Subspaces of Euclidean Space \mathbb{R}^n

Linear Algebra MATH 2076

What is a subspace?

Let \mathbb{V} be a collection of vectors in \mathbb{R}^n . (For example, \mathbb{V} could be a solution set to some equation, or it could be all the vectors that have third coordinate -7.)

We say that \mathbb{V} closed with respect to scalar multiplication if and only if whenever \vec{v} is in \mathbb{V} and s is any scalar, then $s\vec{v}$ is also in \mathbb{V} . For example, if $\mathbb{V} = Span\{\vec{v}\}$ (for some \vec{v} in \mathbb{R}^n), then \mathbb{V} is closed with respect to scalar multiplication. In fact, if $\mathbb{V} = Span\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ (for any $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$ in \mathbb{R}^n), then \mathbb{V} is closed with respect to scalar multiplication.

We say that \mathbb{V} closed with respect to vector addition if and only if whenever \vec{u} and \vec{v} are in \mathbb{V} , then $\vec{u} + \vec{v}$ is also in \mathbb{V} . For example, if $\mathbb{V} = Span{\vec{v}}$ (for some \vec{v} in \mathbb{R}^n), then \mathbb{V} is closed with respect to vector addition. In fact, if $\mathbb{V} = Span{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p}$ (for any $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$ in \mathbb{R}^n), then \mathbb{V} is closed with respect to vector addition.

We call \mathbb{V} a *vector subspace* of \mathbb{R}^n if and only if ...

What is a subspace?

Let \mathbb{V} be a collection of vectors in \mathbb{R}^n .

We call \mathbb{V} a *vector subspace* of \mathbb{R}^n if and only if

- $\vec{0}$ is in $\mathbb V$
- \mathbb{V} closed with respect to vector addition $(\vec{u}, \vec{v} \text{ in } \mathbb{V} \implies \vec{u} + \vec{v} \text{ in } \mathbb{V})$

• \mathbb{V} closed with respect to scalar mult (s scalar, \vec{v} in $\mathbb{V} \implies s\vec{v}$ in \mathbb{V}) Some simple examples:

- $\mathbb{V} = \{\vec{0}\}$ is the *trivial* vector subspace
- $\mathbb{V} = \mathbb{R}^n$ is a vector subspace of itself (also kinda *trivial*)

•
$$\mathbb{V} = Span\{\vec{v}\}$$
 (for any \vec{v} in \mathbb{R}^n)

•
$$\mathbb{V} = Span\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$$
 (for any $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$ in \mathbb{R}^n)

A simple non-example:

• $\mathbb{V} = \left\{ \mathsf{all} \ \vec{v} \ \mathsf{in} \ \mathbb{R}^4 \ \mathsf{with} \ \mathsf{third} \ \mathsf{coordinate} \ \mathsf{-7} \right\}$ is not a subspace

More Examples—Which are, or are not, vector subspaces?

For each $\mathbb V,$ decide whether or not $\mathbb V$ is closed with respect to scalar multiplication and/or closed with respect to vector addition.

$$\mathbb{V} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \middle| x + y = 1 \right\}$$

 $\vec{0}$ not in \mathbb{V} , so not VSS

$$\mathbb{V} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \mid xy \ge 0 \right\}$$

$$\mathbb{V} \text{ not closed wrt vector add}$$

$$\mathbb{V} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \mid x \ge 0 \text{ and } y \ge 0 \right\}$$

$$\mathbb{V} \text{ not closed wrt scalar mult}$$

Vector Subspaces—Basic Example

Recall that a collection V of vectors (in \mathbb{R}^n) is a *vector subspace* (of \mathbb{R}^n) if and only if

- $\vec{0}$ is in \mathbb{V} ,
- \mathbb{V} closed with respect to vector addition $(\vec{u}, \vec{v} \text{ in } \mathbb{V} \implies \vec{u} + \vec{v} \text{ in } \mathbb{V})$

• \mathbb{V} closed with respect to scalar mult (s scalar, \vec{v} in $\mathbb{V} \implies s\vec{v}$ in \mathbb{V}) Let $\mathbb{V} = Span\{\vec{v_1}, \vec{v_2}, \dots, \vec{v_p}\}$. Let's show that \mathbb{V} is closed wrt vector addition. Let \vec{u}, \vec{v} be vectors in \mathbb{V} . This means there are scalars s_1, s_2, \dots, s_p and t_1, t_2, \dots, t_p with

$$ec{u}=s_1ec{v}_1+\dots+s_pec{v}_p$$
 and $ec{v}=t_1ec{v}_1+\dots+t_pec{v}_p$

SO

$$\vec{u} + \vec{v} = (s_1 + t_1)\vec{v}_1 + (s_2 + t_2)\vec{v}_2 + \dots + (s_p + t_p)\vec{v}_p$$

which is a vector in \mathbb{V} .

Homework: Show that $\ensuremath{\mathbb{V}}$ is closed wrt scalar multiplication.

Linear Algebra

Vector Subspaces—Basic Example

Just saw that any $\mathbb{V} = Span\{\vec{v_1}, \vec{v_2}, \dots, \vec{v_p}\}$ is both closed wrt vector addition and closed wrt scalar multiplication.

Example (Basic Vector SubSpace)

For any $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_p}$ in \mathbb{R}^n , $Span\{\vec{v_1}, \vec{v_2}, \ldots, \vec{v_p}\}$ is a vector subspace.

In fact, every vector subspace can be expressed this way!

Example (Column Space of a Matrix)

The column space CS(A) of a matrix A is the span of the columns of A. Thus is A is an $m \times n$ matrix, then CS(A) is a VSS of \mathbb{R}^m .

If
$$A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \dots & \vec{a_n} \end{bmatrix}$$
, then $\mathcal{CS}(A) = \mathcal{S}pan\{\vec{a_1}, \vec{a_2}, \dots, \vec{a_n}\}$.