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Vector Subspaces—Basic Example

V is a vector subspace (of R") if and only if
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Vector Subspaces—Basic Example

V is a vector subspace (of R") if and only if
e Oisin V,
o V closed with respect to vector addition (4, vVinV = &+ VinV)

o V closed with respect to scalar mult (s scalar, VinV = svin V)

Example (Basic Vector SubSpace)

For any v, b,...,V, in R", Span{Vi, v5,...,V,} is a vector subspace.
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Column Space of a Matrix

Let A= [51 a ... é’n] be an m X n matrix; so,

Section 2.8.C Lists of Subspaces of R” 13 February 2017 3/ 10



Column Space of a Matrix

Let A= [51 a ... 5’,,] be an m x n matrix; so, each &j is in

Section 2.8.C Lists of Subspaces of R” 13 February 2017 3/ 10



Column Space of a Matrix

Let A= [51 a ... 5’,,] be an m x n matrix; so, each aj is in R™.

Section 2.8.C Lists of Subspaces of R” 13 February 2017 3/ 10



Column Space of a Matrix

Let A= [51 a ... 5’,,] be an m x n matrix; so, each aj is in R™.

The column space CS(A) of A is the span of the columns of A, i.e.,

Section 2.8.C Lists of Subspaces of R” 13 February 2017 3/ 10



Column Space of a Matrix

Let A= [51 a ... 5’,,] be an m x n matrix; so, each aj is in R™.

The column space CS(A) of A is the span of the columns of A, i.e.,
CS(A) = Span{ay, 3, ..., &n};

Section 2.8.C Lists of Subspaces of R” 13 February 2017 3/ 10



Column Space of a Matrix

Let A= [51 a ... 5’,,] be an m x n matrix; so, each aj is in R™.

The column space CS(A) of A is the span of the columns of A, i.e.,
CS(A) = Span{ai, az, ..., an}; this is a vector subspace of R™.

Section 2.8.C Lists of Subspaces of R” 13 February 2017 3/ 10



Column Space of a Matrix

Let A= [51 a ... 5,,] be an m x n matrix; so, each aj is in R™.

The column space CS(A) of A is the span of the columns of A, i.e.,
CS(A) = Span{ai, az, ..., an}; this is a vector subspace of R™.

Three Ways to View CS(A)
The column space CS(A) of A= [31 & ... 3] is:

Section 2.8.C Lists of Subspaces of R” 13 February 2017 3/ 10



Column Space of a Matrix

Let A= [51 a ... 5,,] be an m x n matrix; so, each aj is in R™.

The column space CS(A) of A is the span of the columns of A, i.e.,
CS(A) = Span{ai, az, ..., an}; this is a vector subspace of R™.

Three Ways to View CS(A)
The column space CS(A) of A= [31 & ... 3] is:
4 CS(A) = Span{é’l, 52, 000 5,,}

Section 2.8.C Lists of Subspaces of R” 13 February 2017 3/ 10



Column Space of a Matrix
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Three Ways to View the Column Space CS(A)
The column space CS(A) of A= [a1 & ... ap] is:
o CS(A) = Span{ay, a,...,a,}
o CS(A) = {binR™ | AX = b has a solution}
o CS(A) = Rng(T) where R" LoRrmis T(X) = AX
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Null Space of a Matrix

Again, let A be an m X n matrix.
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“Finding” Null Space and Column Space

To “find” the null space N'S(A) and column space CS(A) of a matrix A:
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@ row reduce A to E, a REF (or RREF) for A
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“Finding” Null Space and Column Space

To “find” the null space N'S(A) and column space CS(A) of a matrix A:
@ row reduce A to E, a REF (or RREF) for A
@ columns of E containing row leaders correspond to pivot columns of A
o the pivot columns of A are LI and span CS(A)
o write the SS for AX = 0 in parametric vector form

o identify LI vectors that span N'S(A)
So, “find" means to find a linearly independent spanning set.
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Example—Null Space and Column Space

Find the null space and column space of

1 2 3 4 5
0111 0O
A= 36 9 2 -5
2 4 61 —4
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Vector Subspaces—Basic Fact

Recall that a collection V of vectors (in R") is a vector subspace (of R") if
and only if
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Vector Subspaces—Basic Fact

Recall that a collection V of vectors (in R") is a vector subspace (of R") if
and only if

e Oisin V,

o V closed with respect to vector addition (Z,vVinV = G+ VinV)

o V closed with respect to scalar mult (s scalar, vinV = svinV)
If Vis a vector subspace; Vi, Vo,...,V, inV; s1,%,...,s, are scalars: then

S1Vi, $Vo,...,SpVp are all in V, so s1vi 4+ sovo + -+ - 4 55V, is in V.

Any LC of vectors in a VSS V is a vector in V!

Basic Fact about Vector SubSpaces

Let V be a vector subspace. Suppose vi, va,...,V, are in V.
Then each vector in Span{Vi, v, ..., V,} liesin V.
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Possible Vector Subspaces of R”

V is a vector subspace of R? if and only if
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Possible Vector Subspaces of R”

V is a vector subspace of R? if and only if
o V={0}, or
o V=TR2 or

e Vis a line thru 0.
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Possible Vector Subspaces of R”

V is a vector subspace of R3 if and only if
o V={0}, or
o V=TR3 or

@ Vis a line thru 6, or
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Possible Vector Subspaces of R”

V is a vector subspace of R3 if and only if
o V={0}, or
o V=TR3 or
e Vis a line thru 0, or

@ V is a plane thru 0.

Section 2.8.C Lists of Subspaces of R” 13 February 2017 10 / 10



Possible Vector Subspaces of R”

V is a vector subspace of R” if and only if
e V={0}, or

e V=R" or
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Section 2.8.C Lists of Subspaces of R” 13 February 2017 10 / 10



Possible Vector Subspaces of R”

V is a vector subspace of R” if and only if
e V={0}, or
e V=R" or
e Vis a line thru 0, or

o Vis a k-plane thru 0 (for some 1 < k < n).
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