Determinants—an Introduction

Linear Algebra MATH 2076

 \leftarrow \rightarrow OQ

G.

 QQQ

イロン イ部ン イヨン イヨン

 \leftarrow

A is invertible if and only if det(A) $\neq 0$

 \leftarrow

- A is invertible if and only if $det(A) \neq 0$
- det(A) = \pm vol(Π) where Π is image of unit cube under $\vec{x} \mapsto A\vec{x}$

 PQQ

- A is invertible if and only if $det(A) \neq 0$
- det(A) = \pm vol(Π) where Π is image of unit cube under $\vec{x} \mapsto A\vec{x}$ Thus have function $\mathbb{R}^{n \times n} \stackrel{{\sf det}}{\longrightarrow} \mathbb{R}$ where $A \mapsto {\sf det}(A).$

 299

• A is invertible if and only if $det(A) \neq 0$

• det(A) = \pm vol(Π) where Π is image of unit cube under $\vec{x} \mapsto A\vec{x}$ Thus have function $\mathbb{R}^{n \times n} \stackrel{{\sf det}}{\longrightarrow} \mathbb{R}$ where $A \mapsto {\sf det}(A).$

Calculating $det(A)$ is **not** good way to determine if A is invertible! See "Numerical Note" on page 169 of text.

 PQQ

G.

 $\mathcal{O} \curvearrowright \curvearrowright$

イロン イ部ン イヨン イヨン

The determinant function $\mathbb{R}^{n\times n} \xrightarrow{\det} \mathbb{R}$ is defined recursively.

画

 4 ロ) 4 何) 4 ヨ) 4 ヨ)

 $2QQ$

The determinant function $\mathbb{R}^{n\times n} \xrightarrow{\det} \mathbb{R}$ is defined recursively.

To find the determinant of an $n \times n$ matrix, we need to know how to find the determinant of an $(n-1) \times (n-1)$ matrix.

 Ω

The determinant function $\mathbb{R}^{n\times n} \xrightarrow{\det} \mathbb{R}$ is defined recursively.

To find the determinant of an $n \times n$ matrix, we need to know how to find the determinant of an $(n-1) \times (n-1)$ matrix.

The determinant of a 2×2 matrix is easy to calculate:

The determinant function $\mathbb{R}^{n\times n} \xrightarrow{\det} \mathbb{R}$ is defined recursively.

To find the determinant of an $n \times n$ matrix, we need to know how to find the determinant of an $(n-1) \times (n-1)$ matrix.

The determinant of a 2×2 matrix is easy to calculate:

$$
\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc.
$$

The determinant function $\mathbb{R}^{n\times n} \xrightarrow{\det} \mathbb{R}$ is defined recursively.

To find the determinant of an $n \times n$ matrix, we need to know how to find the determinant of an $(n-1) \times (n-1)$ matrix.

The determinant of a 2×2 matrix is easy to calculate:

$$
\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc.
$$

For example,

$$
\det \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = 4 - 6 = -2.
$$

The determinant function $\mathbb{R}^{n\times n} \xrightarrow{\det} \mathbb{R}$ is defined recursively.

To find the determinant of an $n \times n$ matrix, we need to know how to find the determinant of an $(n-1) \times (n-1)$ matrix.

The determinant of a 2×2 matrix is easy to calculate:

$$
\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc.
$$

For example,

$$
\det\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = 4 - 6 = -2.
$$

It's convenient to write $|A| = \det(A)$. So, $\Big|$ 1 2 3 4 $=$ det $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = -2.$ $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = -2.$ $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = -2.$ $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = -2.$ $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = -2.$

The determinant of a 3×3 matrix is given by

$$
\det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}
$$

∢ □ ▶ ∢ ñ

 \sim

 $2QQ$

The determinant of a 3×3 matrix is given by

$$
\det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}
$$

∢ □ ▶ ∢ ñ

 \blacktriangleright 4

The determinant of a 3×3 matrix is given by

$$
\det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}
$$

$$
= a(ei - fh) - b(di - fg) + c(dh - ge)
$$

4 0 1 4

The determinant of a 3×3 matrix is given by

$$
\det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}
$$

$$
= a(ei - fh) - b(di - fg) + c(dh - ge)
$$

This is called *cofactor expansion across the first row*. For example,

$$
\det \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}
$$

 \leftarrow

 PQQ

The determinant of a 3×3 matrix is given by

$$
\det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}
$$

$$
= a(ei - fh) - b(di - fg) + c(dh - ge)
$$

This is called *cofactor expansion across the first row*. For example,

$$
\det\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} = \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} - 2 \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} + 3 \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix}
$$

 \leftarrow

 Ω

The determinant of a 3×3 matrix is given by

$$
\det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}
$$

$$
= a(ei - fh) - b(di - fg) + c(dh - ge)
$$

This is called *cofactor expansion across the first row*. For example,

$$
\det\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} = \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} - 2 \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} + 3 \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix}
$$

$$
= (45 - 48) - 2(36 - 42) + 3(32 - 35)
$$

 \leftarrow

 Ω

The determinant of a 3×3 matrix is given by

$$
\det \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}
$$

$$
= a(ei - fh) - b(di - fg) + c(dh - ge)
$$

This is called *cofactor expansion across the first row*. For example,

$$
\det\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} = \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} - 2 \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} + 3 \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix}
$$

= (45 - 48) - 2(36 - 42) + 3(32 - 35)
= -3 + 12 - 9 = 0.

