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The Matrix Transformation y = Ax

When A is an m x n matrix, we can define a transformation (aka, a
function) from R” to R™ via the rule y = T(X) = AX.
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The Matrix Transformation y = Ax

When A is an m x n matrix, we can define a transformation (aka, a
function) from R” to R™ via the rule y = T(X) = AX.

Here the input variable X comes from R”, it gets multiplied by the matrix
A via the formula
X131 + X3 + -+ + Xpap,
where 3; is the j*™ column of A, and the resulting output is ¥. Thus,
Y1
-y2 — — - - - -
| =y =T(X) = AX = x131 + x2@ + - - - + Xpap.
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The Matrix Transformation y = Ax

When A is an m x n matrix, we can define a transformation (aka, a
function) from R” to R™ via the rule y = T(X) = AX.

Here the input variable X comes from R”, it gets multiplied by the matrix
A via the formula
X131 + X3 + -+ + Xpap,
where 3; is the j*™ column of A, and the resulting output is ¥. Thus,
Y1
-y2 — — - - - -
| =y =T(X) = AX = x131 + x2@ + - - - + Xpap.

Ym

We write R” L> R™ (and say, T is a transformation from R"” to R™),

meaning that R” is the domain of T and R™ the codomain.
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Geometric Transformations

These are transformations R” — R" and include
@ translations
@ dilations

reflections

@ projections

@ rotations
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T . . .
We call R” — R™ a linear transformation provided

Linear Tms R



: : T
Linear Transformations R?” — R™

T . . .
We call R” — R™ a linear transformation provided

T(o+ V)= T(a)+ T(V)

for all &, v in R” and all scalars s.

Linear Tms R



: : T
Linear Transformations R?” — R™

We call R” 5 R™ a finear transformation provided
T(o+ V)= T(a)+ T(V)

and

for all &, v in R” and all scalars s.

Linear Tms Ry



: : T
Linear Transformations R?” — R™

We call R” 5 R™ a finear transformation provided
T(o+ V)= T(a)+ T(V)

and

for all &, v in R” and all scalars s.

For example, every matrix transformation has these two properties.

Linear Tms Ry



: : T
Linear Transformations R?” — R™

We call R” 5 R™ a finear transformation provided
T(o+ V)= T(a)+ T(V)

and

for all &, v in R” and all scalars s.

For example, every matrix transformation has these two properties.
This holds by simple properties of the matrix product AX.

Linear Tms Ry



: . T

Linear Transformations R?” — R™

We call R” 5 R™ a finear transformation provided
T(o+ V)= T(a)+ T(V)

and

for all &, v in R” and all scalars s.

For example, every matrix transformation has these two properties.
This holds by simple properties of the matrix product AX.

Which of the geometric transformations are linear?

Linear Tms Ry



: . T

Linear Transformations R?” — R™

We call R” 5 R™ a finear transformation provided
T(o+ V)= T(a)+ T(V)

and

for all &, v in R” and all scalars s.

For example, every matrix transformation has these two properties.
This holds by simple properties of the matrix product AX.

Which of the geometric transformations are linear? (Most, but not all!)

Linear Tms Ry



: : T
Linear Transformations R?” — R™

We call R” 5 R™ a finear transformation provided
T(o+ V)= T(a)+ T(V)

and

for all &, v in R” and all scalars s.

For example, every matrix transformation has these two properties.
This holds by simple properties of the matrix product AX.

Which of the geometric transformations are linear? (Most, but not all!)
Note that for any LT T we always have T(0) =

Linear Tms Ry



: : T
Linear Transformations R?” — R™

We call R” 5 R™ a finear transformation provided
T(o+ V)= T(a)+ T(V)

and

for all &, v in R” and all scalars s.

For example, every matrix transformation has these two properties.
This holds by simple properties of the matrix product AX.

Which of the geometric transformations are linear? (Most, but not all!)
Note that for any LT T we always have T((f) — 0. Right?

Linear Tms Ry



: : T
Linear Transformations R?” — R™

We call R” 5 R™ a finear transformation provided
T(o+ V)= T(a)+ T(V)

and

for all &, v in R” and all scalars s.

For example, every matrix transformation has these two properties.
This holds by simple properties of the matrix product AX.

