The Invertible Matrix Theorem

Linear Algebra MATH 2076

1/9

An $n \times n$ matrix A is *invertible* if and only if there is another $n \times n$ matrix C with A = C = C A.

When this holds, there is only **one** such matrix C; we call it A^{-1} .

When this holds, there is only **one** such matrix C; we call it A^{-1} .

Look at super-sized augmented matrix $\begin{bmatrix} A & I \end{bmatrix}$.

When this holds, there is only **one** such matrix C; we call it A^{-1} .

Look at super-sized augmented matrix A : I. Put into *reduced* REF.

When this holds, there is only **one** such matrix C; we call it A^{-1} .

Look at super-sized augmented matrix A : I. Put into *reduced* REF.

Do elementary row operations to get $\begin{bmatrix} A \\ \vdots \end{bmatrix} \xrightarrow{\text{row reduce to} \\ \text{reduced REF}} \begin{bmatrix} E \\ \vdots \end{bmatrix} F$.

When this holds, there is only **one** such matrix C; we call it A^{-1} .

Look at super-sized augmented matrix A : I. Put into *reduced* REF.

Do elementary row operations to get $\begin{bmatrix} A \\ \vdots \end{bmatrix} \xrightarrow{\text{row reduce to} \\ \text{reduced REF}} \begin{bmatrix} E \\ \vdots \end{bmatrix} F$.

Get two possibilities:

When this holds, there is only **one** such matrix C; we call it A^{-1} .

Look at super-sized augmented matrix A : I. Put into *reduced* REF.

Do elementary row operations to get $\begin{bmatrix} A \\ \vdots \end{bmatrix} \xrightarrow{\text{row reduce to} \\ \text{reduced REF}} \begin{bmatrix} E \\ \vdots \end{bmatrix} F \end{bmatrix}$.

Get two possibilities:

If
$$E \neq I$$
,

When this holds, there is only **one** such matrix C; we call it A^{-1} .

Look at super-sized augmented matrix A : I. Put into *reduced* REF.

Do elementary row operations to get $\begin{bmatrix} A \\ \vdots \end{bmatrix} \xrightarrow{\text{row reduce to} \\ \text{reduced REF}} \begin{bmatrix} E \\ \vdots \end{bmatrix} F \end{bmatrix}$.

Get two possibilities:

If
$$E \neq I$$
,

If
$$E = I$$
,

When this holds, there is only **one** such matrix C; we call it A^{-1} .

Look at super-sized augmented matrix A : I. Put into reduced REF.

Do elementary row operations to get $\begin{bmatrix} A \\ \vdots \end{bmatrix} \xrightarrow{\text{row reduce to} \\ \text{reduced REF}} \begin{bmatrix} E \\ \vdots \end{bmatrix} F \end{bmatrix}$.

Get two possibilities:

If $E \neq I$, then A not invertible.

If
$$E = I$$
,

When this holds, there is only **one** such matrix C; we call it A^{-1} .

Look at super-sized augmented matrix A : I. Put into *reduced* REF.

Do elementary row operations to get $\begin{bmatrix} A \\ \vdots \end{bmatrix} \xrightarrow{\text{row reduce to} \\ \text{reduced REF}} \begin{bmatrix} E \\ \vdots \end{bmatrix} F \end{bmatrix}$.

Get two possibilities:

If $E \neq I$, then A not invertible.

If E = I, then $F = A^{-1}$.

Invertible matrices possess a bewildering number of characteristic properties.

Invertible matrices possess a bewildering number of characteristic properties. Our text book lists 26 different ways to see that a square matrix is invertible! See pp. 114, 116, 158, 173, 237, 423.

Invertible matrices possess a bewildering number of characteristic properties. Our text book lists 26 different ways to see that a square matrix is invertible! See pp. 114, 116, 158, 173, 237, 423.

Here we focus on just a few of these.

Invertible matrices possess a bewildering number of characteristic properties. Our text book lists 26 different ways to see that a square matrix is invertible! See pp. 114, 116, 158, 173, 237, 423.

