Subspaces of Euclidean Space \mathbb{R}^n

Linear Algebra MATH 2076

Vector Subspaces—Basic Example

 $\mathbb V$ is a *vector subspace* (of $\mathbb R^n$) if and only if

- $\vec{0}$ is in \mathbb{V} ,
- ullet $\mathbb V$ closed with respect to vector addition $(ec u, ec v ext{ in } \mathbb V) \Longrightarrow ec u + ec v ext{ in } \mathbb V)$
- ullet ${\mathbb V}$ closed with respect to scalar mult (s scalar , ec v in ${\mathbb V}$ \Longrightarrow sec v in ${\mathbb V}$)

Example (Basic Vector SubSpace)

For any $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$ in \mathbb{R}^n , $Span\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ is a vector subspace.

Column Space of a Matrix

Let $A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \dots \ \vec{a}_n \end{bmatrix}$ be an $m \times n$ matrix; so, each \vec{a}_j is in \mathbb{R}^m .

The column space CS(A) of A is the span of the columns of A, i.e., $CS(A) = Span\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}.$

Three Ways to View CS(A)

The column space CS(A) of $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \dots & \vec{a}_n \end{bmatrix}$ is:

- $CS(A) = Span\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$
- $\mathcal{CS}(A) = \{\vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution}\}$
- CS(A) = Rng(T) where $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$

Three Ways to View the Column Space $\mathcal{CS}(A)$

The column space CS(A) of $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \dots & \vec{a}_n \end{bmatrix}$ is:

- $CS(A) = Span\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$
- $\mathcal{CS}(A) = \{\vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution}\}$
- CS(A) = Rng(T) where $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$

Vector Subspaces—Another Basic Example

Again, let A be an $m \times n$ matrix. The null space $\mathcal{NS}(A)$ of A is

$$\mathcal{NS}(A) = \{\vec{x} \mid A\vec{x} = \vec{0}\};$$

just the solution set for the homogeneous equation $A\vec{x} = \vec{0}$. This is a vector subspace of \mathbb{R}^n .

$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \dots \ \vec{a}_n \end{bmatrix}$$
 an $m \times n$ matrix and $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$

$$\begin{split} \mathcal{NS}(A) &= \{\vec{x} \mid A\vec{x} = \vec{0}\} \quad \text{and} \\ \mathcal{CS}(A) &= \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\} \\ &= \{\vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution}\} \\ &= \mathcal{CS}(A) = \mathcal{R}ng(T) \end{split}$$

Null Space and Column Space Example

Find the null space and column space of

$$A = \begin{bmatrix} 1 & -1 & 1 & 2 \\ 1 & 0 & 1 & 1 \\ 1 & 2 & 1 & -1 \end{bmatrix}$$

What should we do now? How about row reducing A?

"Finding" Null Space and Column Space

To "find" the null space NS(A) and column space CS(A) of a matrix A:

- row reduce A to E, a REF (or RREF) for A
- columns of E containing row leaders correspond to pivot columns of A
- the pivot columns of A are LI and span CS(A)
- write the SS for $A\vec{x} = \vec{0}$ in parametric vector form
- identify LI vectors that span $\mathcal{NS}(A)$

So, "find" means to find a linearly independent spanning set.

Example—Null Space and Column Space

Find the null space and column space of

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 3 & 6 & 9 & 2 & -5 \\ 2 & 4 & 6 & 1 & -4 \end{bmatrix}$$