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The Determinant of an n x n Matrix

The determinant of an n x n matrix A is given in terms of determinants of
certain (n — 1) x (n — 1) matrices called the minors of A.
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The Determinant of an n x n Matrix

The determinant of an n x n matrix A is given in terms of determinants of
certain (n — 1) x (n — 1) matrices called the minors of A.

The (i, j)-minor of A is the (n — 1) x (n — 1) matrix Mj; obtained by
deleting both the i*"" row and j* column of A:

a1 ... 4dij ... din
aj1 ajj din
_anl anj dnn
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The Determinant of an n x n Matrix

The determinant of an n x n matrix A is given in terms of determinants of
certain (n — 1) x (n — 1) matrices called the minors of A.

The (i, j)-minor of A is the (n — 1) x (n — 1) matrix Mj; obtained by
deleting both the i*"" row and j* column of A:

a1 ... 4dij ... din
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The Determinant of an n x n Matrix

The determinant of an n x n matrix A is given in terms of determinants of
its minors of Mj;.
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The Determinant of an n x n Matrix

The determinant of an n x n matrix A is given in terms of determinants of
its minors of Mj;;. We have
n
det(A) = (—1)"ay; det(My))
j=1
a11| M1 | — a2|Maz| + -+ + (= 1)y, | My,
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The Determinant of an n x n Matrix

The determinant of an n x n matrix A is given in terms of determinants of
its minors of Mj;;. We have

n

det(A) = Z(—1)1+j31j det(My;)
=1

= a11|Mu1| — an2|Mao| + -+ + (1)1 a1, M,

This is called cofactor expansion across the first row.
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The Determinant of an n x n Matrix

The determinant of an n x n matrix A is given in terms of determinants of
its minors of Mj;;. We have

n

det(A) = Z(—1)1+j31j det(My;)
=1

= a11|Mu1| — an2|Mao| + -+ + (1)1 a1, M,

This is called cofactor expansion across the first row. In fact, we can
calculate det(A) by expanding across any row
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The Determinant of an n x n Matrix

The determinant of an n x n matrix A is given in terms of determinants of
its minors of Mj;;. We have
n
det(A) = (—1)"ay; det(My))
j=1
= a11|Mi1| — a2 |M co e (=), M

a11|Mu1| — ai2|Maz| + - - 4 (=1)"""a1s| M1p)|.
This is called cofactor expansion across the first row. In fact, we can
calculate det(A) by expanding across any row

det(A) = Z(—l)““ja,-j det(M;;) (cofactor expansion across the i row)
j=1
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The Determinant of an n x n Matrix

The determinant of an n x n matrix A is given in terms of determinants of
its minors of Mj;;. We have

n

det(A) = Z(—1)1+j31j det(My;)
=1

1
= a1 | M| — an2|Miz| + -+ + (=1)"* a1, | My,|.
This is called cofactor expansion across the first row. In fact, we can

calculate det(A) by expanding across any row

n
det(A) = Z(—l)““ja,-j det(M;;) (cofactor expansion across the i row)
j=1
or by expanding down any column

det(A) = Z(—l)i+ja;j det(M;;) (cofactor expansion down the j™ column).
i=1
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Determinant of Upper Triangular Matrix

Recall that a square matrix is upper triangular if all of its entries below the
main diagonal are zero.
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Determinant of Upper Triangular Matrix

Recall that a square matrix is upper triangular if all of its entries below the

main diagonal are zero. Easy to see that for an upper triangular n x n
matrix A = [aj;] we have
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Determinant of Upper Triangular Matrix

Recall that a square matrix is upper triangular if all of its entries below the

main diagonal are zero. Easy to see that for an upper triangular n x n
matrix A = [aj;] we have

det(A) = a11ad22...ann-
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Determinant of Upper Triangular Matrix

Recall that a square matrix is upper triangular if all of its entries below the

main diagonal are zero. Easy to see that for an upper triangular n x n
matrix A = [aj;] we have

det(A) = a11ad22...ann-

Recall that by repeatedly applying elem row ops, one at a time, we can
convert any square matrix into an upper triangular matrix.
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Determinant of Upper Triangular Matrix

Recall that a square matrix is upper triangular if all of its entries below the
main diagonal are zero. Easy to see that for an upper triangular n x n
matrix A = [aj;] we have

det(A) = a11ad22...ann-
Recall that by repeatedly applying elem row ops, one at a time, we can

convert any square matrix into an upper triangular matrix.

The following are allowable elementary row operations.
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Determinant of Upper Triangular Matrix

Recall that a square matrix is upper triangular if all of its entries below the
main diagonal are zero. Easy to see that for an upper triangular n x n
matrix A = [aj;] we have

det(A) = a11ad22...ann-
Recall that by repeatedly applying elem row ops, one at a time, we can
convert any square matrix into an upper triangular matrix.

The following are allowable elementary row operations.

@ Add a multiple of one row to another.
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Determinant of Upper Triangular Matrix

Recall that a square matrix is upper triangular if all of its entries below the
main diagonal are zero. Easy to see that for an upper triangular n x n
matrix A = [aj;] we have

det(A) = a11ad22...ann-
Recall that by repeatedly applying elem row ops, one at a time, we can
convert any square matrix into an upper triangular matrix.

The following are allowable elementary row operations.
@ Add a multiple of one row to another.

