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The Matrix Transformation ~y = A~x

When A is an m × n matrix, we can define a transformation (aka, a
function) from Rn to Rm via the rule ~y = T (~x) = A~x .

Here the input variable ~x comes from Rn, it gets multiplied by the matrix
A via the formula

x1~a1 + x2~a2 + · · ·+ xn~an,

where ~aj is the j th column of A, and the resulting output is ~y . Thus,
y1
y2
...
ym

 = ~y = T (~x) = A~x = x1~a1 + x2~a2 + · · ·+ xn~an.

We write Rn T−→ Rm (and say, T is a transformation from Rn to Rm),
meaning that Rn is the domain of T and Rm the codomain.
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Geometric Transformations

These are transformations Rn → Rn and include

translations

dilations

reflections

projections

rotations
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Linear Transformations Rn T−→ Rm

We call Rn T−→ Rm a linear transformation provided

T (~u + ~v) = T (~u) + T (~v)

and

T (s~v) = sT (~v)

for all ~u, ~v in Rn and all scalars s.

For example, every matrix transformation has these two properties.
This holds by simple properties of the matrix product A~x .

Which of the geometric transformations are linear? (Most, but not all!)

Note that for any LT T we always have T (~0) = ~0. Right? Why?
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Properties of Linear Transformations

Let Rn T−→ Rm be a linear transformation. Then

T (~0) = ~0 .

More importantly, T preserves all linear combinations; i.e., the T -image of
a LC of vectors ~vj is a LC of T (~vj) using the same scalars. That is,

T (s1~v1 + s2~v2 + · · ·+ sp~vp) = s1T (~v1) + s2T (~v2) + · · ·+ spT (~vp)

or more simply—using “summation” notation—

T

( p∑
j=1

sj~vj

)
=

p∑
j=1

sjT (~vj).

This is called the linearity principle.
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Linear Transformations are Matrix Transformations

Let Rn T−→ Rm be a linear transformation. Then

there is an m × n matrix
A so that T (~x) = A~x . We call A the standard matrix for T . This means
that LTs and MTs are the same objects!

How do we find A? We use the linearity principle!

To start, note that each vector ~x can be written as a LC as follows.

~x =


x1
x2
...
xn

 =

x1


1
0
...
0

+ x2


0
1
...
0

+ · · ·+ xn


0
0
...
1



.
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that LTs and MTs are the same objects!

How do we find A? We use the linearity principle!

To start, note that each vector ~x can be written as a LC as follows.

~x =
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We can write this more simply as follows. Let
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j=1 xj~ej . By the LP,

T (~x) = T

( n∑
j=1

xj~ej

)
=

n∑
j=1

xjT (~ej).
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T (~x) = T
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Setting ~aj = T (~ej) we get

T (~x) =
n∑

j=1

xj~aj = x1~a1 + x2~a2 + · · ·+ xn~an,

but this means T (~x) = A~x where A is the matrix with columns ~aj .
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Linear Transformations are Matrix Transformations

Let Rn T−→ Rm be a linear transformation. Then

there is an m × n matrix
A so that T (~x) = A~x . We call A the standard matrix for T .

The columns of A are simply ~aj = T (~ej) .
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Rotations of the Plane R2

Let R2 R−→ R2 be the transformation of R2 given by rotating (about ~0) by
θ radians (in the clockwise direction).

~v

~w θ

R(~v)

R(~w)

Figure: Rotating R2 by θ radians
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