Subspaces of Euclidean Space \mathbb{R}^n

Linear Algebra MATH 2076

 \mathbb{V} is a *vector subspace* (of \mathbb{R}^n) if and only if

 \mathbb{V} is a *vector subspace* (of \mathbb{R}^n) if and only if

• $\vec{0}$ is in \mathbb{V} ,

- \mathbb{V} is a *vector subspace* (of \mathbb{R}^n) if and only if
 - $\vec{0}$ is in \mathbb{V} ,
 - V closed with respect to vector addition

 \mathbb{V} is a *vector subspace* (of \mathbb{R}^n) if and only if

- $\vec{0}$ is in \mathbb{V} ,
- \mathbb{V} closed with respect to vector addition $(\vec{u}, \vec{v} \text{ in } \mathbb{V} \implies \vec{u} + \vec{v} \text{ in } \mathbb{V})$

 \mathbb{V} is a *vector subspace* (of \mathbb{R}^n) if and only if

- $\vec{0}$ is in \mathbb{V} ,
- $\mathbb V$ closed with respect to vector addition $(\vec u, \vec v \text{ in } \mathbb V \implies \vec u + \vec v \text{ in } \mathbb V)$
- V closed with respect to scalar mult

 $\mathbb V$ is a *vector subspace* (of $\mathbb R^n$) if and only if

- $\vec{0}$ is in \mathbb{V} ,
- $\bullet \ \mathbb{V} \ \textit{closed with respect to vector addition} \ \big(\vec{u}, \vec{v} \ \text{in} \ \mathbb{V} \implies \vec{u} + \vec{v} \ \text{in} \ \mathbb{V} \big)$
- ullet ${\mathbb V}$ closed with respect to scalar mult (s scalar, ec v in ${\mathbb V}$ \Longrightarrow sec v in ${\mathbb V}$)

 \mathbb{V} is a *vector subspace* (of \mathbb{R}^n) if and only if

- $\vec{0}$ is in \mathbb{V} ,
- ullet $\mathbb V$ closed with respect to vector addition $(ec u, ec v ext{ in } \mathbb V) \Longrightarrow ec u + ec v ext{ in } \mathbb V)$
- ullet ${\mathbb V}$ closed with respect to scalar mult (s scalar , ec v in ${\mathbb V}$ \Longrightarrow sec v in ${\mathbb V}$)

Example (Basic Vector SubSpace)

For any $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$ in \mathbb{R}^n , $Span\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ is a vector subspace.

Let $A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \dots \ \vec{a}_n \end{bmatrix}$ be an $m \times n$ matrix; so,

Let $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \dots & \vec{a}_n \end{bmatrix}$ be an $m \times n$ matrix; so, each \vec{a}_j is in

Let $A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \dots \ \vec{a}_n \end{bmatrix}$ be an $m \times n$ matrix; so, each \vec{a}_j is in \mathbb{R}^m .

Let $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \dots & \vec{a_n} \end{bmatrix}$ be an $m \times n$ matrix; so, each $\vec{a_j}$ is in \mathbb{R}^m .

The column space CS(A) of A is the span of the columns of A, i.e.,

Let $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \dots & \vec{a_n} \end{bmatrix}$ be an $m \times n$ matrix; so, each $\vec{a_j}$ is in \mathbb{R}^m .

The column space CS(A) of A is the span of the columns of A, i.e., $CS(A) = Span\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\};$

Let $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \dots & \vec{a_n} \end{bmatrix}$ be an $m \times n$ matrix; so, each $\vec{a_j}$ is in \mathbb{R}^m .

The column space CS(A) of A is the span of the columns of A, i.e., $CS(A) = Span\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$; this is a vector subspace of \mathbb{R}^m .

Let $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \dots & \vec{a_n} \end{bmatrix}$ be an $m \times n$ matrix; so, each $\vec{a_j}$ is in \mathbb{R}^m .

