Properties of Determinants

Linear Algebra MATH 2076

4 0 1

 2990

The determinant of an $n \times n$ matrix A is given in terms of determinants of certain $(n-1) \times (n-1)$ matrices called the *minors* of A.

 QQ

The determinant of an $n \times n$ matrix A is given in terms of determinants of certain $(n-1) \times (n-1)$ matrices called the *minors* of A.

The (i, j) -minor of A is the $(n - 1) \times (n - 1)$ matrix M_{ii} obtained by deleting both the $i^{\rm th}$ row and $j^{\rm th}$ column of A :

 Ω

The determinant of an $n \times n$ matrix A is given in terms of determinants of certain $(n-1) \times (n-1)$ matrices called the *minors* of A. The (i, j) -minor of A is the $(n - 1) \times (n - 1)$ matrix M_{ii} obtained by

deleting both the $i^{\rm th}$ row and $j^{\rm th}$ column of A :

$$
\begin{bmatrix} a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{i1} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \cdots & a_{nj} & \cdots & a_{nn} \end{bmatrix} \quad \text{E.g., the (2, 3) minor of } \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \text{ is } \begin{bmatrix} a & b \\ g & h \end{bmatrix}.
$$

 Ω

The determinant of an $n \times n$ matrix A is given in terms of determinants of its minors of M_{ij} .

 \leftarrow

 $2Q$

The determinant of an $n \times n$ matrix A is given in terms of determinants of its minors of M_{ij} . We have

$$
det(A) = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} det(M_{1j})
$$

= $a_{11}|M_{11}| - a_{12}|M_{12}| + \cdots + (-1)^{1+n} a_{1n}|M_{1n}|.$

 \leftarrow

 $2Q$

The determinant of an $n \times n$ matrix A is given in terms of determinants of its minors of M_{ii} . We have

$$
det(A) = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} det(M_{1j})
$$

= $a_{11}|M_{11}| - a_{12}|M_{12}| + \cdots + (-1)^{1+n} a_{1n}|M_{1n}|.$

This is called cofactor expansion across the first row.

 OQ

The determinant of an $n \times n$ matrix A is given in terms of determinants of its minors of M_{ii} . We have

$$
det(A) = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} det(M_{1j})
$$

= $a_{11}|M_{11}| - a_{12}|M_{12}| + \cdots + (-1)^{1+n} a_{1n}|M_{1n}|.$

This is called cofactor expansion across the first row. In fact, we can calculate $det(A)$ by expanding across any row

 Ω

The determinant of an $n \times n$ matrix A is given in terms of determinants of its minors of M_{ii} . We have

$$
det(A) = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} det(M_{1j})
$$

= $a_{11}|M_{11}| - a_{12}|M_{12}| + \cdots + (-1)^{1+n} a_{1n}|M_{1n}|.$

This is called cofactor expansion across the first row. In fact, we can calculate $det(A)$ by expanding across any row

$$
\det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det(M_{ij})
$$
 (cofactor expansion across the *i*th row)

The determinant of an $n \times n$ matrix A is given in terms of determinants of its minors of M_{ii} . We have

$$
det(A) = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} det(M_{1j})
$$

= $a_{11}|M_{11}| - a_{12}|M_{12}| + \cdots + (-1)^{1+n} a_{1n}|M_{1n}|.$

This is called cofactor expansion across the first row. In fact, we can calculate $det(A)$ by expanding across any row

$$
\det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det(M_{ij})
$$
 (cofactor expansion across the *i*th row)

or by expanding down any column

$$
\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det(M_{ij})
$$
 (cofactor expansion down the *j*th column).

Recall that a square matrix is upper triangular if all of its entries below the main diagonal are zero.

 \leftarrow

 $2Q$

Recall that a square matrix is upper triangular if all of its entries below the main diagonal are zero. Easy to see that for an upper triangular $n \times n$ matrix $A = [a_{ii}]$ we have

 Ω

Recall that a square matrix is upper triangular if all of its entries below the main diagonal are zero. Easy to see that for an upper triangular $n \times n$ matrix $A = [a_{ii}]$ we have

 $det(A) = a_{11}a_{22}...a_{nn}$.