 \leftarrow

The determinant of a 4×4 matrix is given by

$$
\det \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & p & q \end{bmatrix}
$$

4 0 1 4

The determinant of a 4×4 matrix is given by

$$
\det \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & p & q \end{bmatrix} =
$$
\n
$$
= a \begin{vmatrix} f & g & h \\ j & k & l \\ n & p & q \end{vmatrix} - b \begin{vmatrix} e & g & h \\ i & k & l \\ m & p & q \end{vmatrix} + c \begin{vmatrix} e & f & h \\ i & j & l \\ m & n & q \end{vmatrix} - d \begin{vmatrix} e & f & g \\ i & j & k \\ m & n & p \end{vmatrix}.
$$

4 0 1 4

The determinant of a 4×4 matrix is given by

$$
\det \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & p & q \end{bmatrix} =
$$

= $a \begin{vmatrix} f & g & h \\ j & k & l \\ n & p & q \end{vmatrix} - b \begin{vmatrix} e & g & h \\ i & k & l \\ m & p & q \end{vmatrix} + c \begin{vmatrix} e & f & h \\ i & j & l \\ m & n & q \end{vmatrix} - d \begin{vmatrix} e & f & g \\ i & j & k \\ m & n & p \end{vmatrix}.$

This is called cofactor expansion across the first row.

4 0 1

 PQQ

The determinant of an $n \times n$ matrix A is given in terms of determinants of certain $(n-1) \times (n-1)$ matrices called the *minors* of A.

 QQ

The determinant of an $n \times n$ matrix A is given in terms of determinants of certain $(n-1) \times (n-1)$ matrices called the *minors* of A.

The (i, j) -minor of A is the $(n - 1) \times (n - 1)$ matrix M_{ii} obtained by deleting both the $i^{\rm th}$ row and $j^{\rm th}$ column of A :

The determinant of an $n \times n$ matrix A is given in terms of determinants of certain $(n-1) \times (n-1)$ matrices called the *minors* of A.

The (i, j) -minor of A is the $(n - 1) \times (n - 1)$ matrix M_{ii} obtained by deleting both the $i^{\rm th}$ row and $j^{\rm th}$ column of A :

$$
\begin{bmatrix} a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & \cdots & a_{ij} & \cdots & a_{in} \\ \vdots & & & \vdots \\ a_{n1} & \cdots & a_{nj} & \cdots & a_{nn} \end{bmatrix} \quad \text{E.g., the (2, 3) minor of } \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \text{ is } \begin{bmatrix} a & b \\ g & h \end{bmatrix}.
$$

 PQQ

The determinant of an $n \times n$ matrix A is given in terms of determinants of its minors of M_{ij} .

 \leftarrow

The determinant of an $n \times n$ matrix A is given in terms of determinants of its minors of M_{ij} . We have

$$
det(A) = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} det(M_{1j})
$$

= $a_{11}|M_{11}| - a_{12}|M_{12}| + \cdots + (-1)^{1+n} a_{1n}|M_{1n}|.$

 \leftarrow

 OQ

The determinant of an $n \times n$ matrix A is given in terms of determinants of its minors of M_{ii} . We have

$$
det(A) = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} det(M_{1j})
$$

= $a_{11}|M_{11}| - a_{12}|M_{12}| + \cdots + (-1)^{1+n} a_{1n}|M_{1n}|.$

This is called cofactor expansion across the first row.

 Ω

The determinant of an $n \times n$ matrix A is given in terms of determinants of its minors of M_{ii} . We have

$$
det(A) = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} det(M_{1j})
$$

= $a_{11}|M_{11}| - a_{12}|M_{12}| + \cdots + (-1)^{1+n} a_{1n}|M_{1n}|.$

This is called cofactor expansion across the first row. In fact, we can calculate $det(A)$ by expanding across any row

The determinant of an $n \times n$ matrix A is given in terms of determinants of its minors of M_{ii} . We have

$$
det(A) = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} det(M_{1j})
$$

= $a_{11}|M_{11}| - a_{12}|M_{12}| + \cdots + (-1)^{1+n} a_{1n}|M_{1n}|.$

This is called cofactor expansion across the first row. In fact, we can calculate $det(A)$ by expanding across any row

$$
\det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det(M_{ij})
$$
 (cofactor expansion across the *i*th row)

 Ω

The determinant of an $n \times n$ matrix A is given in terms of determinants of its minors of M_{ii} . We have

$$
det(A) = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} det(M_{1j})
$$

= $a_{11}|M_{11}| - a_{12}|M_{12}| + \cdots + (-1)^{1+n} a_{1n}|M_{1n}|.$

This is called cofactor expansion across the first row. In fact, we can calculate $det(A)$ by expanding across any row

$$
\det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det(M_{ij})
$$
 (cofactor expansion across the *i*th row)

or by expanding down any column

$$
\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det(M_{ij})
$$
 (cofactor expansion down the *j*th column).

Find the determinant of

$$
A = \begin{bmatrix} 1 & 2 & -1 & 0 & 3 \\ 3 & 4 & 1 & 0 & -1 \\ 6 & 4 & 2 & 1 & -2 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}.
$$

K ロ ▶ K 個 ▶ K 경 ▶ K 경 ▶

G.

 $2QQ$