The column space $\mathcal{CS}(A)$ of A is the span of the columns of A, i.e., $\mathcal{CS}(A) = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$; this is a vector subspace of \mathbb{R}^m .

Three Ways to View CS(A)

Let $A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \dots \ \vec{a}_n \end{bmatrix}$ be an $m \times n$ matrix; so, each \vec{a}_j is in \mathbb{R}^m .

The column space $\mathcal{CS}(A)$ of A is the span of the columns of A, i.e., $\mathcal{CS}(A) = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$; this is a vector subspace of \mathbb{R}^m .

Three Ways to View CS(A)

•
$$CS(A) = Span\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$$

Let $A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \dots \ \vec{a}_n \end{bmatrix}$ be an $m \times n$ matrix; so, each \vec{a}_j is in \mathbb{R}^m .

The column space $\mathcal{CS}(A)$ of A is the span of the columns of A, i.e., $\mathcal{CS}(A) = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$; this is a vector subspace of \mathbb{R}^m .

Three Ways to View $\mathcal{CS}(A)$

- $\mathcal{CS}(A) = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$
- $\mathcal{CS}(A) = \{\vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution}\}$

Let $A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \dots \ \vec{a}_n \end{bmatrix}$ be an $m \times n$ matrix; so, each \vec{a}_j is in \mathbb{R}^m .

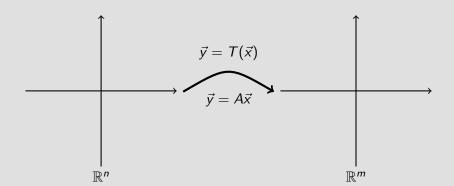
The column space $\mathcal{CS}(A)$ of A is the span of the columns of A, i.e., $\mathcal{CS}(A) = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$; this is a vector subspace of \mathbb{R}^m .

Three Ways to View CS(A)

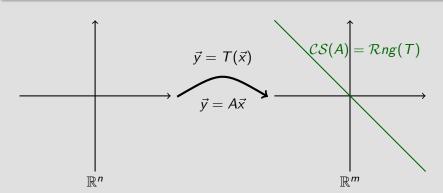
- $CS(A) = Span\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$
- $\mathcal{CS}(A) = \{\vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution}\}$
- CS(A) = Rng(T) where $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$

- $CS(A) = Span\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$
- $\mathcal{CS}(A) = \{\vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution}\}$
- $\mathcal{CS}(A) = \mathcal{R}ng(T)$ where $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$

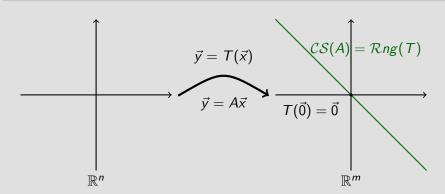
- $CS(A) = Span\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$
- $\mathcal{CS}(A) = \{\vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution}\}$
- CS(A) = Rng(T) where $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$



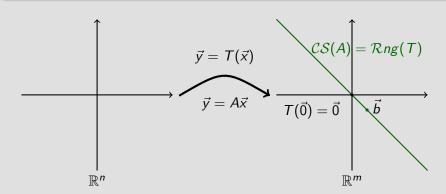
- $CS(A) = Span\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$
- $\mathcal{CS}(A) = \{\vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution}\}$
- CS(A) = Rng(T) where $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$



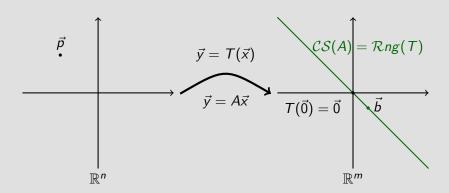
- $CS(A) = Span\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$
- $\mathcal{CS}(A) = \{\vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution}\}$
- $\mathcal{CS}(A) = \mathcal{R}ng(T)$ where $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$



