The Invertible Matrix Theorem

Linear Algebra
MATH 2076
An $n \times n$ matrix A is \textit{invertible} if and only if there is another $n \times n$ matrix C with $A \cdot C = I = C \cdot A$.
An $n \times n$ matrix A is \textit{invertible} if and only if there is another $n \times n$ matrix C with $AC = I = CA$.

When this holds, there is only \textbf{one} such matrix C; we call it A^{-1}.
An \(n \times n \) matrix \(A \) is **invertible** if and only if there is another \(n \times n \) matrix \(C \) with \(A \cdot C = I = C \cdot A \).

When this holds, there is only one such matrix \(C \); we call it \(A^{-1} \).

Look at super-sized augmented matrix \(\begin{bmatrix} A & \vdots & I \end{bmatrix} \).
Invertible Matrices

An $n \times n$ matrix A is *invertible* if and only if there is another $n \times n$ matrix C with $A C = I = C A$.

When this holds, there is only one such matrix C; we call it A^{-1}.

Look at super-sized augmented matrix $\begin{bmatrix} A & \vdots & I \end{bmatrix}$. Put into reduced REF.
Invertible Matrices

An $n \times n$ matrix A is invertible if and only if there is another $n \times n$ matrix C with $A C = I = C A$.

When this holds, there is only one such matrix C; we call it A^{-1}.

Look at super-sized augmented matrix $\begin{bmatrix} A & I \end{bmatrix}$. Put into reduced REF.

Do elementary row operations to get $\begin{bmatrix} A & I \end{bmatrix} \xrightarrow{\text{row reduce to}} \begin{bmatrix} E & F \end{bmatrix}$.
Invertible Matrices

An \(n \times n \) matrix \(A \) is \textit{invertible} if and only if there is another \(n \times n \) matrix \(C \) with \(A C = I = C A \).

When this holds, there is only \textbf{one} such matrix \(C \); we call it \(A^{-1} \).

Look at super-sized augmented matrix \([A : I] \). Put into \textit{reduced} REF.

Do elementary row operations to get \(\begin{bmatrix} A : I \end{bmatrix} \xrightarrow{\text{row reduce to reduced REF}} \begin{bmatrix} E : F \end{bmatrix} \).

Get two possibilities:
Invertible Matrices

An $n \times n$ matrix A is invertible if and only if there is another $n \times n$ matrix C with $AC = I = CA$.

When this holds, there is only one such matrix C; we call it A^{-1}.

Look at super-sized augmented matrix $[A : I]$. Put into reduced REF.

Do elementary row operations to get $[A : I] \xrightarrow{\text{row reduce to reduced REF}} [E : F]$.

Get two possibilities:

If $E \neq I$,

An $n \times n$ matrix A is \textit{invertible} if and only if there is another $n \times n$ matrix C with $AC = I = CA$.

When this holds, there is only \textbf{one} such matrix C; we call it A^{-1}.

Look at super-sized augmented matrix $[A : I]$. Put into \textit{reduced} REF.

Do elementary row operations to get $[A : I] \xrightarrow{\text{row reduce to reduced REF}} [E : F]$.

Get two possibilities:

If $E \neq I$,

If $E = I$,

Section 2.3
An $n \times n$ matrix A is *invertible* if and only if there is another $n \times n$ matrix C with $A C = I = C A$.

When this holds, there is only one such matrix C; we call it A^{-1}.

Look at super-sized augmented matrix $\begin{bmatrix} A \vdots I \end{bmatrix}$. Put into reduced REF.

Do elementary row operations to get $\begin{bmatrix} A \vdots I \end{bmatrix} \xrightarrow{\text{row reduce to reduced REF}} \begin{bmatrix} E \vdots F \end{bmatrix}$.

Get two possibilities:

If $E \neq I$, then A not invertible.

If $E = I$,

\[\text{If } E \neq I, \text{ then } A \text{ not invertible.} \]

\[\text{If } E = I, \]
An \(n \times n \) matrix \(A \) is \textit{invertible} if and only if there is another \(n \times n \) matrix \(C \) with \(A C = I = C A \).

When this holds, there is only \textbf{one} such matrix \(C \); we call it \(A^{-1} \).

Look at super-sized augmented matrix \(\begin{bmatrix} A & I \end{bmatrix} \). Put into \textit{reduced} REF.

