Subspaces of Euclidean Space \mathbb{R}^n How do we recognize these?

Linear Algebra MATH 2076

Vector Subspaces—Basic Example & Basic Fact

A collection $\mathbb V$ of vectors (in $\mathbb R^n$) is a *vector subspace* (of $\mathbb R^n$) if and only if

- $\vec{0}$ is in \mathbb{V} ,
- $\mathbb V$ closed with respect to vector addition $(\vec u, \vec v \text{ in } \mathbb V \implies \vec u + \vec v \text{ in } \mathbb V)$
- ullet ${\mathbb V}$ closed with respect to scalar mult (s scalar , ec v in ${\mathbb V}$ \Longrightarrow sec v in ${\mathbb V}$)

Example (Basic Vector SubSpace)

For any $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$ in \mathbb{R}^n , $\mathcal{S}pan\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ is a vector subspace.

Basic Fact about Vector SubSpaces

Let \mathbb{V} be a vector subspace. Suppose $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$ are in \mathbb{V} . Then each vector in $Span\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ lies in \mathbb{V} .

Possible Vector Subspaces of \mathbb{R}^n

 $\mathbb V$ is a vector subspace of $\mathbb R^n$ if and only if

- $\mathbb{V} = \{\vec{0}\}$, or
- ullet $\mathbb{V}=\mathbb{R}^n$, or
- \mathbb{V} is a line thru $\vec{0}$, or
- \mathbb{V} is a 2-plane thru $\vec{0}$, or
- $\mathbb V$ is a k-plane thru $\vec 0$ (for some 1 < k < n).

Why does the above list include **all** vector subspaces of \mathbb{R}^n ?

Possible Vector Subspaces of \mathbb{R}^2

 $\mathbb V$ is a vector subspace of $\mathbb R^2$ if and only if

- (a) $\mathbb{V} = {\vec{0}}$, or
- (b) $\mathbb{V} = \mathbb{R}^2$, or
- (c) \mathbb{V} is a line thru $\vec{0}$.

Let's see why this is true. Let $\mathbb V$ be a vector subspace of $\mathbb R^2$.

If $\vec{0}$ is the *only* vector in \mathbb{V} , then $\mathbb{V} = \{\vec{0}\}$ so (a) holds and we are done.

Assume there is a non-zero vector $\vec{v} = \begin{bmatrix} a \\ b \end{bmatrix}$ in \mathbb{V} ; so either $a \neq 0$ or $b \neq 0$, and we may assume $a \neq 0$.

Since $\mathbb V$ is closed wrt scalar multiplication, the line $\mathbb L=\mathcal Span\{\vec v\}$ lies in $\mathbb V$. If $\mathbb V=\mathbb L$, then (c) holds and we are done.

Thus we may assume there is a vector $\vec{w} = \begin{bmatrix} c \\ d \end{bmatrix}$ in $\mathbb V$ that is not in $\mathbb L$.

We claim that $\mathbb{V} = \mathbb{R}^2$, so (b) holds.

Why must $\mathbb{V} = \mathbb{R}^2$?

 $\mathbb V$ is a vector subspace of $\mathbb R^2$ with $\vec v = \begin{bmatrix} a \\ b \end{bmatrix}$ and $\vec w = \begin{bmatrix} c \\ d \end{bmatrix}$ vectors in $\mathbb V$.

The Basic Fact about VSS says that every vector in $\widehat{\mathcal{S}pan}\{\vec{v},\vec{w}\}$ belongs to \mathbb{V} . Now we explain why $\widehat{\mathcal{S}pan}\{\vec{v},\vec{w}\}=\mathbb{R}^2$, which tells us that $\mathbb{V}=\mathbb{R}^2$.

We know that $a \neq 0$ and \vec{w} is not in $\mathbb{L} = \mathcal{S}pan\{\vec{v}\}$. This means that for any scalar s, $\vec{w} \neq s\vec{v}$, right?

It follows that

$$\begin{bmatrix} c \\ d \end{bmatrix} = \vec{w} \neq \frac{c}{a} \vec{w} = \frac{c}{a} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} c \\ bc/a \end{bmatrix}$$

and therefore $d \neq bc/a$.

Let \vec{z} be a vector in \mathbb{R}^2 . We show that we can solve $x\vec{v} + y\vec{w} = \vec{z}$.

The coefficient matrix for this vector equation is just $\begin{bmatrix} a & c \\ b & d \end{bmatrix}$.

Why can we solve $x\vec{v} + y\vec{w} = \vec{z}$?

The coefficient matrix for this vector equation is just $\begin{bmatrix} a & c \\ b & d \end{bmatrix}$. Also, we

know that $a \neq 0$ and $d \neq bc/a$.

Let's apply two elementary row ops to the above coefficient matrix. We get

$$\begin{bmatrix} a & c \\ b & d \end{bmatrix} \xrightarrow{\frac{1}{a} * R_1} \begin{bmatrix} 1 & \frac{c}{a} \\ R_2 - b * R_1 \\ 0 & d - \frac{bc}{a} \end{bmatrix}$$

Notice that $d - bc/a \neq 0$, so both rows of the above REF have row leaders. This means that we can solve the equation

$$\begin{bmatrix} a & c \\ b & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \vec{z}$$

for **any** rhs vector \vec{z} . Thus every \vec{z} in \mathbb{R}^2 is an LC of \vec{v} and \vec{w} . This means that $\mathcal{S}pan\{\vec{v},\vec{w}\}=\mathbb{R}^2$, so $\mathbb{V}=\mathbb{R}^2$.