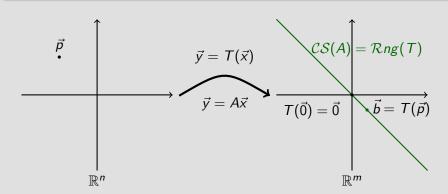
- $CS(A) = Span\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$
- $\mathcal{CS}(A) = \{\vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution}\}$
- $\mathcal{CS}(A) = \mathcal{R}ng(T)$ where $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$



- $CS(A) = Span\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$
- $\mathcal{CS}(A) = \{\vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution}\}$
- $\mathcal{CS}(A) = \mathcal{R}ng(T)$ where $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$



- $CS(A) = Span\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$
- $\mathcal{CS}(A) = \{\vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution}\}$
- $\mathcal{CS}(A) = \mathcal{R}ng(T)$ where $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$



Again, let A be an $m \times n$ matrix.

Again, let A be an $m \times n$ matrix. The null space $\mathcal{NS}(A)$ of A is

Again, let A be an $m \times n$ matrix. The null space $\mathcal{NS}(A)$ of A is

$$\mathcal{NS}(A) = \{\vec{x} \mid A\vec{x} = \vec{0}\};$$

Again, let A be an $m \times n$ matrix. The null space $\mathcal{NS}(A)$ of A is

$$\mathcal{NS}(A) = \{\vec{x} \mid A\vec{x} = \vec{0}\};$$

just the solution set for the homogeneous equation $A\vec{x} = \vec{0}$.

Again, let A be an $m \times n$ matrix. The null space $\mathcal{NS}(A)$ of A is

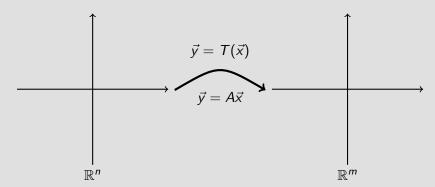
$$\mathcal{NS}(A) = \{\vec{x} \mid A\vec{x} = \vec{0}\};$$

Again, let A be an $m \times n$ matrix. The null space $\mathcal{NS}(A)$ of A is

$$\mathcal{NS}(A) = \{\vec{x} \mid A\vec{x} = \vec{0}\};$$

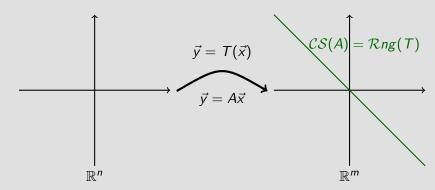
Again, let A be an $m \times n$ matrix. The null space $\mathcal{NS}(A)$ of A is

$$\mathcal{NS}(A) = \{\vec{x} \mid A\vec{x} = \vec{0}\};$$



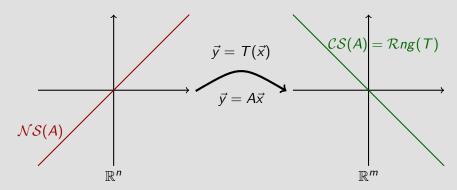
Again, let A be an $m \times n$ matrix. The null space $\mathcal{NS}(A)$ of A is

$$\mathcal{NS}(A) = \{\vec{x} \mid A\vec{x} = \vec{0}\};$$



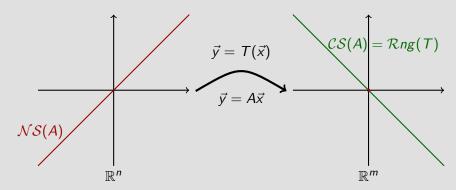
Again, let A be an $m \times n$ matrix. The null space $\mathcal{NS}(A)$ of A is

$$\mathcal{NS}(A) = \{\vec{x} \mid A\vec{x} = \vec{0}\};$$



Again, let A be an $m \times n$ matrix. The null space $\mathcal{NS}(A)$ of A is

$$\mathcal{NS}(A) = \{\vec{x} \mid A\vec{x} = \vec{0}\};$$



$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \dots \ \vec{a}_n \end{bmatrix}$$
 an $m \times n$ matrix and $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$