Here we focus on just a few of these. Let A be a square matrix.

Invertible matrices possess a bewildering number of characteristic properties. Our text book lists 26 different ways to see that a square matrix is invertible! See pp. 114, 116, 158, 173, 237, 423.

Here we focus on just a few of these. Let A be a square matrix. Consider the matrix equation $A\vec{x} = \vec{b}$.

Invertible matrices possess a bewildering number of characteristic properties. Our text book lists 26 different ways to see that a square matrix is invertible! See pp. 114, 116, 158, 173, 237, 423.

Here we focus on just a few of these. Let A be a square matrix. Consider the matrix equation $A\vec{x} = \vec{b}$.

When does $A\vec{x} = \vec{0}$ have a *unique* solution?

Invertible matrices possess a bewildering number of characteristic properties. Our text book lists 26 different ways to see that a square matrix is invertible! See pp. 114, 116, 158, 173, 237, 423.

Here we focus on just a few of these. Let A be a square matrix. Consider the matrix equation $A\vec{x} = \vec{b}$.

When does $A\vec{x} = \vec{0}$ have a *unique* solution?

When does $A\vec{x} = \vec{b}$ have a solution for *every* rhs \vec{b} ?

All questions about solns to SLEs (or VEs or MEs and more!) can be answered by looking at a REF of appropriate matrix.

All questions about solns to SLEs (or VEs or MEs and more!) can be answered by looking at a REF of appropriate matrix.

Suppose the augmented matrix for some SLE has the following REF.

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 3 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

What can we say?

All questions about solns to SLEs (or VEs or MEs and more!) can be answered by looking at a REF of appropriate matrix.

Suppose the augmented matrix for some SLE has the following REF.

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 3 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}.$$

What can we say?

All questions about solns to SLEs (or VEs or MEs and more!) can be answered by looking at a REF of appropriate matrix.

Suppose the augmented matrix for some SLE has the following REF.

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 3 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

What can we say?

First, do elem row ops to get $[A \mid \vec{b}] \xrightarrow{\text{row reduce}} [E \mid \vec{c}]$.

First, do elem row ops to get $[A \mid \vec{b}] \xrightarrow{\text{row reduce}} [E \mid \vec{c}]$.

If \vec{c} has a row leader, there are NO solutions;

First, do elem row ops to get $[A \mid \vec{b}] \xrightarrow{\text{row reduce}} [E \mid \vec{c}]$.

If \vec{c} has a row leader, there are NO solutions; assume otherwise.

First, do elem row ops to get $[A \mid \vec{b}] \xrightarrow{\text{row reduce}} [E \mid \vec{c}]$.

If \vec{c} has a row leader, there are NO solutions; assume otherwise.

Identify the columns of *E* that do *not* have row leaders;

First, do elem row ops to get $[A \mid \vec{b}] \xrightarrow{\text{row reduce}} [E \mid \vec{c}]$.

If \vec{c} has a row leader, there are NO solutions; assume otherwise.

Identify the columns of E that do *not* have row leaders; the corresponding variables are *free*.

First, do elem row ops to get $[A \mid \vec{b}] \xrightarrow{\text{row reduce}} [E \mid \vec{c}]$.

If \vec{c} has a row leader, there are NO solutions; assume otherwise.

Identify the columns of E that do *not* have row leaders; the corresponding variables are *free*.

Two possibilities:

5 / 9

First, do elem row ops to get $[A \mid \vec{b}] \xrightarrow{\text{row reduce}} [E \mid \vec{c}]$.

If \vec{c} has a row leader, there are NO solutions; assume otherwise.

Identify the columns of E that do *not* have row leaders; the corresponding variables are *free*.

Two possibilities:

Some free variables

First, do elem row ops to get $[A \mid \vec{b}] \xrightarrow{\text{row reduce}} [E \mid \vec{c}]$.

If \vec{c} has a row leader, there are NO solutions; assume otherwise.

