Matrix Transformations

Linear Algebra MATH 2076

Let $\vec{a_j}$ be the j^{th} column of some $m \times n$ matrix A, and \vec{x} be in \mathbb{R}^n ,

Let $\vec{a_j}$ be the j^{th} column of some $m \times n$ matrix A, and \vec{x} be in \mathbb{R}^n , so

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \quad \vec{a_j} = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix}, \quad \text{and} \quad \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}.$$

Let $\vec{a_j}$ be the j^{th} column of some $m \times n$ matrix A, and \vec{x} be in \mathbb{R}^n , so

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \quad \vec{a_j} = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix}, \quad \text{and} \quad \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}.$$

The product $A\vec{x}$ is defined to be the LC

$$x_1\vec{a}_1+x_2\vec{a}_2+\cdots+x_n\vec{a}_n.$$

Let $\vec{a_j}$ be the j^{th} column of some $m \times n$ matrix A, and \vec{x} be in \mathbb{R}^n , so

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} , \quad \vec{a_j} = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix} , \quad \text{and} \quad \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} .$$

The product $A\vec{x}$ is defined to be the LC

$$x_1\vec{a}_1+x_2\vec{a}_2+\cdots+x_n\vec{a}_n.$$

Since each $\vec{a_j}$ is a vector in \mathbb{R}^m ,

Section 1.8 Mtx Tfms 25 January 2017

Let $\vec{a_j}$ be the j^{th} column of some $m \times n$ matrix A, and \vec{x} be in \mathbb{R}^n , so

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \quad \vec{a_j} = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix}, \quad \text{and} \quad \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}.$$

The product $A\vec{x}$ is defined to be the LC

$$x_1\vec{a}_1+x_2\vec{a}_2+\cdots+x_n\vec{a}_n.$$

Since each $\vec{a_j}$ is a vector in \mathbb{R}^m , so is $A\vec{x}$.

Let $\vec{a_j}$ be the j^{th} column of some $m \times n$ matrix A, and \vec{x} be in \mathbb{R}^n , so

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \quad \vec{a_j} = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix}, \quad \text{and} \quad \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}.$$

The product $A\vec{x}$ is defined to be the LC

$$x_1\vec{a}_1+x_2\vec{a}_2+\cdots+x_n\vec{a}_n.$$

Since each $\vec{a_j}$ is a vector in \mathbb{R}^m , so is $A\vec{x}$. Thus we can define a vector function by the rule $\vec{y} = A\vec{x}$.

Section 1.8 Mtx Tfms 25 January 2017

Let $\vec{a_j}$ be the j^{th} column of some $m \times n$ matrix A, and \vec{x} be in \mathbb{R}^n , so

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \quad \vec{a_j} = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix}, \quad \text{and} \quad \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}.$$

The product $A\vec{x}$ is defined to be the LC

$$x_1\vec{a}_1+x_2\vec{a}_2+\cdots+x_n\vec{a}_n.$$

Since each $\vec{a_j}$ is a vector in \mathbb{R}^m , so is $A\vec{x}$. Thus we can define a vector function by the rule $\vec{y} = A\vec{x}$. Here

$$\vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{rr} \end{bmatrix}$$

4□ > 4團 > 4 ≣ > 4 ≣ > ■ 9 Q @

Section 1.8

Atx Tfms

This defines a function from \mathbb{R}^n to \mathbb{R}^m ;

Section 1.8 Mtx Tfms 25 January 2017

This defines a *function* from \mathbb{R}^n to \mathbb{R}^m ; the input variable \vec{x} comes from \mathbb{R}^n ,

Section 1.8 Mtx Tfms

This defines a *function* from \mathbb{R}^n to \mathbb{R}^m ; the input variable \vec{x} comes from \mathbb{R}^n , it gets multiplied by the matrix A via the formula

$$x_1\vec{a}_1+x_2\vec{a}_2+\cdots+x_n\vec{a}_n,$$

This defines a *function* from \mathbb{R}^n to \mathbb{R}^m ; the input variable \vec{x} comes from \mathbb{R}^n , it gets multiplied by the matrix A via the formula

$$x_1\vec{a}_1+x_2\vec{a}_2+\cdots+x_n\vec{a}_n,$$

and we call the resulting output \vec{y} .