$$\mathcal{NS}(A) = \{\vec{x} \mid A\vec{x} = \vec{0}\}$$
 and

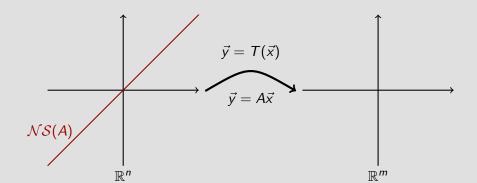
$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \dots \ \vec{a}_n \end{bmatrix}$$
 an $m \times n$ matrix and $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$

 $\mathcal{NS}(A) = \{\vec{x} \mid A\vec{x} = \vec{0}\}$ and

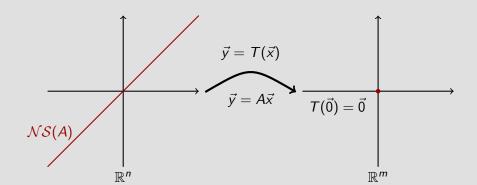
$$\vec{y} = T(\vec{x})$$

$$\vec{y} = A\vec{x}$$

$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \dots \ \vec{a}_n \end{bmatrix}$$
 an $m \times n$ matrix and $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$
$$\mathcal{NS}(A) = \{ \vec{x} \mid A\vec{x} = \vec{0} \} \quad \text{and}$$

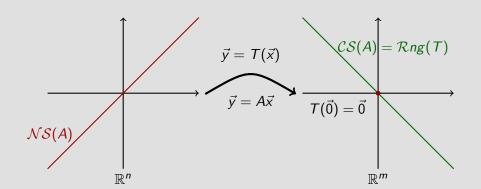


$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \dots \ \vec{a}_n \end{bmatrix}$$
 an $m \times n$ matrix and $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ is $\mathcal{T}(\vec{x}) = A\vec{x}$
$$\mathcal{NS}(A) = \{ \vec{x} \mid A\vec{x} = \vec{0} \} \quad \text{and}$$



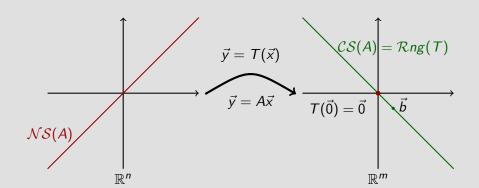
$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \dots \ \vec{a}_n \end{bmatrix}$$
 an $m \times n$ matrix and $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$

$$\begin{split} \mathcal{NS}(A) &= \{\vec{x} \mid A\vec{x} = \vec{0}\} \quad \text{and} \\ \mathcal{CS}(A) &= \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\} \\ &= \{\vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution}\} \\ &= \mathcal{CS}(A) = \mathcal{R}ng(T) \end{split}$$



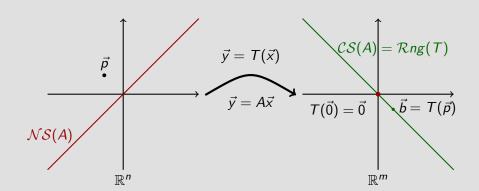
$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \dots \ \vec{a}_n \end{bmatrix}$$
 an $m \times n$ matrix and $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$

$$\begin{split} \mathcal{NS}(A) &= \{\vec{x} \mid A\vec{x} = \vec{0}\} \quad \text{and} \\ \mathcal{CS}(A) &= \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\} \\ &= \{\vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution}\} \\ &= \mathcal{CS}(A) = \mathcal{R}ng(T) \end{split}$$