@ Multiply one row by a non-zero constant.
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Determinant of Upper Triangular Matrix

Recall that a square matrix is upper triangular if all of its entries below the
main diagonal are zero. Easy to see that for an upper triangular n x n
matrix A = [aj;] we have

det(A) = a11ad22...ann-

Recall that by repeatedly applying elem row ops, one at a time, we can
convert any square matrix into an upper triangular matrix.

The following are allowable elementary row operations.
@ Add a multiple of one row to another.
@ Multiply one row by a non-zero constant.
@ Interchange two rows.
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Determinant of Upper Triangular Matrix

Recall that a square matrix is upper triangular if all of its entries below the
main diagonal are zero. Easy to see that for an upper triangular n x n
matrix A = [aj;] we have

det(A) = a11ad22...ann-

Recall that by repeatedly applying elem row ops, one at a time, we can
convert any square matrix into an upper triangular matrix.

The following are allowable elementary row operations.
@ Add a multiple of one row to another.
@ Multiply one row by a non-zero constant.
@ Interchange two rows.

What is the effect of these elem row ops on the determinant?
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Determinants and Elementary Row operations

The following are allowable elementary row operations.
@ Add a multiple of one row to another.
© Multiply one row by a non-zero constant k.

© Interchange two rows.
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Determinants and Elementary Row operations

The following are allowable elementary row operations.
@ Add a multiple of one row to another.
© Multiply one row by a non-zero constant k.
© Interchange two rows.

What is the effect of these elem row ops on the determinant?
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Determinants and Elementary Row operations

The following are allowable elementary row operations.
@ Add a multiple of one row to another.

© Multiply one row by a non-zero constant k.
© Interchange two rows.

What is the effect of these elem row ops on the determinant?

Let A be a square matrix; so det(A) = Y7, (—1)*/a;; det(Mj).

Properties of Dets ATy



Determinants and Elementary Row operations

The following are allowable elementary row operations.

@ Add a multiple of one row to another.

© Multiply one row by a non-zero constant k.

© Interchange two rows.
What is the effect of these elem row ops on the determinant?
Let A be a square matrix; so det(A) = Y7, (—1)"H a;; det(M;).

J_
Suppose we perform an elem row op on A to get B. Then:
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Determinants and Elementary Row operations

The following are allowable elementary row operations.
@ Add a multiple of one row to another.

© Multiply one row by a non-zero constant k.
© Interchange two rows.

What is the effect of these elem row ops on the determinant?

Let A be a square matrix; so det(A) = Y7, (—1)*/a;; det(Mj).
Suppose we perform an elem row op on A to get B. Then:

o det(B) = — det(A) for a type (3) elem row op
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Determinants and Elementary Row operations

The following are allowable elementary row operations.
@ Add a multiple of one row to another.

© Multiply one row by a non-zero constant k.
© Interchange two rows.

What is the effect of these elem row ops on the determinant?

Let A be a square matrix; so det(A) = Y7, (—1)*/a;; det(Mj).
Suppose we perform an elem row op on A to get B. Then:

o det(B) = kdet(A) for a type (2) elem row op
o det(B) = — det(A) for a type (3) elem row op
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Determinants and Elementary Row operations

The following are allowable elementary row operations.
@ Add a multiple of one row to another.

© Multiply one row by a non-zero constant k.
© Interchange two rows.

What is the effect of these elem row ops on the determinant?

Let A be a square matrix; so det(A) = Y7, (—1)*/a;; det(Mj).
Suppose we perform an elem row op on A to get B. Then:

o det(B) = det(A) for a type (1) elem row op
o det(B) = kdet(A) for a type (2) elem row op
o det(B) = — det(A) for a type (3) elem row op
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Determinants and Elementary Row operations

The following are allowable elementary row operations.
@ Add a multiple of one row to another.

© Multiply one row by a non-zero constant k.
© Interchange two rows.

What is the effect of these elem row ops on the determinant?

Let A be a square matrix; so det(A) = Y7, (—1)*/a;; det(Mj).
Suppose we perform an elem row op on A to get B. Then:

o det(B) = det(A) for a type (1) elem row op (%)
o det(B) = kdet(A) for a type (2) elem row op
o det(B) = — det(A) for a type (3) elem row op
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Examples

Find the determinants of

12 -1 0 3 1 02 3 0
34 1 0 -1 001 23
A=16 4 2 1 -2 and B=(0 1 0 3 4
01 1 0 O 30012
10 0 0 1 0 2111
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Examples

Find the determinants of

12 -1 0 3 1 02 3 0
34 1 0 -1 001 23
A=16 4 2 1 -2 and B=(0 1 0 3 4
01 1 0 O 30012
10 0 0 1 0 2111

Answers: det(A) = 18 and det(B) = —100.
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Properties of Determinants

Let A and B be square matrices of the same size. Then:
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Properties of Determinants

Let A and B be square matrices of the same size. Then:

o det(AB) = det(A) det(B)
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Properties of Determinants

Let A and B be square matrices of the same size. Then:
o det(AB) = det(A) det(B)
o det(kA) = k" det(A) (if Ais nx n)
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Properties of Determinants

Let A and B be square matrices of the same size. Then:
o det(AB) = det(A) det(B)
o det(kA) = k" det(A) (if Ais nx n)
o det(AT) = det(A)
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Properties of Determinants

Let A and B be square matrices of the same size. Then:
o det(AB) = det(A) det(B)
o det(kA) = k" det(A) (if Ais nx n)
o det(AT) = det(A)

o If Ais invertible, then det(A~1) = (det(A))
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