Do elementary row operations to get \(\begin{bmatrix} A & I \end{bmatrix} \xrightarrow{\text{row reduce to reduced REF}} \begin{bmatrix} E & F \end{bmatrix} \).

Get two possibilities:

If \(E \neq I \), then \(A \) not invertible.

If \(E = I \), then \(F = A^{-1} \).
Invertible matrices possess a bewildering number of characteristic properties.
Invertible matrices possess a bewildering number of characteristic properties. Our text book lists 26 different ways to see that a square matrix is invertible! See pp. 114, 116, 158, 173, 237, 423.
Invertible matrices possess a bewildering number of characteristic properties. Our text book lists 26 different ways to see that a square matrix is invertible! See pp. 114, 116, 158, 173, 237, 423.

Here we focus on just a few of these.
Invertible matrices possess a bewildering number of characteristic properties. Our text book lists 26 different ways to see that a square matrix is invertible! See pp. 114, 116, 158, 173, 237, 423.

Here we focus on just a few of these. Let A be a square matrix.
Properties of Invertible Matrices

Invertible matrices possess a bewildering number of characteristic properties. Our textbook lists 26 different ways to see that a square matrix is invertible! See pp. 114, 116, 158, 173, 237, 423.

Here we focus on just a few of these. Let A be a square matrix. Consider the matrix equation $A\vec{x} = \vec{b}$.
Invertible matrices possess a bewildering number of characteristic properties. Our textbook lists 26 different ways to see that a square matrix is invertible! See pp. 114, 116, 158, 173, 237, 423.

Here we focus on just a few of these. Let A be a square matrix. Consider the matrix equation $A\vec{x} = \vec{b}$.

When does $A\vec{x} = \vec{0}$ have a *unique* solution?
Invertible matrices possess a bewildering number of characteristic properties. Our textbook lists 26 different ways to see that a square matrix is invertible! See pp. 114, 116, 158, 173, 237, 423.

Here we focus on just a few of these. Let A be a square matrix. Consider the matrix equation $A\vec{x} = \vec{b}$.

When does $A\vec{x} = \vec{0}$ have a unique solution?

When does $A\vec{x} = \vec{b}$ have a solution for every rhs \vec{b}?
Example

All questions about solns to SLEs (or VEs or MEs and more!) can be answered by looking at a REF of appropriate matrix.
All questions about solns to SLEs (or VEs or MEs and more!) can be answered by looking at a REF of appropriate matrix.

Suppose the augmented matrix for some SLE has the following REF.

\[
\begin{bmatrix}
1 & 2 & 3 & 4 & 3 \\
0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

What can we say?
All questions about solns to SLEs (or VEs or MEs and more!) can be answered by looking at a REF of appropriate matrix.

Suppose the augmented matrix for some SLE has the following REF.

\[
\begin{bmatrix}
1 & 2 & 3 & 4 & 3 \\
0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
\end{bmatrix}.
\]

What can we say?
All questions about solns to SLEs (or VEs or MEs and more!) can be answered by looking at a REF of appropriate matrix.

Suppose the augmented matrix for some SLE has the following REF.

\[
\begin{bmatrix}
1 & 2 & 3 & 4 & 3 \\
0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

What can we say?
Solving $A\vec{x} = \vec{b}$

First, do elem row ops to get $[A | \vec{b}] \xrightarrow{\text{row reduce}} [E | \vec{c}]$. If \vec{c} has a row leader, there are NO solutions; assume otherwise. Identify the columns of E that do not have row leaders; the corresponding variables are free. Two possibilities:

- Some free variables — get infinitely many solutions.
- No free variables — get a unique solution.
Solving $A\vec{x} = \vec{b}$

First, do elem row ops to get $[A \mid \vec{b}] \xrightarrow{\text{row reduce to REF}} [E \mid \vec{c}]$.

If \vec{c} has a row leader, there are NO solutions;

Two possibilities:

- Some free variables — get infinitely many solutions.
- No free variables — get a unique solution.
First, do elem row ops to get \([A \mid \vec{b}] \xrightarrow{\text{row reduce to REF}} [E \mid \vec{c}]\). If \(\vec{c}\) has a row leader, there are NO solutions; assume otherwise.
Solving $A\vec{x} = \vec{b}$

First, do elem row ops to get $[A \mid \vec{b}] \xrightarrow{\text{row reduce}} [E \mid \vec{c}]$.