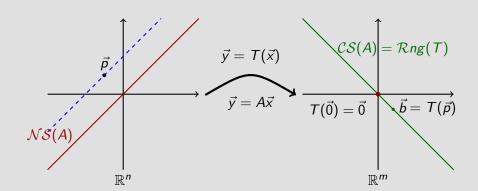
$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \dots \ \vec{a}_n \end{bmatrix}$$
 an $m \times n$ matrix and $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$

$$\begin{split} \mathcal{NS}(A) &= \{\vec{x} \mid A\vec{x} = \vec{0}\} \quad \text{and} \\ \mathcal{CS}(A) &= \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\} \\ &= \{\vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution}\} \\ &= \mathcal{CS}(A) = \mathcal{R}ng(T) \end{split}$$



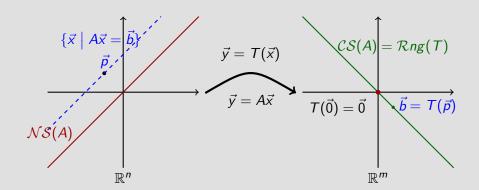
$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \dots \ \vec{a}_n \end{bmatrix}$$
 an $m \times n$ matrix and $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$

$$\begin{split} \mathcal{NS}(A) &= \{\vec{x} \mid A\vec{x} = \vec{0}\} \quad \text{and} \\ \mathcal{CS}(A) &= \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\} \\ &= \{\vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution}\} \\ &= \mathcal{CS}(A) = \mathcal{R}ng(T) \end{split}$$



$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \dots \ \vec{a}_n \end{bmatrix}$$
 an $m \times n$ matrix and $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$

$$\begin{split} \mathcal{NS}(A) &= \{\vec{x} \mid A\vec{x} = \vec{0}\} \quad \text{and} \\ \mathcal{CS}(A) &= \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\} \\ &= \{\vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution}\} \\ &= \mathcal{CS}(A) = \mathcal{R}ng(T) \end{split}$$



To "find" the null space $\mathcal{NS}(A)$ and column space $\mathcal{CS}(A)$ of a matrix A:

To "find" the null space NS(A) and column space CS(A) of a matrix A:

• row reduce A to E, a REF (or RREF) for A

7 / 10

- row reduce A to E, a REF (or RREF) for A
- columns of E containing row leaders correspond to pivot columns of A

- row reduce A to E, a REF (or RREF) for A
- columns of E containing row leaders correspond to pivot columns of A
- ullet the *pivot* columns of A are LI and span $\mathcal{CS}(A)$

- row reduce A to E, a REF (or RREF) for A
- columns of E containing row leaders correspond to pivot columns of A
- ullet the *pivot* columns of A are LI and span $\mathcal{CS}(A)$
- write the SS for $A\vec{x} = \vec{0}$ in parametric vector form

- row reduce A to E, a REF (or RREF) for A
- columns of E containing row leaders correspond to pivot columns of A
- ullet the *pivot* columns of A are LI and span $\mathcal{CS}(A)$
- write the SS for $A\vec{x} = \vec{0}$ in parametric vector form
- ullet identify LI vectors that span $\mathcal{NS}(A)$

To "find" the null space NS(A) and column space CS(A) of a matrix A:

- row reduce A to E, a REF (or RREF) for A
- columns of E containing row leaders correspond to pivot columns of A
- ullet the *pivot* columns of A are LI and span $\mathcal{CS}(A)$
- write the SS for $A\vec{x} = \vec{0}$ in parametric vector form
- ullet identify LI vectors that span $\mathcal{NS}(A)$

So, "find" means to find a linearly independent spanning set.

Example—Null Space and Column Space

Find the null space and column space of

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 3 & 6 & 9 & 2 & -5 \\ 2 & 4 & 6 & 1 & -4 \end{bmatrix}$$

Recall that a collection $\mathbb V$ of vectors (in $\mathbb R^n$) is a *vector subspace* (of $\mathbb R^n$) if and only if

• $\vec{0}$ is in \mathbb{V} ,

- $\vec{0}$ is in \mathbb{V} ,
- V closed with respect to vector addition

- \bullet $\vec{0}$ is in \mathbb{V} ,
- $\mathbb V$ closed with respect to vector addition $(\vec u, \vec v \text{ in } \mathbb V \implies \vec u + \vec v \text{ in } \mathbb V)$