 QQ

Recall that a square matrix is upper triangular if all of its entries below the main diagonal are zero. Easy to see that for an upper triangular $n \times n$ matrix $A = [a_{ii}]$ we have

$$
\det(A)=a_{11}a_{22}\ldots a_{nn}.
$$

Recall that by repeatedly applying elem row ops, one at a time, we can convert any square matrix into an upper triangular matrix.

Recall that a square matrix is upper triangular if all of its entries below the main diagonal are zero. Easy to see that for an upper triangular $n \times n$ matrix $A = [a_{ii}]$ we have

$$
\det(A)=a_{11}a_{22}\ldots a_{nn}.
$$

Recall that by repeatedly applying elem row ops, one at a time, we can convert any square matrix into an upper triangular matrix.

The following are allowable elementary row operations.

Recall that a square matrix is upper triangular if all of its entries below the main diagonal are zero. Easy to see that for an upper triangular $n \times n$ matrix $A = [a_{ii}]$ we have

$$
\det(A)=a_{11}a_{22}\ldots a_{nn}.
$$

Recall that by repeatedly applying elem row ops, one at a time, we can convert any square matrix into an upper triangular matrix.

The following are allowable elementary row operations.

• Add a multiple of one row to another.

Recall that a square matrix is upper triangular if all of its entries below the main diagonal are zero. Easy to see that for an upper triangular $n \times n$ matrix $A = [a_{ii}]$ we have

$$
\det(A)=a_{11}a_{22}\ldots a_{nn}.
$$

Recall that by repeatedly applying elem row ops, one at a time, we can convert any square matrix into an upper triangular matrix.

The following are allowable elementary row operations.

- Add a multiple of one row to another.
- Multiply one row by a non-zero constant.

Recall that a square matrix is upper triangular if all of its entries below the main diagonal are zero. Easy to see that for an upper triangular $n \times n$ matrix $A = [a_{ii}]$ we have

$$
\det(A)=a_{11}a_{22}\ldots a_{nn}.
$$

Recall that by repeatedly applying elem row ops, one at a time, we can convert any square matrix into an upper triangular matrix.

The following are allowable elementary row operations.

- Add a multiple of one row to another.
- Multiply one row by a *non-zero* constant.
- Interchange two rows.

 OQ

Recall that a square matrix is upper triangular if all of its entries below the main diagonal are zero. Easy to see that for an upper triangular $n \times n$ matrix $A = [a_{ii}]$ we have

$$
\det(A)=a_{11}a_{22}\ldots a_{nn}.
$$

Recall that by repeatedly applying elem row ops, one at a time, we can convert any square matrix into an upper triangular matrix.

The following are allowable elementary row operations.

- Add a multiple of one row to another.
- Multiply one row by a non-zero constant.
- Interchange two rows.

What is the effect of these elem row ops on the determinant?

 QQ

The following are allowable elementary row operations.

- **1** Add a multiple of one row to another.
- **2** Multiply one row by a non-zero constant k.
- **3** Interchange two rows.

 Ω

The following are allowable elementary row operations.

- **1** Add a multiple of one row to another.
- **2** Multiply one row by a non-zero constant k.
- **3** Interchange two rows.

What is the effect of these elem row ops on the determinant?

The following are allowable elementary row operations.

- **1** Add a multiple of one row to another.
- **2** Multiply one row by a non-zero constant k.
- **3** Interchange two rows.

What is the effect of these elem row ops on the determinant?

Let A be a square matrix; so $\det(A) = \sum_{j=1}^n (-1)^{i+j} a_{ij} \det(M_{ij}).$

The following are allowable elementary row operations.

- **1** Add a multiple of one row to another.
- **2** Multiply one row by a non-zero constant k.
- **3** Interchange two rows.

What is the effect of these elem row ops on the determinant?

Let A be a square matrix; so $\det(A) = \sum_{j=1}^n (-1)^{i+j} a_{ij} \det(M_{ij}).$ Suppose we perform an elem row op on \overline{A} to get \overline{B} . Then:

The following are allowable elementary row operations.

- **1** Add a multiple of one row to another.
- **2** Multiply one row by a non-zero constant k.
- **3** Interchange two rows.

What is the effect of these elem row ops on the determinant?

Let A be a square matrix; so $\det(A) = \sum_{j=1}^n (-1)^{i+j} a_{ij} \det(M_{ij}).$ Suppose we perform an elem row op on \overline{A} to get \overline{B} . Then:

$$
\bullet\;\det(B)=-\det(A)\;\text{for a type (3) elem row op}
$$

The following are allowable elementary row operations.