This defines a function from \mathbb{R}^n to \mathbb{R}^m ; the input variable \vec{x} comes from \mathbb{R}^n , it gets multiplied by the matrix A via the formula

$$x_1\vec{a}_1+x_2\vec{a}_2+\cdots+x_n\vec{a}_n,$$

and we call the resulting output \vec{y} . That is,

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} = \vec{y} = A\vec{x} = x_1 \vec{a}_1 + x_2 \vec{a}_2 + \dots + x_n \vec{a}_n.$$

This defines a function from \mathbb{R}^n to \mathbb{R}^m ; the input variable \vec{x} comes from \mathbb{R}^n , it gets multiplied by the matrix A via the formula

$$x_1\vec{a}_1+x_2\vec{a}_2+\cdots+x_n\vec{a}_n,$$

and we call the resulting output \vec{y} . That is,

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} = \vec{y} = A\vec{x} = x_1 \vec{a}_1 + x_2 \vec{a}_2 + \dots + x_n \vec{a}_n.$$

In linear algebra, functions are usually called *transformations*.

This defines a function from \mathbb{R}^n to \mathbb{R}^m ; the input variable \vec{x} comes from \mathbb{R}^n , it gets multiplied by the matrix A via the formula

$$x_1\vec{a}_1+x_2\vec{a}_2+\cdots+x_n\vec{a}_n,$$

and we call the resulting output \vec{y} . That is,

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} = \vec{y} = A\vec{x} = x_1 \vec{a}_1 + x_2 \vec{a}_2 + \dots + x_n \vec{a}_n.$$

In linear algebra, functions are usually called *transformations*. We write $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ to indicate that \mathcal{T} is a transformation from \mathbb{R}^n to \mathbb{R}^m , meaning that the input variable \vec{x} comes from \mathbb{R}^n and the resulting output $\vec{y} = \mathcal{T}(\vec{x})$ is a vector in \mathbb{R}^m .

Here \mathbb{R}^n is the *domain* of T—where the input variables \vec{x} live—

Here \mathbb{R}^n is the *domain* of T—where the input variables \vec{x} live— and \mathbb{R}^m is the *codomain* of T—where the resulting output $\vec{y} = T(\vec{x})$ lives.

Here \mathbb{R}^n is the *domain* of T—where the input variables \vec{x} live— and \mathbb{R}^m is the *codomain* of T—where the resulting output $\vec{y} = T(\vec{x})$ lives.

For each \vec{x} in \mathbb{R}^n , $\vec{y} = T(\vec{x})$ is called the *image* of \vec{x} .

Here \mathbb{R}^n is the *domain* of T—where the input variables \vec{x} live— and \mathbb{R}^m is the *codomain* of T—where the resulting output $\vec{y} = T(\vec{x})$ lives.

For each \vec{x} in \mathbb{R}^n , $\vec{y} = T(\vec{x})$ is called the *image* of \vec{x} . If \mathbb{S} is a bunch of vectors in \mathbb{R}^n (i.e., $\mathbb{S} \subset \mathbb{R}^n$), then

$$T(S) = \{ \text{all images } T(\vec{x}) \text{ where } \vec{x} \text{ is in } S \}$$

is called the T-image of \mathbb{S} .

Here \mathbb{R}^n is the *domain* of T—where the input variables \vec{x} live— and \mathbb{R}^m is the *codomain* of T—where the resulting output $\vec{y} = T(\vec{x})$ lives.

For each \vec{x} in \mathbb{R}^n , $\vec{y} = T(\vec{x})$ is called the *image* of \vec{x} . If \mathbb{S} is a bunch of vectors in \mathbb{R}^n (i.e., $\mathbb{S} \subset \mathbb{R}^n$), then

$$T(S) = \{ \text{all images } T(\vec{x}) \text{ where } \vec{x} \text{ is in } S \}$$

is called the T-image of \mathbb{S} .