Identify the columns of E that do *not* have row leaders; the corresponding variables are *free*.

Two possibilities:

Some free variables

No free variables

First, do elem row ops to get $[A \mid \vec{b}] \xrightarrow{\text{row reduce}} [E \mid \vec{c}]$.

If \vec{c} has a row leader, there are NO solutions; assume otherwise.

Identify the columns of E that do *not* have row leaders; the corresponding variables are *free*.

Two possibilities:

Some free variables—get **infinitely many** solutions.

No free variables

First, do elem row ops to get $[A \mid \vec{b}] \xrightarrow{\text{row reduce}} [E \mid \vec{c}]$.

If \vec{c} has a row leader, there are NO solutions; assume otherwise.

Identify the columns of E that do *not* have row leaders; the corresponding variables are *free*.

Two possibilities:

Some free variables—get **infinitely many** solutions.

No free variables—get a unique solution.

For an $n \times n$ matrix A, the following statements are equivalent. (If one statement holds, all do; if one statement is false, all are false.)

For an $n \times n$ matrix A, the following statements are equivalent. (If one statement holds, all do; if one statement is false, all are false.)

• A is invertible.

$$[A \vdots I] \xrightarrow{\text{row reduce to}} [E \vdots F]$$

For an $n \times n$ matrix A, the following statements are equivalent. (If one statement holds, all do; if one statement is false, all are false.)

- A is invertible.
- A is row equivalent to I.

$$[A : I] \xrightarrow{\text{row reduce to}} [E : F]$$

E = I

For an $n \times n$ matrix A, the following statements are equivalent. (If one statement holds, all do; if one statement is false, all are false.)

- A is invertible.
- A is row equivalent to I.
- $A\vec{x} = \vec{0}$ has no non-zero solutions.

$$[A : I] \xrightarrow{\text{row reduce to}} [E : F]$$

$$E = I$$

For an $n \times n$ matrix A, the following statements are equivalent. (If one statement holds, all do; if one statement is false, all are false.)

• A is invertible.

$$[A \vdots I] \xrightarrow{\text{row reduce to}} [E \vdots F]$$

• *A* is row equivalent to *I*.

$$E = I$$

- $A\vec{x} = \vec{0}$ has no non-zero solutions.
- The columns of A are linearly independent.

For an $n \times n$ matrix A, the following statements are equivalent. (If one statement holds, all do; if one statement is false, all are false.)

• A is invertible.

$$[A \vdots I] \xrightarrow{\text{row reduce to}} [E \vdots F]$$

A is row equivalent to I.

$$E = I$$

- $A\vec{x} = \vec{0}$ has no non-zero solutions.
- The columns of A are linearly independent.
- $A\vec{x} = \vec{b}$ has a solution for any \vec{b} in \mathbb{R}^n .

For an $n \times n$ matrix A, the following statements are equivalent. (If one statement holds, all do; if one statement is false, all are false.)

• A is invertible.

$$[A \vdots I] \xrightarrow{\text{row reduce to}} [E \vdots F]$$

• A is row equivalent to 1.

$$E = I$$

- $A\vec{x} = \vec{0}$ has no non-zero solutions.
- The columns of A are linearly independent.
- $A\vec{x} = \vec{b}$ has a solution for any \vec{b} in \mathbb{R}^n .
- The columns of A span all of \mathbb{R}^n .

For an $n \times n$ matrix A, the following statements are equivalent. (If one statement holds, all do; if one statement is false, all are false.)

• A is invertible.

$$[A \vdots I] \xrightarrow{\text{row reduce to}} [E \vdots F]$$

A is row equivalent to I.

$$E = I$$

- $A\vec{x} = \vec{0}$ has no non-zero solutions.
- The columns of A are linearly independent.
- $A\vec{x} = \vec{b}$ has a solution for any \vec{b} in \mathbb{R}^n .
- The columns of A span all of \mathbb{R}^n .

What's important:

For an $n \times n$ matrix A, the following statements are equivalent. (If one statement holds, all do; if one statement is false, all are false.)