If \vec{c} has a row leader, there are NO solutions; assume otherwise.

Identify the columns of E that do not have row leaders;

Two possibilities:
- Some free variables — get infinitely many solutions.
- No free variables — get a unique solution.
Solving $A\vec{x} = \vec{b}$

First, do elem row ops to get $[A | \vec{b}] \xrightarrow{\text{row reduce to REF}} [E | \vec{c}]$.

If \vec{c} has a row leader, there are NO solutions; assume otherwise.

Identify the columns of E that do not have row leaders; the corresponding variables are free.
Solving $A\vec{x} = \vec{b}$

First, do elem row ops to get $[A \mid \vec{b}] \xrightarrow{\text{row reduce to REF}} [E \mid \vec{c}]$.

If \vec{c} has a row leader, there are NO solutions; assume otherwise.

Identify the columns of E that do not have row leaders; the corresponding variables are free.

Two possibilities:

- Some free variables — get infinitely many solutions.
- No free variables — get a unique solution.
Solving $A\vec{x} = \vec{b}$

First, do elem row ops to get $[A \mid \vec{b}] \xrightarrow{\text{row reduce to REF}} [E \mid \vec{c}]$.

If \vec{c} has a row leader, there are NO solutions; assume otherwise.

Identify the columns of E that do not have row leaders; the corresponding variables are free.

Two possibilities:

- **Some** free variables
Solving $A\vec{x} = \vec{b}$

First, do elem row ops to get $[A \mid \vec{b}] \xrightarrow{\text{row reduce to REF}} [E \mid \vec{c}]$.

If \vec{c} has a row leader, there are NO solutions; assume otherwise.

Identify the columns of E that do not have row leaders; the corresponding variables are free.

Two possibilities:

- **Some** free variables
- **No** free variables
Solving $A\vec{x} = \vec{b}$

First, do elem row ops to get $[A \, | \, \vec{b}] \xrightarrow{\text{row reduce to REF}} [E \, | \, \vec{c}]$.

If \vec{c} has a row leader, there are NO solutions; assume otherwise.

Identify the columns of E that do not have row leaders; the corresponding variables are free.

Two possibilities:

- **Some** free variables—get infinitely many solutions.
- **No** free variables
Solving $A\vec{x} = \vec{b}$

First, do elem row ops to get $[A \mid \vec{b}] \xrightarrow{\text{row reduce}} [E \mid \vec{c}]$. If \vec{c} has a row leader, there are NO solutions; assume otherwise.

Identify the columns of E that do not have row leaders; the corresponding variables are free.

Two possibilities:

- **Some** free variables—get **infinitely many** solutions.
- **No** free variables—get a **unique** solution.
For an $n \times n$ matrix A, the following statements are equivalent. (If one statement holds, all do; if one statement is false, all are false.)
For an $n \times n$ matrix A, the following statements are equivalent.
(If one statement holds, all do; if one statement is false, all are false.)

- A is invertible.
- $[A : I]$ row reduce to reduced REF $[E : F]$
- $[A : I]$ row equivalent to I
- $A \vec{x} = \vec{0}$ has no non-zero solutions.
- The columns of A are linearly independent.
- $A \vec{x} = \vec{b}$ has a solution for any \vec{b} in \mathbb{R}^n.
- The columns of A span all of \mathbb{R}^n.

What's important: any one of last 5 statements true \Rightarrow A is invertible.
For an $n \times n$ matrix A, the following statements are equivalent. (If one statement holds, all do; if one statement is false, all are false.)

- A is invertible.
- A is row equivalent to I.

$[A : I] \xrightarrow{\text{row reduce to reduced REF}} [E : F]$

$E = I$
The Invertible Matrix Theorem—a small part

For an $n \times n$ matrix A, the following statements are equivalent. (If one statement holds, all do; if one statement is false, all are false.)

