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Another look at the matrix product A~x

Let ~aj be the j th column of some m × n matrix A, and ~x be in Rn,

so

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

...
...

am1 am2 . . . amn

 , ~aj =


a1j
a2j
...

amj

 , and ~x =


x1
x2
...
xn

 .

The product A~x is defined to be the LC

x1~a1 + x2~a2 + · · ·+ xn~an.

Since each ~aj is a vector in Rm, so is A~x . Thus we can define a vector
function by the rule ~y = A~x . Here

~y =


y1
y2
...
ym

 .
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The matrix transformation ~y = A~x

This defines a function from Rn to Rm;

the input variable ~x comes from
Rn, it gets multiplied by the matrix A via the formula

x1~a1 + x2~a2 + · · ·+ xn~an,

and we call the resulting output ~y . That is,
y1
y2
...
ym

 = ~y = A~x = x1~a1 + x2~a2 + · · ·+ xn~an.

In linear algebra, functions are usually called transformations. We write

Rn T−→ Rm to indicate that T is a transformation from Rn to Rm, meaning
that the input variable ~x comes from Rn and the resulting output
~y = T (~x) is a vector in Rm.
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A transformation Rn T−→ Rm

Here Rn is the domain of T—where the input variables ~x live— and Rm is
the codomain of T—where the resulting output ~y = T (~x) lives.

For each ~x in Rn, ~y = T (~x) is called the image of ~x . If S is a bunch of
vectors in Rn (i.e., S ⊂ Rn), then

T (S) =
{

all images T (~x) where ~x is in S
}

is called the T -image of S.

The range of T is simply T (Rn), which is just the set of all images T (~x).
Evidently, the range of T is a subset of the codomain of T .

An important question is to know which vectors ~b are in the range of T .
That is: Given ~b, when can we find an ~x in Rn with T (~x) = ~b?
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A matrix transformation Rn T−→ Rm

Here we assume that Rn T−→ Rm is given by the rule T (~x) = A~x for some
m × n matrix A.

So, for each ~x in Rn,

T (~x) = A~x = x1~a1 + x2~a2 + · · ·+ xn~an

where ~aj is the j th column of A. Thus each image T (~x) is a LC of the
columns of A.

Therefore, the range of T , which is just the set of all images T (~x), is the
set of all linear combinations of the columns of A; i.e., the range of T is
the span of the columns of A.

Look at: Given ~b, when can we find an ~x in Rn with T (~x) = ~b? Here we
are just asking whether or not we can solve A~x = ~b.

The range of T is exactly all rhs vectors ~b such that A~x = ~b has a solution.
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