• A is invertible.

$$[A \vdots I] \xrightarrow{\text{row reduce to}} [E \vdots F]$$

A is row equivalent to I.

$$E = I$$

- $A\vec{x} = \vec{0}$ has no non-zero solutions.
- The columns of A are linearly independent.
- $A\vec{x} = \vec{b}$ has a solution for any \vec{b} in \mathbb{R}^n .
- The columns of A span all of \mathbb{R}^n .

What's important: any one of last 5 statements true \implies A is invertible.

Let A be an $n \times n$ matrix.

Let A be an $n \times n$ matrix. Define a LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$.

Let A be an $n \times n$ matrix. Define a LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$. Suppose A is invertible.

Let A be an $n \times n$ matrix. Define a LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$. Suppose A is invertible. What does this tell us about T?

Let A be an $n \times n$ matrix. Define a LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$. Suppose A is invertible. What does this tell us about T?

Since A is invertible, have A^{-1} ,

Let A be an $n \times n$ matrix. Define a LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$. Suppose A is invertible. What does this tell us about T?

Since A is invertible, have A^{-1} , so get LT $\mathbb{R}^n \xrightarrow{S} \mathbb{R}^n$, $S(\vec{y}) = A^{-1}\vec{y}$.

Let A be an $n \times n$ matrix. Define a LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$. Suppose A is invertible. What does this tell us about T?

Since A is invertible, have A^{-1} , so get LT $\mathbb{R}^n \xrightarrow{S} \mathbb{R}^n$, $S(\vec{y}) = A^{-1}\vec{y}$.

Let A be an $n \times n$ matrix. Define a LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$. Suppose A is invertible. What does this tell us about T?

Since A is invertible, have A^{-1} , so get LT $\mathbb{R}^n \xrightarrow{S} \mathbb{R}^n$, $S(\vec{y}) = A^{-1}\vec{y}$.

What happens if we do T then S, or, S then T?

Look at

Let A be an $n \times n$ matrix. Define a LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$. Suppose A is invertible. What does this tell us about T?

Since A is invertible, have A^{-1} , so get LT $\mathbb{R}^n \xrightarrow{S} \mathbb{R}^n$, $S(\vec{y}) = A^{-1}\vec{y}$.

What happens if we do T then S, or, S then T?

Look at $S(T(\vec{x}))$

Let A be an $n \times n$ matrix. Define a LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$. Suppose A is invertible. What does this tell us about T?

Since A is invertible, have A^{-1} , so get LT $\mathbb{R}^n \xrightarrow{S} \mathbb{R}^n$, $S(\vec{y}) = A^{-1}\vec{y}$.

Look at
$$S(T(\vec{x})) = S(A\vec{x})$$

Let A be an $n \times n$ matrix. Define a LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$. Suppose A is invertible. What does this tell us about T?

Since A is invertible, have A^{-1} , so get LT $\mathbb{R}^n \xrightarrow{S} \mathbb{R}^n$, $S(\vec{y}) = A^{-1}\vec{y}$.

Look at
$$S(T(\vec{x})) = S(A\vec{x}) = A^{-1}A\vec{x}$$

Let A be an $n \times n$ matrix. Define a LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$. Suppose A is invertible. What does this tell us about T?

Since A is invertible, have A^{-1} , so get LT $\mathbb{R}^n \xrightarrow{S} \mathbb{R}^n$, $S(\vec{y}) = A^{-1}\vec{y}$.

Look at
$$S(T(\vec{x})) = S(A\vec{x}) = A^{-1}A\vec{x} = I\vec{x}$$

Let A be an $n \times n$ matrix. Define a LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$. Suppose A is invertible. What does this tell us about T?

Since A is invertible, have A^{-1} , so get LT $\mathbb{R}^n \xrightarrow{S} \mathbb{R}^n$, $S(\vec{y}) = A^{-1}\vec{y}$.

What happens if we do T then S, or, S then T?