Which of the geometric transformations are linear? (Most, but not all!)
Note that for any LT T we always have T(0) = 0. Right? Why?
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More importantly, T preserves all linear combinations; i.e., the T-image of
a LC of vectors v; is a LC of T(Vj) using the same scalars.
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Properties of Linear Transformations

Let R” s R™ be a linear transformation. Then T(0)=0|

More importantly, T preserves all linear combinations; i.e., the T-image of
a LC of vectors v; is a LC of T(V}) using the same scalars. That is,

T(51\71 + v+ Sp‘7p) =5 T(\71) + S T(\72) + -+ 5 T(Vp)
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Properties of Linear Transformations

Let R” s R™ be a linear transformation. Then T(0)=0|

More importantly, T preserves all linear combinations; i.e., the T-image of
a LC of vectors v; is a LC of T(V}) using the same scalars. That is,

T(51\71 + v+ Sp‘7p) =5 T(\71) + S T(\72) + -+ 5 T(Vp)

or more simply—using “summation” notation—

P P
T(Zsjvj) — Y 5T(@).
j=1 j=1
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Properties of Linear Transformations

Let R” s R™ be a linear transformation. Then T(0)=0|

More importantly, T preserves all linear combinations; i.e., the T-image of
a LC of vectors v; is a LC of T(V}) using the same scalars. That is,

T(51\71 + v+ Sp‘7p) =5 T(\71) + S T(\72) + -+ 5 T(Vp)

or more simply—using “summation” notation—
P P
m(Xs%) =L 9@,
Jj=1 Jj=1
This is called the linearity principle.
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Linear Transformations are Matrix Transformations

Let R” /5 R™ be a linear transformation. Then there is an m x n matrix
A so that T(X) = AX. We call A the standard matrix for T. This means
that LTs and MTs are the same objects!

How do we find A? We use the linearity principle!

To start, note that each vector X can be written as a LC as follows.

X1 1
X2 0

X = . = X1 aF
Xn 0
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Linear Transformations are Matrix Transformations

Let R” /5 R™ be a linear transformation. Then there is an m x n matrix
A so that T(X) = AX. We call A the standard matrix for T. This means
that LTs and MTs are the same objects!

How do we find A? We use the linearity principle!

To start, note that each vector X can be written as a LC as follows.

X1 1 0 0
. X2 0 1 0
X=|.|=x|.|tx|. |+t *X

Xn 0 0 1
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Each X can be written as

X1 1 0
. X2 0
X=| . |=x1].| +x

Xn 0 0

We can write this more simply as follows.



Each X can be written as
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Each X can be written as

X1 1 0

. X2 0 1

X = : =X : +X2 : +"'+Xn
Xn 0 0

We can write this more simply as follows. Let

1 0 0
o 1 0
e = ) 52: 0 ) 9 gn:

0 0 1



Each X can be written as

X1 1 0

. X2 0 1

X = : =X : +X2 : +"'+Xn
Xn 0 0

We can write this more simply as follows. Let

1 0 0

0 1 0
51: 752: o ) 76;.,:

0 0 1

Then, X = Z 1 Xj€. By the LP,



Each X can be written as

Then, x =31

X1
X2

1 %€

1 0 0

0 1 0
) 52 i ) ) é;-, —

0 0 1

By the LP,

n n
~7(X %) = L7,
j=1 j=1



We have X = Y7, x;€j, and then by the LP,

T(%) = T(Z) = _Ej;x,-ne;).



We have X = > 7, x;é, and then by the LP,
n n
@ =7(358) = L uT(@),
j=1 Jj=1
Setting a; = T(€j) we get

n
T()_(’) = E Xja_} = X151 +X2‘§’2 qF e +Xn5n7
J=1



We have X = > 7, x;é, and then by the LP,
n n
@ =7(358) = L uT(@),
j=1 Jj=1
Setting a; = T(€j) we get

n
T()_(’) = E Xja_} = X151 +X2‘§’2 qF e +Xn5n7
J=1

but this means T(X) = AX where A is the matrix with columns 3.



Linear Transformations are Matrix Transformations

Let R” l> R™ be a linear transformation. Then

Linear Tms Ry



Linear Transformations are Matrix Transformations

Let R” l> R™ be a linear transformation. Then there is an m X n matrix
A so that | T(X) = AX|.

Linear Tms Ry



Linear Transformations are Matrix Transformations
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Linear Transformations are Matrix Transformations

Let R" -5 R™ be a linear transformation. Then there is an m x n matrix
A so that | T(X) = AX| We call A the standard matrix for T.

—

The columns of A are simply |aj = T(&)|.
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Rotations of the Plane R?

Let R2 &5 R2 be the transformation of R given by rotating (about 6) by
6 radians (in the clockwise direction).

Figure: Rotating R? by @ radians
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Let R2 &5 R2 be the transformation of R given by rotating (about 6) by
6 radians (in the clockwise direction).
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Figure: Rotating R? by @ radians
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