The range of T is simply $T(\mathbb{R}^n)$, which is just the set of <u>all</u> images $T(\vec{x})$.

Here \mathbb{R}^n is the *domain* of T—where the input variables \vec{x} live— and \mathbb{R}^m is the *codomain* of T—where the resulting output $\vec{y} = T(\vec{x})$ lives.

For each \vec{x} in \mathbb{R}^n , $\vec{y} = T(\vec{x})$ is called the *image* of \vec{x} . If \mathbb{S} is a bunch of vectors in \mathbb{R}^n (i.e., $\mathbb{S} \subset \mathbb{R}^n$), then

$$T(S) = \{ \text{all images } T(\vec{x}) \text{ where } \vec{x} \text{ is in } S \}$$

is called the T-image of \mathbb{S} .

The range of T is simply $T(\mathbb{R}^n)$, which is just the set of <u>all</u> images $T(\vec{x})$. Evidently, the range of T is a subset of the codomain of T.

Here \mathbb{R}^n is the *domain* of T—where the input variables \vec{x} live— and \mathbb{R}^m is the *codomain* of T—where the resulting output $\vec{y} = T(\vec{x})$ lives.

For each \vec{x} in \mathbb{R}^n , $\vec{y} = T(\vec{x})$ is called the *image* of \vec{x} . If \mathbb{S} is a bunch of vectors in \mathbb{R}^n (i.e., $\mathbb{S} \subset \mathbb{R}^n$), then

$$T(S) = \{ \text{all images } T(\vec{x}) \text{ where } \vec{x} \text{ is in } S \}$$

is called the T-image of \mathbb{S} .

The range of T is simply $T(\mathbb{R}^n)$, which is just the set of <u>all</u> images $T(\vec{x})$. Evidently, the range of T is a subset of the codomain of T.

An important question is to know which vectors \vec{b} are in the range of T.

Here \mathbb{R}^n is the *domain* of T—where the input variables \vec{x} live— and \mathbb{R}^m is the *codomain* of T—where the resulting output $\vec{y} = T(\vec{x})$ lives.

For each \vec{x} in \mathbb{R}^n , $\vec{y} = T(\vec{x})$ is called the *image* of \vec{x} . If \mathbb{S} is a bunch of vectors in \mathbb{R}^n (i.e., $\mathbb{S} \subset \mathbb{R}^n$), then

$$T(S) = \{ all \text{ images } T(\vec{x}) \text{ where } \vec{x} \text{ is in } S \}$$

is called the T-image of \mathbb{S} .

The range of T is simply $T(\mathbb{R}^n)$, which is just the set of <u>all</u> images $T(\vec{x})$. Evidently, the range of T is a subset of the codomain of T.

An important question is to know which vectors \vec{b} are in the range of T. That is: Given \vec{b} , when can we find an \vec{x} in \mathbb{R}^n with $T(\vec{x}) = \vec{b}$?

Here we assume that $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is given by the rule $T(\vec{x}) = A\vec{x}$ for some $m \times n$ matrix A.

Here we assume that $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ is given by the rule $\mathcal{T}(\vec{x}) = A\vec{x}$ for some $m \times n$ matrix A. So, for each \vec{x} in \mathbb{R}^n ,

$$T(\vec{x}) = A\vec{x} = x_1\vec{a}_1 + x_2\vec{a}_2 + \cdots + x_n\vec{a}_n$$

where $\vec{a_j}$ is the j^{th} column of A.

Here we assume that $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ is given by the rule $\mathcal{T}(\vec{x}) = A\vec{x}$ for some $m \times n$ matrix A. So, for each \vec{x} in \mathbb{R}^n ,

$$T(\vec{x}) = A\vec{x} = x_1\vec{a}_1 + x_2\vec{a}_2 + \dots + x_n\vec{a}_n$$

where $\vec{a_j}$ is the j^{th} column of A. Thus each image $T(\vec{x})$ is a LC of the columns of A.