Look at $S(T(\vec{x})) = S(A\vec{x}) = A^{-1}A\vec{x} = I\vec{x} = \vec{x}$.

Let A be an $n \times n$ matrix. Define a LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$. Suppose A is invertible. What does this tell us about T?

Since A is invertible, have A^{-1} , so get LT $\mathbb{R}^n \xrightarrow{S} \mathbb{R}^n$, $S(\vec{y}) = A^{-1}\vec{y}$.

What happens if we do T then S, or, S then T?

Look at
$$S(T(\vec{x})) = S(A\vec{x}) = A^{-1}A\vec{x} = I\vec{x} = \vec{x}$$
.

Similarly,

Let A be an $n \times n$ matrix. Define a LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$. Suppose A is invertible. What does this tell us about T?

Since A is invertible, have A^{-1} , so get LT $\mathbb{R}^n \xrightarrow{S} \mathbb{R}^n$, $S(\vec{y}) = A^{-1}\vec{y}$.

What happens if we do T then S, or, S then T?

Look at
$$S(T(\vec{x})) = S(A\vec{x}) = A^{-1}A\vec{x} = I\vec{x} = \vec{x}$$
.

Similarly, $T(S(\vec{y}))$

Let A be an $n \times n$ matrix. Define a LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$. Suppose A is invertible. What does this tell us about T?

Since A is invertible, have A^{-1} , so get LT $\mathbb{R}^n \xrightarrow{S} \mathbb{R}^n$, $S(\vec{y}) = A^{-1}\vec{y}$.

Look at
$$S(T(\vec{x})) = S(A\vec{x}) = A^{-1}A\vec{x} = I\vec{x} = \vec{x}$$
.

Similarly,
$$T(S(\vec{y})) = T(A^{-1}\vec{y})$$

Let A be an $n \times n$ matrix. Define a LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$. Suppose A is invertible. What does this tell us about T?

Since A is invertible, have A^{-1} , so get LT $\mathbb{R}^n \xrightarrow{S} \mathbb{R}^n$, $S(\vec{y}) = A^{-1}\vec{y}$.

Look at
$$S(T(\vec{x})) = S(A\vec{x}) = A^{-1}A\vec{x} = I\vec{x} = \vec{x}$$
.

Similarly,
$$T(S(\vec{y})) = T(A^{-1}\vec{y}) = AA^{-1}\vec{y}$$

Let A be an $n \times n$ matrix. Define a LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$. Suppose A is invertible. What does this tell us about T?

Since A is invertible, have A^{-1} , so get LT $\mathbb{R}^n \xrightarrow{S} \mathbb{R}^n$, $S(\vec{y}) = A^{-1}\vec{y}$.

What happens if we do T then S, or, S then T?

Look at
$$S(T(\vec{x})) = S(A\vec{x}) = A^{-1}A\vec{x} = I\vec{x} = \vec{x}$$
.

Similarly,
$$T(S(\vec{y})) = T(A^{-1}\vec{y}) = AA^{-1}\vec{y} = I\vec{y}$$

Section 2.3

Let A be an $n \times n$ matrix. Define a LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$. Suppose A is invertible. What does this tell us about T?

Since A is invertible, have A^{-1} , so get LT $\mathbb{R}^n \xrightarrow{S} \mathbb{R}^n$, $S(\vec{y}) = A^{-1}\vec{y}$.

Look at
$$S(T(\vec{x})) = S(A\vec{x}) = A^{-1}A\vec{x} = I\vec{x} = \vec{x}$$
.

Similarly,
$$T(S(\vec{y})) = T(A^{-1}\vec{y}) = AA^{-1}\vec{y} = I\vec{y} = \vec{y}$$
.

Let A be an $n \times n$ matrix. Define a LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$. Suppose A is invertible. What does this tell us about T?

Since A is invertible, have A^{-1} , so get LT $\mathbb{R}^n \xrightarrow{S} \mathbb{R}^n$. $S(\vec{v}) = A^{-1}\vec{v}$.

What happens if we do T then S, or, S then T?