- \bullet $\vec{0}$ is in \mathbb{V} ,
- $\mathbb V$ closed with respect to vector addition $(\vec u, \vec v \text{ in } \mathbb V \implies \vec u + \vec v \text{ in } \mathbb V)$
- V closed with respect to scalar mult

- $\vec{0}$ is in \mathbb{V} ,
- ullet $\mathbb V$ closed with respect to vector addition (ec u, ec v in $\mathbb V \implies ec u + ec v$ in $\mathbb V)$
- ullet ${\mathbb V}$ closed with respect to scalar mult (s scalar, ec v in ${\mathbb V}$ \Longrightarrow sec v in ${\mathbb V}$)

Recall that a collection $\mathbb V$ of vectors (in $\mathbb R^n$) is a *vector subspace* (of $\mathbb R^n$) if and only if

- $\vec{0}$ is in \mathbb{V} ,
- $\bullet \ \mathbb{V} \ \textit{closed with respect to vector addition} \ (\vec{u}, \vec{v} \ \text{in} \ \mathbb{V} \implies \vec{u} + \vec{v} \ \text{in} \ \mathbb{V})$
- ullet ${\mathbb V}$ closed with respect to scalar mult (s scalar, ec v in ${\mathbb V}$ \Longrightarrow sec v in ${\mathbb V}$)

If $\mathbb V$ is a vector subspace; $\vec{v_1},\vec{v_2},\dots,\vec{v_p}$ in $\mathbb V$; s_1,s_2,\dots,s_p are scalars: then

Recall that a collection $\mathbb V$ of vectors (in $\mathbb R^n$) is a *vector subspace* (of $\mathbb R^n$) if and only if

- $\vec{0}$ is in \mathbb{V} ,
- ullet $\mathbb V$ closed with respect to vector addition (ec u, ec v in $\mathbb V \implies ec u + ec v$ in $\mathbb V)$
- ullet ${\mathbb V}$ closed with respect to scalar mult (s scalar , ec v in ${\mathbb V}$ \Longrightarrow sec v in ${\mathbb V}$)

If $\mathbb V$ is a vector subspace; $\vec{v_1},\vec{v_2},\ldots,\vec{v_p}$ in $\mathbb V$; s_1,s_2,\ldots,s_p are scalars: then $s_1\vec{v_1},s_2\vec{v_2},\ldots,s_p\vec{v_p}$ are all in $\mathbb V$, so

Recall that a collection $\mathbb V$ of vectors (in $\mathbb R^n$) is a *vector subspace* (of $\mathbb R^n$) if and only if

- $\vec{0}$ is in \mathbb{V} ,
- ullet $\mathbb V$ closed with respect to vector addition (ec u, ec v in $\mathbb V \implies ec u + ec v$ in $\mathbb V)$
- ullet ${\mathbb V}$ closed with respect to scalar mult (s scalar , ec v in ${\mathbb V}$ \Longrightarrow sec v in ${\mathbb V}$)

If $\mathbb V$ is a vector subspace; $\vec {v_1}, \vec {v_2}, \dots, \vec {v_p}$ in $\mathbb V$; s_1, s_2, \dots, s_p are scalars: then $s_1 \vec {v_1}, s_2 \vec {v_2}, \dots, s_p \vec {v_p}$ are all in $\mathbb V$, so $s_1 \vec {v_1} + s_2 \vec {v_2} + \dots + s_p \vec {v_p}$ is in $\mathbb V$.