- **1** Add a multiple of one row to another.
- **2** Multiply one row by a non-zero constant k.
- **3** Interchange two rows.

What is the effect of these elem row ops on the determinant?

Let A be a square matrix; so $\det(A) = \sum_{j=1}^n (-1)^{i+j} a_{ij} \det(M_{ij}).$ Suppose we perform an elem row op on \overline{A} to get \overline{B} . Then:

$$
\bullet\;\mathsf{det}(B)=k\mathsf{det}(A)\;\mathsf{for}\; \mathsf{a}\;\mathsf{type}\; (2)\;\mathsf{elem}\;\mathsf{row}\;\mathsf{op}
$$

• det(B) = -det(A) for a type (3) elem row op

つひつ

The following are allowable elementary row operations.

- **1** Add a multiple of one row to another.
- **2** Multiply one row by a non-zero constant k.
- **3** Interchange two rows.

What is the effect of these elem row ops on the determinant?

Let A be a square matrix; so $\det(A) = \sum_{j=1}^n (-1)^{i+j} a_{ij} \det(M_{ij}).$ Suppose we perform an elem row op on \overline{A} to get \overline{B} . Then:

- det(B) = det(A) for a type (1) elem row op
- det(B) = k det(A) for a type (2) elem row op
- det(B) = -det(A) for a type (3) elem row op

 OQ

The following are allowable elementary row operations.

- **1** Add a multiple of one row to another.
- **2** Multiply one row by a non-zero constant k.
- **3** Interchange two rows.

What is the effect of these elem row ops on the determinant?

Let A be a square matrix; so $\det(A) = \sum_{j=1}^n (-1)^{i+j} a_{ij} \det(M_{ij}).$ Suppose we perform an elem row op on \overline{A} to get \overline{B} . Then:

- det(B) = det(A) for a type (1) elem row op ($\ddot{\circ}$)
- det(B) = k det(A) for a type (2) elem row op
- det(B) = -det(A) for a type (3) elem row op

 OQ

Find the determinants of

$$
A = \begin{bmatrix} 1 & 2 & -1 & 0 & 3 \\ 3 & 4 & 1 & 0 & -1 \\ 6 & 4 & 2 & 1 & -2 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 0 & 2 & 3 & 0 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 1 & 0 & 3 & 4 \\ 3 & 0 & 0 & 1 & 2 \\ 0 & 2 & 1 & 1 & 1 \end{bmatrix}.
$$

K ロ ▶ K 個 ▶ K 경 ▶ K 경 ▶

G.

 $2QQ$

Find the determinants of

$$
A = \begin{bmatrix} 1 & 2 & -1 & 0 & 3 \\ 3 & 4 & 1 & 0 & -1 \\ 6 & 4 & 2 & 1 & -2 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 0 & 2 & 3 & 0 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 1 & 0 & 3 & 4 \\ 3 & 0 & 0 & 1 & 2 \\ 0 & 2 & 1 & 1 & 1 \end{bmatrix}.
$$

Answers: $det(A) = 18$ and $det(B) = -100$.

 4 ロ) \rightarrow (母) \rightarrow (ヨ) \rightarrow (ヨ)

G.

 $2QQ$

4 0 1

 $2Q$

• det(AB) = det(A) det(B)

 \leftarrow

 2990

$$
\bullet\ \det(AB)=\det(A)\det(B)
$$

•
$$
\det(kA) = k^n \det(A) \text{ (if } A \text{ is } n \times n)
$$

4 0 1

 2990

$$
\bullet\;\det(AB)=\det(A)\det(B)
$$

•
$$
\det(kA) = k^n \det(A) \text{ (if } A \text{ is } n \times n)
$$

$$
\bullet\:\det(A^{\mathcal T})=\det(A)
$$

4 0 1

 $2Q$

• det(AB) = det(A) det(B)

•
$$
\det(kA) = k^n \det(A) \text{ (if } A \text{ is } n \times n)
$$

- $\det(A^{\mathcal{T}}) = \det(A)$
- If A is invertible, then $\det(A^{-1})=\left(\det(A)\right)^{-1}$

 PQQ