- A is invertible.
- A is row equivalent to I.
- $A\vec{x} = \vec{0}$ has no non-zero solutions.

\[
\begin{bmatrix} A : I \end{bmatrix} \xrightarrow{\text{row reduce to reduced REF}} \begin{bmatrix} E : F \end{bmatrix}
\]

$E = I$
The Invertible Matrix Theorem—a small part

For an $n \times n$ matrix A, the following statements are equivalent.
(If one statement holds, all do; if one statement is false, all are false.)

- A is invertible.
- A is row equivalent to I.
- $A\vec{x} = \vec{0}$ has no non-zero solutions.
- The columns of A are linearly independent.

\[[A : I] \xrightarrow{\text{row reduce to reduced REF}} [E : F] \]

$E = I$
For an $n \times n$ matrix A, the following statements are equivalent. (If one statement holds, all do; if one statement is false, all are false.)

- A is invertible.

- A is row equivalent to I.

- $A\vec{x} = \vec{0}$ has no non-zero solutions.

- The columns of A are linearly independent.

- $A\vec{x} = \vec{b}$ has a solution for any \vec{b} in \mathbb{R}^n.

$\begin{bmatrix} A & I \end{bmatrix} \xrightarrow{\text{row reduce to reduced REF}} \begin{bmatrix} E & F \end{bmatrix}$

$E = I$
The Invertible Matrix Theorem—a small part

For an $n \times n$ matrix A, the following statements are equivalent. (If one statement holds, all do; if one statement is false, all are false.)

- A is invertible.
- A is row equivalent to I.
- $A \vec{x} = \vec{0}$ has no non-zero solutions.
- The columns of A are linearly independent.
- $A \vec{x} = \vec{b}$ has a solution for any \vec{b} in \mathbb{R}^n.
- The columns of A span all of \mathbb{R}^n.

\[
\begin{bmatrix} A : I \end{bmatrix} \xrightarrow{\text{row reduce to reduced REF}} \begin{bmatrix} E : F \end{bmatrix} \quad E = I
\]
The Invertible Matrix Theorem—a small part

For an $n \times n$ matrix A, the following statements are equivalent. (If one statement holds, all do; if one statement is false, all are false.)

- A is invertible.
- A is row equivalent to I.
- $A\vec{x} = \vec{0}$ has no non-zero solutions.
- The columns of A are linearly independent.
- $A\vec{x} = \vec{b}$ has a solution for any \vec{b} in \mathbb{R}^n.
- The columns of A span all of \mathbb{R}^n.

What’s important:
The Invertible Matrix Theorem—a small part

For an $n \times n$ matrix A, the following statements are equivalent.
(If one statement holds, all do; if one statement is false, all are false.)

- A is invertible.
- A is row equivalent to I.
- $A\vec{x} = \vec{0}$ has no non-zero solutions.
- The columns of A are linearly independent.
- $A\vec{x} = \vec{b}$ has a solution for any \vec{b} in \mathbb{R}^n.
- The columns of A span all of \mathbb{R}^n.

What’s important: any one of last 5 statements true $\implies A$ is invertible.
Let A be an $n \times n$ matrix.
Let A be an $n \times n$ matrix. Define a LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$. Since A is invertible, have A^{-1}, so get LT $\mathbb{R}^n \xrightarrow{S} \mathbb{R}^n$, $S(\vec{y}) = A^{-1}\vec{y}$.

What happens if we do T then S, or, S then T?

Look at $S(T(\vec{x})) = S(A\vec{x}) = A^{-1}A\vec{x} = I\vec{x} = \vec{x}$.

Similarly, $T(S(\vec{y})) = T(A^{-1}\vec{y}) = AA^{-1}\vec{y} = I\vec{y} = \vec{y}$.

Can “see” this too!

Above says $T^{-1} = S$.

Section 2.3
Invertible Matrices
Let A be an $n \times n$ matrix. Define a LT $\mathbb{R}^n \rightarrow \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$. Suppose A is invertible.
Let A be an $n \times n$ matrix. Define a LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Suppose A is invertible. What does this tell us about T?
Let A be an $n \times n$ matrix. Define a LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$. Suppose A is invertible. What does this tell us about T?

Since A is invertible, have A^{-1},
Let A be an $n \times n$ matrix. Define a LT $\mathbb{R}^n \rightarrow \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$. Suppose A is invertible. What does this tell us about T?

Since A is invertible, have A^{-1}, so get LT $\mathbb{R}^n \rightarrow \mathbb{R}^n$, $S(\vec{y}) = A^{-1}\vec{y}$.

