -100.

Let A and B be square matrices of the same size. Then:

 $\bullet \ \det(AB) = \det(A)\det(B)$

- $\bullet \det(AB) = \det(A)\det(B)$
- $det(kA) = k^n det(A)$ (if A is $n \times n$)

- $\bullet \ \det(AB) = \det(A)\det(B)$
- $det(kA) = k^n det(A)$ (if A is $n \times n$)
- $det(A^T) = det(A)$

- $\bullet \det(AB) = \det(A)\det(B)$
- $det(kA) = k^n det(A)$ (if A is $n \times n$)
- If A is invertible, then $det(A^{-1}) = (det(A))^{-1}$