Look at
$$S(T(\vec{x})) = S(A\vec{x}) = A^{-1}A\vec{x} = I\vec{x} = \vec{x}$$
.

Similarly,
$$T(S(\vec{y})) = T(A^{-1}\vec{y}) = AA^{-1}\vec{y} = I\vec{y} = \vec{y}$$
.

Can "see" this too!

 A^{-1} transforms A**x** back to **x**.

Invertible Matrices

7 / 9

Let A be an $n \times n$ matrix. Define a LT $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^n$ by $T(\vec{x}) = A\vec{x}$. Suppose A is invertible. What does this tell us about T?

Since A is invertible, have A^{-1} , so get LT $\mathbb{R}^n \xrightarrow{S} \mathbb{R}^n$, $S(\vec{y}) = A^{-1}\vec{y}$.

What happens if we do T then S, or, S then T?

Look at
$$S(T(\vec{x})) = S(A\vec{x}) = A^{-1}A\vec{x} = I\vec{x} = \vec{x}$$
.

Similarly,
$$T(S(\vec{y})) = T(A^{-1}\vec{y}) = AA^{-1}\vec{y} = I\vec{y} = \vec{y}$$
.

Can "see" this too!

Above says $T^{-1} = S$.

 A^{-1} transforms A**x** back to **x**.

Let A and B be invertible $n \times n$ matrices.

Let A and B be invertible $n \times n$ matrices.

Not hard to see that AB is invertible.

Let A and B be invertible $n \times n$ matrices.

Not hard to see that AB is invertible.

In fact,

Let A and B be invertible $n \times n$ matrices.

Not hard to see that AB is invertible.

$$(AB)^{-1} = B^{-1}A^{-1}.$$

Let A and B be invertible $n \times n$ matrices.

Not hard to see that AB is invertible.

$$(AB)^{-1} = B^{-1}A^{-1}.$$

$$(B^{-1}A^{-1})(AB)$$

Let A and B be invertible $n \times n$ matrices.

Not hard to see that AB is invertible.

$$(AB)^{-1} = B^{-1}A^{-1}.$$

$$(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B$$

Let A and B be invertible $n \times n$ matrices.

Not hard to see that AB is invertible.

$$(AB)^{-1} = B^{-1}A^{-1}.$$

$$(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}IB$$

Let A and B be invertible $n \times n$ matrices.

Not hard to see that AB is invertible.

$$(AB)^{-1} = B^{-1}A^{-1}.$$

$$(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}IB = B^{-1}B = I.$$

The *transpose* A^T of a matrix A is given by "reflecting A across its main diagonal".

The transpose A^T of a matrix A is given by "reflecting A across its main diagonal". The rows (columns) of A become the columns (rows) of A^T .

The transpose A^T of a matrix A is given by "reflecting A across its main diagonal". The rows (columns) of A become the columns (rows) of A^T .

More precisely, if $A = [a_{ij}]$, then

The transpose A^T of a matrix A is given by "reflecting A across its main diagonal". The rows (columns) of A become the columns (rows) of A^T .

More precisely, if $A = [a_{ij}]$, then $A^T = [a_{ji}]$.

The transpose A^T of a matrix A is given by "reflecting A across its main diagonal". The rows (columns) of A become the columns (rows) of A^T .

More precisely, if $A = [a_{ij}]$, then $A^T = [a_{ji}]$.

For example,

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}^T$$

The transpose A^T of a matrix A is given by "reflecting A across its main diagonal". The rows (columns) of A become the columns (rows) of A^T .

More precisely, if $A = [a_{ij}]$, then $A^T = [a_{ji}]$.

For example,

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}^T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}.$$

The transpose A^T of a matrix A is given by "reflecting A across its main diagonal". The rows (columns) of A become the columns (rows) of A^T .

More precisely, if $A = [a_{ij}]$, then $A^T = [a_{ji}]$.

For example,

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}^T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}.$$

If A is square and invertible, then so is A^T and $A^T = (A^{-1})^T$.