What happens if we do T then S, or, S then T?

Look at $S(T(\vec{x})) = S(A\vec{x}) = A^{-1}A\vec{x} = \vec{x}$. Similarly, $T(S(\vec{y})) = T(A^{-1}\vec{y}) = AA^{-1}\vec{y} = \vec{y}$.

Can "see" this too! Above says $T^{-1} = S$.
Let A be an $n \times n$ matrix. Define a LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Suppose A is invertible. What does this tell us about T?

Since A is invertible, have A^{-1}, so get LT $\mathbb{R}^n \xrightarrow{S} \mathbb{R}^n$, $S(\vec{y}) = A^{-1}\vec{y}$.

What happens if we do T then S, or, S then T?
Let A be an $n \times n$ matrix. Define a LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Suppose A is invertible. What does this tell us about T?

Since A is invertible, have A^{-1}, so get LT $\mathbb{R}^n \xrightarrow{S} \mathbb{R}^n$, $S(\vec{y}) = A^{-1}\vec{y}$.

What happens if we do T then S, or, S then T?

Look at
Let A be an $n \times n$ matrix. Define a LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Suppose A is invertible. What does this tell us about T?

Since A is invertible, have A^{-1}, so get LT $\mathbb{R}^n \xrightarrow{S} \mathbb{R}^n$, $S(\vec{y}) = A^{-1}\vec{y}$.

What happens if we do T then S, or, S then T?

Look at $S(T(\vec{x}))$.
Let A be an $n \times n$ matrix. Define a LT $\mathbb{R}^n \overset{T}{\rightarrow} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Suppose A is invertible. What does this tell us about T?

Since A is invertible, have A^{-1}, so get LT $\mathbb{R}^n \overset{S}{\rightarrow} \mathbb{R}^n$, $S(\vec{y}) = A^{-1}\vec{y}$.

What happens if we do T then S, or, S then T?

Look at $S\left(T(\vec{x})\right) = S(A\vec{x})$
Let \(A \) be an \(n \times n \) matrix. Define a LT \(\mathbb{R}^n \to \mathbb{R}^n \) by \(T(\vec{x}) = A\vec{x} \).

Suppose \(A \) is invertible. What does this tell us about \(T \)?

Since \(A \) is invertible, have \(A^{-1} \), so get LT \(\mathbb{R}^n \to \mathbb{R}^n \), \(S(\vec{y}) = A^{-1}\vec{y} \).

What happens if we do \(T \) then \(S \), or, \(S \) then \(T \)?

Look at \(S(T(\vec{x})) = S(A\vec{x}) = A^{-1}A\vec{x} \)
Invertible Matrices and Linear Transformations

Let A be an $n \times n$ matrix. Define a LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Suppose A is invertible. What does this tell us about T?

Since A is invertible, have A^{-1}, so get LT $\mathbb{R}^n \xrightarrow{S} \mathbb{R}^n$, $S(\vec{y}) = A^{-1}\vec{y}$.

What happens if we do T then S, or, S then T?

Look at $S\left(T(\vec{x})\right) = S(A\vec{x}) = A^{-1}A\vec{x} = I\vec{x}$
Let A be an $n \times n$ matrix. Define a LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Suppose A is invertible. What does this tell us about T?

Since A is invertible, have A^{-1}, so get LT $\mathbb{R}^n \xrightarrow{S} \mathbb{R}^n$, $S(\vec{y}) = A^{-1}\vec{y}$.

What happens if we do T then S, or, S then T?

Look at $S(T(\vec{x})) = S(A\vec{x}) = A^{-1}A\vec{x} = I\vec{x} = \vec{x}$.
Let A be an $n \times n$ matrix. Define a LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Suppose A is invertible. What does this tell us about T?

Since A is invertible, have A^{-1}, so get LT $\mathbb{R}^n \xrightarrow{S} \mathbb{R}^n$, $S(\vec{y}) = A^{-1}\vec{y}$.

What happens if we do T then S, or, S then T?

Look at $S(T(\vec{x})) = S(A\vec{x}) = A^{-1}A\vec{x} = I\vec{x} = \vec{x}$.

