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Linear Combinations and Span

Suppose s1, s2, . . . , sp are scalars and ~v1, ~v2, . . . , ~vp are vectors (all in the
same space Rn). We call

s1~v1 + s2~v2 + · · ·+ sp~vp

a linear combination of the vectors ~v1, ~v2, . . . , ~vp. We always have the
trivial linear combination

0 · ~v1 + 0 · ~v2 + · · ·+ 0 · ~vp = ~0.

Here we want to know when there is a non-trivial LC of ~v1, ~v2, . . . , ~vp that
equals ~0. This means that

s1~v1 + s2~v2 + · · ·+ sp~vp = ~0 and some scalar sj 6= 0 .
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The span of ~v1, ~v2, . . . , ~vp

Span{~v1, ~v2, . . . , ~vp} =
{
~w | ~w = s1~v1 + s2~v2 + · · ·+ sp~vp , sj scalars

}
The span of a single vector is a line. Except when this is not true. ¨̂

The span of a two vectors is:

a line if the two vectors are parallel

a plane if the two vectors are not parallel

except when this is not true ¨̂

What “is” the span of 7 vectors?

It depends. . . .
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Linear Dependence

The vectors ~v1, ~v2, . . . , ~vp are linearly dependent if there is a non-trivial LC

of them that equals ~0: that is, if there are scalars s1, s2, . . . , sp so that

s1~v1 + s2~v2 + · · ·+ sp~vp = ~0,

and (at least) one of the scalars is non-zero.

Linearly dependent vectors carry redundant information.

Vectors that are not LD are said to be linearly independent. Linearly
independent vectors carry NO redundant information.
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Example—three vectors in R3

Are the vectors

1
0
1

 ,

2
1
3

 ,

3
1
4

 LD or LI? Notice that

1
0
1

+

2
1
3

 =

3
1
4

.

Thus

1
0
1

+

2
1
3

−
3

1
4

 = ~0. So the three vectors are LD.

This means that

Span
{1

0
1

 ,

2
1
3

 ,

3
1
4

} = Span
{1

0
1

 ,

2
1
3

}

which is a plane in R3.
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Example—three vectors in R3

Are the vectors
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1
1
1

+ 5
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0
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2
2
7

, so

2

1
1
1

+ 5

0
0
1

−
2

2
7

 = ~0. Therefore, the three vectors are LD.

This means that

Span
{1

1
1

 ,

0
0
1

 ,

2
2
7
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{1

1
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0
0
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which is a plane in R3.
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Example—three vectors in R3

Are the vectors

1
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0
1
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 LD or LI? Since −

1
0
1

+

1
1
2
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0
1
1

, we

get −

1
0
1

+

1
1
2

−
0

1
1

 = ~0. So the three vectors are LD.

This means that

Span
{1

0
1

 ,

1
1
2

 ,

0
1
1

} = Span
{1

0
1

 ,

1
1
2

}

which is a plane in R3.
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Example—three vectors in R4

Are the vectors ~v1 =


1
0
2
1

 , ~v2 =


1
1
0
2

 , ~v3 =


2
−1
6
1

 LD or LI?

Easy to see that ~v3 = 3~v1 − ~v2, so 3~v1 − ~v2 − ~v3 = ~0 and therefore
~v1, ~v2, ~v3 are LD. Also, Span

{
~v1, ~v2, ~v3

}
= Span

{
~v1, ~v2

}
which is a

2-plane in R4.

But what if we had five (or fifteen) vectors?
Let A =

[
~v1 ~v2 ~v3

]
be the matrix with columns given by ~v1, ~v2, ~v3.

Recall that A~x is the LC of the columns of A given by

A~x = A

x1x2
x3

 = x1~v1 + x2~v2 + x3~v3.

See that there is a non-trivial LC x1~v1 + x2~v2 + x3~v3 = ~0 if and only if
there is a non-trivial (i.e., non-zero) solution to A~x = ~0.
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Example—three vectors in R4 (continued)

We row reduce A to get
1 1 2
0 1 −1
2 0 6
1 2 1

 R3−2∗R1−−−−−→
R4−R1−−−−→


1 1 2
0 1 −1
0 −2 2
0 1 −1

 R3+2∗R2−−−−−→
R4−R2−−−−→


1 1 2
0 1 −1
0 0 0
0 0 0


Since the last column has no row leader, we know that x3 is a free
variable. Thus x3 = t (with t any scalar), x2 = t and x1 = −3t.

There are infinitely many solutions to A~x = ~0, and all but one of these is
non-trivial. Thus, there are infinitely many non-trival LCs
s1~v1 + s2~v2 + s3~v3 = ~0.
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Linearly Dependent Vectors

Suppose the vectors ~v , ~w are LD. This means there are scalars s, t such
that s~v + t ~w = ~0 and s, t are NOT both zero. Assume s 6= 0.
Then we can write ~v = −(t/s)~w . Thus ~v is a scalar multiple of ~w ;
i.e., ~v is a LC of ~w .
Suppose ~v1 is a LC of ~v2, ~v3, . . . , ~vp. This means there are scalars
s2, s3, . . . , sp so that

~v1 = s2~v2 + s3~v3 + · · ·+ sp~vp.

Then
~v1 −

(
s2~v2 + s3~v3 + · · ·+ sp~vp

)
= ~0.

so we see that ~v1, ~v2, ~v3, . . . , ~vp are LD.

If some ~vj is an LC of the other vectors, then ~v1, ~v2, ~v3, . . . , ~vp are LD.
Converse true too!
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A useful Fact—“too many” vectors are always LD

If p > n, then any set of p vectors in Rn is LD.

Any 5 vectors in R4 are LD. Any 11 vectors in R7 are LD.

Why?

Just look at REF of appropriate coefficient matrix! ¨̂
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Parallel Vectors

Two vectors are parallel if and only if one is a scalar multiple of the other.

Any two non-zero vectors are LI if and only if they are not parallel. Why?
(a good quiz question!)

Suppose we have three vectors ~v1, ~v2, ~v3 (say, in R5) and ~v1 ∦ ~v2 ∦ ~v3 ∦ ~v1.

Are ~v1, ~v2, ~v3 LD or LI?

Hint: it is not difficult to produce a simple example!
(a good exam question ¨̂ )
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