Recall that a collection $\mathbb V$ of vectors (in $\mathbb R^n$) is a *vector subspace* (of $\mathbb R^n$) if and only if

- $\vec{0}$ is in \mathbb{V} ,
- ullet $\mathbb V$ closed with respect to vector addition (ec u, ec v in $\mathbb V \implies ec u + ec v$ in $\mathbb V)$
- ullet ${\mathbb V}$ closed with respect to scalar mult (s scalar , ec v in ${\mathbb V}$ \Longrightarrow sec v in ${\mathbb V}$)

If $\mathbb V$ is a vector subspace; $\vec {v_1}, \vec {v_2}, \dots, \vec {v_p}$ in $\mathbb V$; s_1, s_2, \dots, s_p are scalars: then $s_1 \vec {v_1}, s_2 \vec {v_2}, \dots, s_p \vec {v_p}$ are all in $\mathbb V$, so $s_1 \vec {v_1} + s_2 \vec {v_2} + \dots + s_p \vec {v_p}$ is in $\mathbb V$.

Any LC of vectors in a VSS V is a vector in V!

Recall that a collection $\mathbb V$ of vectors (in $\mathbb R^n$) is a *vector subspace* (of $\mathbb R^n$) if and only if

- $\vec{0}$ is in \mathbb{V} .
- ullet $\mathbb V$ closed with respect to vector addition (ec u, ec v in $\mathbb V \implies ec u + ec v$ in $\mathbb V)$
- ullet ${\mathbb V}$ closed with respect to scalar mult (s scalar , ec v in ${\mathbb V}$ \Longrightarrow sec v in ${\mathbb V}$)

If $\mathbb V$ is a vector subspace; $\vec{v_1},\vec{v_2},\ldots,\vec{v_p}$ in $\mathbb V$; s_1,s_2,\ldots,s_p are scalars: then $s_1\vec{v_1},s_2\vec{v_2},\ldots,s_p\vec{v_p}$ are all in $\mathbb V$, so $s_1\vec{v_1}+s_2\vec{v_2}+\cdots+s_p\vec{v_p}$ is in $\mathbb V$.

Any LC of vectors in a VSS V is a vector in V!

Basic Fact about Vector SubSpaces

Let \mathbb{V} be a vector subspace. Suppose $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$ are in \mathbb{V} . Then each vector in $Span\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ lies in \mathbb{V} .

 $\mathbb V$ is a vector subspace of $\mathbb R^2$ if and only if

 \mathbb{V} is a vector subspace of \mathbb{R}^2 if and only if

ullet $\mathbb{V}=\{0\}$, or

 \mathbb{V} is a vector subspace of \mathbb{R}^2 if and only if

- ullet $\mathbb{V}=\{0\}$, or
- ullet $\mathbb{V}=\mathbb{R}^2$, or

 \mathbb{V} is a vector subspace of \mathbb{R}^2 if and only if

- ullet $\mathbb{V}=\{0\}$, or
- ullet $\mathbb{V}=\mathbb{R}^2$, or
- \mathbb{V} is a line thru $\vec{0}$.

 \mathbb{V} is a vector subspace of \mathbb{R}^3 if and only if

- ullet $\mathbb{V}=\{0\}$, or
- ullet $\mathbb{V}=\mathbb{R}^3$, or
- \mathbb{V} is a line thru $\vec{0}$, or

 \mathbb{V} is a vector subspace of \mathbb{R}^3 if and only if

- \bullet $\mathbb{V} = \{0\}$, or
- ullet $\mathbb{V}=\mathbb{R}^3$, or
- ullet \mathbb{V} is a line thru $\vec{0}$, or
- \mathbb{V} is a plane thru $\vec{0}$.

 \mathbb{V} is a vector subspace of \mathbb{R}^n if and only if

- \bullet $\mathbb{V} = \{0\}$, or
- ullet $\mathbb{V}=\mathbb{R}^n$, or
- \mathbb{V} is a line thru $\vec{0}$, or

 $\mathbb V$ is a vector subspace of $\mathbb R^n$ if and only if

- \bullet $\mathbb{V} = \{0\}$, or
- $\mathbb{V} = \mathbb{R}^n$, or
- ullet $\mathbb V$ is a line thru $\vec 0$, or
- $\mathbb V$ is a k-plane thru $\vec 0$ (for some 1 < k < n).