Similarly,
Let A be an $n \times n$ matrix. Define a LT $\mathbb{R}^n \to \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Suppose A is invertible. What does this tell us about T?

Since A is invertible, have A^{-1}, so get LT $\mathbb{R}^n \to \mathbb{R}^n$, $S(\vec{y}) = A^{-1}\vec{y}$.

What happens if we do T then S, or, S then T?

Look at $S(T(\vec{x})) = S(A\vec{x}) = A^{-1}A\vec{x} = I\vec{x} = \vec{x}$.

Similarly, $T(S(\vec{y}))$
Let A be an $n \times n$ matrix. Define a LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$. Suppose A is invertible. What does this tell us about T?

Since A is invertible, have A^{-1}, so get LT $\mathbb{R}^n \xrightarrow{S} \mathbb{R}^n$, $S(\vec{y}) = A^{-1}\vec{y}$.

What happens if we do T then S, or, S then T?

Look at $S(T(\vec{x})) = S(A\vec{x}) = A^{-1}A\vec{x} = I\vec{x} = \vec{x}$.

Similarly, $T(S(\vec{y})) = T(A^{-1}\vec{y})$.
Let A be an $n \times n$ matrix. Define a LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Suppose A is invertible. What does this tell us about T?

Since A is invertible, have A^{-1}, so get LT $\mathbb{R}^n \xrightarrow{S} \mathbb{R}^n$, $S(\vec{y}) = A^{-1}\vec{y}$.

What happens if we do T then S, or, S then T?

Look at $S(T(\vec{x})) = S(A\vec{x}) = A^{-1}A\vec{x} = I\vec{x} = \vec{x}$.

Similarly, $T(S(\vec{y})) = T(A^{-1}\vec{y}) = AA^{-1}\vec{y}$.
Let A be an $n \times n$ matrix. Define a LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$. Suppose A is invertible. What does this tell us about T?

Since A is invertible, have A^{-1}, so get LT $\mathbb{R}^n \xrightarrow{S} \mathbb{R}^n$, $S(\vec{y}) = A^{-1}\vec{y}$.

What happens if we do T then S, or, S then T?

Look at $S(T(\vec{x})) = S(A\vec{x}) = A^{-1}A\vec{x} = I\vec{x} = \vec{x}$.

Similarly, $T(S(\vec{y})) = T(A^{-1}\vec{y}) = AA^{-1}\vec{y} = I\vec{y}$
Let A be an $n \times n$ matrix. Define a LT $\mathbb{R}^n \overset{T}{\rightarrow} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Suppose A is invertible. What does this tell us about T?

Since A is invertible, have A^{-1}, so get LT $\mathbb{R}^n \overset{S}{\rightarrow} \mathbb{R}^n$, $S(\vec{y}) = A^{-1}\vec{y}$.

What happens if we do T then S, or, S then T?

Look at $S(T(\vec{x})) = S(A\vec{x}) = A^{-1}A\vec{x} = I\vec{x} = \vec{x}$.

Similarly, $T(S(\vec{y})) = T(A^{-1}\vec{y}) = AA^{-1}\vec{y} = I\vec{y} = \vec{y}$.
Let \(A \) be an \(n \times n \) matrix. Define a LT \(\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n \) by \(T(\vec{x}) = A\vec{x} \).

Suppose \(A \) is invertible. What does this tell us about \(T \)?

Since \(A \) is invertible, have \(A^{-1} \), so get LT \(\mathbb{R}^n \xrightarrow{S} \mathbb{R}^n \), \(S(\vec{y}) = A^{-1}\vec{y} \).

What happens if we do \(T \) then \(S \), or, \(S \) then \(T \)?

Look at \(S(T(\vec{x})) = S(A\vec{x}) = A^{-1}A\vec{x} = I\vec{x} = \vec{x} \).

Similarly, \(T(S(\vec{y})) = T(A^{-1}\vec{y}) = AA^{-1}\vec{y} = I\vec{y} = \vec{y} \).

Can “see” this too!

\[A^{-1} \text{ transforms } Ax \text{ back to } x. \]
Let A be an $n \times n$ matrix. Define a LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Suppose A is invertible. What does this tell us about T?

Since A is invertible, have A^{-1}, so get LT $\mathbb{R}^n \xrightarrow{S} \mathbb{R}^n$, $S(\vec{y}) = A^{-1}\vec{y}$.

