Subspaces of Euclidean Space \mathbb{R}^n How do we recognize these?

> Linear Algebra MATH 2076

Vector Subspaces—Basic Example & Basic Fact

A collection $\mathbb {V}$ of vectors (in $\mathbb {R}^n)$ is a *vector subspace* (of $\mathbb {R}^n)$ if and only if \bullet $\vec{0}$ is in \mathbb{V} .

- V closed with respect to vector addition $(\vec{u}, \vec{v} \text{ in } \mathbb{V} \implies \vec{u} + \vec{v} \text{ in } \mathbb{V})$
- V closed with respect to scalar mult (s scalar, \vec{v} in $\mathbb{V} \implies \vec{v}$ in \mathbb{V})

Example (Basic Vector SubSpace)

For any $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ in \mathbb{R}^n , \mathcal{S} *pan* $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p\}$ is a vector subspace.

Basic Fact about Vector SubSpaces

Let V be a vector subspace. Suppose $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ are in V. Then each vector in $Span\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p\}$ lies in $\mathbb V$.

 $\mathbb {V}$ is a vector subspace of $\mathbb {R}^n$ if and only if

- $\bullet \mathbb{V} = {\{\vec{0}\}}, \text{ or }$
- $\mathbb{V} = \mathbb{R}^n$, or
- \bullet ∇ is a line thru $\vec{0}$, or
- \bullet V is a 2-plane thru $\vec{0}$, or
- $\bullet \ \mathbb {V}$ is a k-plane thru $\vec{0}$ (for some $1 < k < n$).

Why does the above list include all vector subspaces of \mathbb{R}^n ?

Possible Vector Subspaces of \mathbb{R}^2

 ${\mathbb V}$ is a vector subspace of ${\mathbb R}^2$ if and only if (a) $V = \{\vec{0}\}\text{, or }$ (b) $\mathbb{V} = \mathbb{R}^2$, or

(c) V is a line thru $\vec{0}$.

Let's see why this is true. Let $\mathbb {V}$ be a vector subspace of $\mathbb{R}^2.$

If $\vec{0}$ is the *only* vector in V, then $V = {\vec{0}}$ so (a) holds and we are done.

Assume there is a non-zero vector $\vec{v} = \begin{bmatrix} a & b \end{bmatrix}$ b $\Big]$ in $\mathbb {V};$ so either $a\neq 0$ or $b\neq 0,$ and we may assume $a \neq 0$.

Since V is closed wrt scalar multiplication, the line $\mathbb{L} = \mathcal{S}$ pan $\{\vec{v}\}\$ lies in V. If $V = L$, then (c) holds and we are done.

Thus we may assume there is a vector $\vec{w} = \begin{bmatrix} c \end{bmatrix}$ d $\Big]$ in ${\mathbb V}$ that is not in ${\mathbb L}.$ We claim that $\mathbb{V} = \mathbb{R}^2$, so (b) holds.

Why must $\mathbb{V} = \mathbb{R}^2$?

 $\mathbb {V}$ is a vector subspace of $\mathbb {R}^2$ with $\vec{v} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ b and $\vec{w} = \begin{bmatrix} c \\ 1 \end{bmatrix}$ d $\Big]$ vectors in $\mathbb {V}.$ The Basic Fact about VSS says that every vector in $\overline{Span}\{\vec{v},\vec{w}\}$ belongs to $\mathbb {V}.$ Now we explain why $\mathcal {S}$ pan $\{\vec{\mathsf v},\vec{\mathsf w}\} = \mathbb R^2$, which tells us that $\mathbb {V}= \mathbb R^2.$ We know that $a \neq 0$ and \vec{w} is not in $\mathbb{L} = \mathcal{S}$ pan{ \vec{v} }. This means that for any scalar s, $\vec{w} \neq s\vec{v}$, right?

It follows that

$$
\begin{bmatrix} c \\ d \end{bmatrix} = \vec{w} \neq \frac{c}{a} \vec{w} = \frac{c}{a} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} c \\ bc/a \end{bmatrix}
$$

and therefore $d \neq bc/a$. Let \vec{z} be a vector in \mathbb{R}^2 . We show that we can solve $x\vec{v} + y\vec{w} = \vec{z}$. The coefficient matrix for this vector equation is just $\begin{bmatrix} a & c \ b & d \end{bmatrix}$.

Why can we solve $x\vec{v} + y\vec{w} = \vec{z}$?

The coefficient matrix for this vector equation is just $\begin{bmatrix} a & c \ b & d \end{bmatrix}$. Also, we know that $a \neq 0$ and $\boxed{d \neq bc/a}$.

Let's apply two elementary row ops to the above coefficient matrix. We get

$$
\begin{bmatrix} a & c \ b & d \end{bmatrix} \xrightarrow[R_2 - b * R_1]{\frac{1}{a} * R_1} \begin{bmatrix} 1 & \frac{c}{a} \\ 0 & d - \frac{bc}{a} \end{bmatrix}
$$

Notice that $d - bc/a \neq 0$, so both rows of the above REF have row leaders. This means that we can solve the equation

$$
\begin{bmatrix} a & c \\ b & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \vec{z}
$$

for **any** rhs vector \vec{z} . Thus every \vec{z} in \mathbb{R}^2 is an LC of \vec{v} and \vec{w} . This means that \mathcal{S} pan $\{\vec{v},\vec{w}\} = \mathbb{R}^2$, so $\mathbb{V} = \mathbb{R}^2$.