Here we assume that $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ is given by the rule $\mathcal{T}(\vec{x}) = A\vec{x}$ for some $m \times n$ matrix A. So, for each \vec{x} in \mathbb{R}^n ,

$$T(\vec{x}) = A\vec{x} = x_1\vec{a}_1 + x_2\vec{a}_2 + \cdots + x_n\vec{a}_n$$

where $\vec{a_j}$ is the j^{th} column of A. Thus each image $T(\vec{x})$ is a LC of the columns of A.

Therefore, the range of T, which is just the set of <u>all</u> images $T(\vec{x})$, is the set of all linear combinations of the columns of A;

Here we assume that $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ is given by the rule $\mathcal{T}(\vec{x}) = A\vec{x}$ for some $m \times n$ matrix A. So, for each \vec{x} in \mathbb{R}^n ,

$$T(\vec{x}) = A\vec{x} = x_1\vec{a}_1 + x_2\vec{a}_2 + \cdots + x_n\vec{a}_n$$

where $\vec{a_j}$ is the j^{th} column of A. Thus each image $T(\vec{x})$ is a LC of the columns of A.

Therefore, the range of T, which is just the set of <u>all</u> images $T(\vec{x})$, is the set of all linear combinations of the columns of A; i.e., the range of T is the *span* of the columns of A.

Here we assume that $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ is given by the rule $\mathcal{T}(\vec{x}) = A\vec{x}$ for some $m \times n$ matrix A. So, for each \vec{x} in \mathbb{R}^n ,

$$T(\vec{x}) = A\vec{x} = x_1\vec{a}_1 + x_2\vec{a}_2 + \cdots + x_n\vec{a}_n$$

where $\vec{a_j}$ is the j^{th} column of A. Thus each image $T(\vec{x})$ is a LC of the columns of A.

Therefore, the range of T, which is just the set of <u>all</u> images $T(\vec{x})$, is the set of all linear combinations of the columns of A; i.e., the range of T is the *span* of the columns of A.

Look at: Given \vec{b} , when can we find an \vec{x} in \mathbb{R}^n with $T(\vec{x}) = \vec{b}$?

Section 1.8

Here we assume that $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is given by the rule $T(\vec{x}) = A\vec{x}$ for some $m \times n$ matrix A. So, for each \vec{x} in \mathbb{R}^n ,

$$T(\vec{x}) = A\vec{x} = x_1\vec{a}_1 + x_2\vec{a}_2 + \cdots + x_n\vec{a}_n$$

where $\vec{a_j}$ is the j^{th} column of A. Thus each image $T(\vec{x})$ is a LC of the columns of A.

Therefore, the range of T, which is just the set of <u>all</u> images $T(\vec{x})$, is the set of all linear combinations of the columns of A; i.e., the range of T is the *span* of the columns of A.

Look at: Given \vec{b} , when can we find an \vec{x} in \mathbb{R}^n with $T(\vec{x}) = \vec{b}$? Here we are just asking whether or not we can solve $A\vec{x} = \vec{b}$.

Here we assume that $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ is given by the rule $\mathcal{T}(\vec{x}) = A\vec{x}$ for some $m \times n$ matrix A. So, for each \vec{x} in \mathbb{R}^n ,

$$T(\vec{x}) = A\vec{x} = x_1\vec{a}_1 + x_2\vec{a}_2 + \cdots + x_n\vec{a}_n$$

where $\vec{a_j}$ is the j^{th} column of A. Thus each image $T(\vec{x})$ is a LC of the columns of A.

Therefore, the range of T, which is just the set of <u>all</u> images $T(\vec{x})$, is the set of all linear combinations of the columns of A; i.e., the range of T is the *span* of the columns of A.

Look at: Given \vec{b} , when can we find an \vec{x} in \mathbb{R}^n with $T(\vec{x}) = \vec{b}$? Here we are just asking whether or not we can solve $A\vec{x} = \vec{b}$.

The range of T is exactly all rhs vectors \vec{b} such that $A\vec{x} = \vec{b}$ has a solution.