What happens if we do T then S, or, S then T?

Look at $S(T(\vec{x})) = S(A\vec{x}) = A^{-1}A\vec{x} = I\vec{x} = \vec{x}$.

Similarly, $T(S(\vec{y})) = T(A^{-1}\vec{y}) = AA^{-1}\vec{y} = I\vec{y} = \vec{y}$.

Can “see” this too!

Above says $T^{-1} = S$.

A^{-1} transforms Ax back to x.
Let A and B be invertible $n \times n$ matrices.
Let A and B be invertible $n \times n$ matrices.

Not hard to see that AB is invertible.
Let A and B be invertible $n \times n$ matrices.

Not hard to see that AB is invertible.

In fact,
Let A and B be invertible $n \times n$ matrices.

Not hard to see that AB is invertible.

In fact, \[(AB)^{-1} = B^{-1}A^{-1}.\]
Let A and B be invertible $n \times n$ matrices.

Not hard to see that AB is invertible.

In fact, \[(AB)^{-1} = B^{-1}A^{-1}\].

This because
\[(B^{-1}A^{-1})(AB)\]
Let A and B be invertible $n \times n$ matrices.

Not hard to see that AB is invertible.

In fact, $\boxed{(AB)^{-1} = B^{-1}A^{-1}}$.

This because

$$(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B$$
Let A and B be invertible $n \times n$ matrices.

Not hard to see that AB is invertible.

In fact, \[
(AB)^{-1} = B^{-1}A^{-1}.
\]

This because
\[
(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}IB
\]
Let A and B be invertible $n \times n$ matrices.

Not hard to see that AB is invertible.

In fact, \[(AB)^{-1} = B^{-1}A^{-1}. \]

This because
\[
(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}I B = B^{-1}B = I.
\]
The \textit{transpose} A^T of a matrix A is given by “reflecting A across its main diagonal”.

For example, $egin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}^T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$.

If A is square and invertible, then so is A^T and $(A^T)^{-1} = (A^{-1})^T$.

Section 2.3

Invertible Matrices

3 February 2017
The transpose A^T of a matrix A is given by “reflecting A across its main diagonal”. The rows (columns) of A become the columns (rows) of A^T.

For example, $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}^T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$.

If A is square and invertible, then so is A^T and $(A^T)^{-1} = (A^{-1})^T$.

Section 2.3
Invertible Matrices
3 February 2017 9 / 9
The transpose A^T of a matrix A is given by “reflecting A across its main diagonal”. The rows (columns) of A become the columns (rows) of A^T.

More precisely, if $A = [a_{ij}]$, then
The transpose A^T of a matrix A is given by “reflecting A across its main diagonal”. The rows (columns) of A become the columns (rows) of A^T.

More precisely, if $A = [a_{ij}]$, then $A^T = [a_{ji}]$.
The transpose A^T of a matrix A is given by “reflecting A across its main diagonal”. The rows (columns) of A become the columns (rows) of A^T. More precisely, if $A = [a_{ij}]$, then $A^T = [a_{ji}]$.

For example,

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}^T$$
Invertible Matrices and Transpose

The transpose A^T of a matrix A is given by “reflecting A across its main diagonal”. The rows (columns) of A become the columns (rows) of A^T.

More precisely, if $A = [a_{ij}]$, then $A^T = [a_{ji}]$.

For example,

$$
\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6
\end{bmatrix}^T =
\begin{bmatrix}
1 & 4 \\
2 & 5 \\
3 & 6
\end{bmatrix}.
$$

If A is square and invertible, then so is A^T and $(A^T)^{-1} = (A^{-1})^T$.

Section 2.3

Invertible Matrices

3 February 2017 9 / 9
The transpose A^T of a matrix A is given by “reflecting A across its main diagonal”. The rows (columns) of A become the columns (rows) of A^T.

More precisely, if $A = [a_{ij}]$, then $A^T = [a_{ji}]$.

For example,

$$
\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}^T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}.
$$

If A is square and invertible, then so is A^T and $(A^T)^{-1} = (A^{-1})^T$.

\[\begin{bmatrix} A^T \end{bmatrix}^{-1} = \begin{bmatrix} A^{-1} \end{bmatrix}^T. \]