Linear Independence

Linear Algebra MATH 2076

Suppose s_1, s_2, \ldots, s_p are scalars and $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ are vectors (all in the same space \mathbb{R}^n).

Suppose s_1, s_2, \ldots, s_p are scalars and $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ are vectors (all in the same space \mathbb{R}^n). We call

$$s_1\vec{v}_1 + s_2\vec{v}_2 + \cdots + s_p\vec{v}_p$$

a *linear combination* of the vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$.

Suppose s_1, s_2, \ldots, s_p are scalars and $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ are vectors (all in the same space \mathbb{R}^n). We call

$$s_1\vec{v}_1 + s_2\vec{v}_2 + \cdots + s_p\vec{v}_p$$

a *linear combination* of the vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$. We always have the *trivial* linear combination

$$0\cdot\vec{\mathbf{v}}_1+0\cdot\vec{\mathbf{v}}_2+\cdots+0\cdot\vec{\mathbf{v}}_p=\vec{0}.$$

Suppose s_1, s_2, \ldots, s_p are scalars and $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ are vectors (all in the same space \mathbb{R}^n). We call

$$s_1\vec{v}_1 + s_2\vec{v}_2 + \cdots + s_p\vec{v}_p$$

a *linear combination* of the vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$. We always have the *trivial* linear combination

$$0 \cdot \vec{v_1} + 0 \cdot \vec{v_2} + \cdots + 0 \cdot \vec{v_p} = \vec{0}.$$

Recall that the *span* of $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$,

$$Span\{\vec{v}_1,\vec{v}_2,\ldots\vec{v}_p\}$$
.

is the set of all LCs of $\vec{v}_1, \vec{v}_2, \dots \vec{v}_p$.

Suppose s_1, s_2, \ldots, s_p are scalars and $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ are vectors (all in the same space \mathbb{R}^n). We call

$$s_1\vec{v}_1 + s_2\vec{v}_2 + \cdots + s_p\vec{v}_p$$

a *linear combination* of the vectors $\vec{v_1}, \vec{v_2}, \dots, \vec{v_p}$. We always have the *trivial* linear combination

$$0\cdot\vec{\mathbf{v}}_1+0\cdot\vec{\mathbf{v}}_2+\cdots+0\cdot\vec{\mathbf{v}}_p=\vec{0}.$$

Here we want to know when there is a <u>non-trivial</u> LC of $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$ that equals $\vec{0}$.

Suppose s_1, s_2, \ldots, s_p are scalars and $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ are vectors (all in the same space \mathbb{R}^n). We call

$$s_1\vec{v}_1 + s_2\vec{v}_2 + \cdots + s_p\vec{v}_p$$

a *linear combination* of the vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$. We always have the *trivial* linear combination

$$0\cdot\vec{\mathbf{v}}_1+0\cdot\vec{\mathbf{v}}_2+\cdots+0\cdot\vec{\mathbf{v}}_p=\vec{0}.$$

Here we want to know when there is a <u>non-trivial</u> LC of $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ that equals $\vec{0}$. This means that

$$s_1\vec{v}_1 + s_2\vec{v}_2 + \cdots + s_p\vec{v}_p = \vec{0}$$

Suppose s_1, s_2, \ldots, s_p are scalars and $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ are vectors (all in the same space \mathbb{R}^n). We call

$$s_1\vec{v}_1 + s_2\vec{v}_2 + \cdots + s_p\vec{v}_p$$

a *linear combination* of the vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$. We always have the *trivial* linear combination

$$0\cdot\vec{\mathbf{v}}_1+0\cdot\vec{\mathbf{v}}_2+\cdots+0\cdot\vec{\mathbf{v}}_p=\vec{0}.$$

Here we want to know when there is a <u>non-trivial</u> LC of $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ that equals $\vec{0}$. This means that

$$s_1\vec{v}_1 + s_2\vec{v}_2 + \cdots + s_p\vec{v}_p = \vec{0}$$
 and some scalar $s_j \neq 0$.

Suppose s_1, s_2, \ldots, s_p are scalars and $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ are vectors (all in the same space \mathbb{R}^n). We call

$$s_1\vec{v}_1 + s_2\vec{v}_2 + \cdots + s_p\vec{v}_p$$

a *linear combination* of the vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$. We always have the *trivial* linear combination

$$0\cdot\vec{\mathbf{v}}_1+0\cdot\vec{\mathbf{v}}_2+\cdots+0\cdot\vec{\mathbf{v}}_p=\vec{0}.$$

Here we want to know when there is a <u>non-trivial</u> LC of $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ that equals $\vec{0}$. This means that

$$s_1\vec{v}_1 + s_2\vec{v}_2 + \cdots + s_p\vec{v}_p = \vec{0}$$
 and some scalar $s_j \neq 0$.

Suppose s_1, s_2, \ldots, s_p are scalars and $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ are vectors (all in the same space \mathbb{R}^n). We call

$$s_1\vec{v}_1 + s_2\vec{v}_2 + \cdots + s_p\vec{v}_p$$

a *linear combination* of the vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$. We always have the *trivial* linear combination

$$0\cdot\vec{\mathbf{v}}_1+0\cdot\vec{\mathbf{v}}_2+\cdots+0\cdot\vec{\mathbf{v}}_p=\vec{0}.$$

Here we want to know when there is a <u>non-trivial</u> LC of $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ that equals $\vec{0}$. This means that

$$s_1\vec{v}_1 + s_2\vec{v}_2 + \cdots + s_p\vec{v}_p = \vec{0}$$
 and some scalar $s_j \neq 0$.

Suppose s_1, s_2, \ldots, s_p are scalars and $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ are vectors (all in the same space \mathbb{R}^n). We call

$$s_1\vec{v}_1 + s_2\vec{v}_2 + \cdots + s_p\vec{v}_p$$

a *linear combination* of the vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$. We always have the *trivial* linear combination

$$0\cdot\vec{\mathbf{v}}_1+0\cdot\vec{\mathbf{v}}_2+\cdots+0\cdot\vec{\mathbf{v}}_p=\vec{0}.$$

Here we want to know when there is a <u>non-trivial</u> LC of $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ that equals $\vec{0}$. This means that

$$s_1\vec{v}_1 + s_2\vec{v}_2 + \cdots + s_p\vec{v}_p = \vec{0}$$
 and some scalar $s_j \neq 0$.

$$\mathcal{S}\textit{pan}\{\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_p\} = \left\{\vec{w} \mid \vec{w} = s_1\vec{v}_1 + s_2\vec{v}_2 + \cdots + s_p\vec{v}_p \,, s_j \text{ scalars} \right\}$$

$$\mathcal{S}\textit{pan}\{\vec{v}_{1},\vec{v}_{2},\ldots,\vec{v}_{\rho}\} = \left\{\vec{w} \mid \vec{w} = s_{1}\vec{v}_{1} + s_{2}\vec{v}_{2} + \cdots + s_{\rho}\vec{v}_{\rho}\,, s_{j} \text{ scalars}\right\}$$

The *span* of a single vector is a line.

$$\mathcal{S}\textit{pan}\{\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_p\} = \left\{\vec{w} \mid \vec{w} = s_1\vec{v}_1 + s_2\vec{v}_2 + \cdots + s_p\vec{v}_p\,, s_j \text{ scalars}\right\}$$

The span of a single vector is a line. Except when this is not true. $\ddot{-}$

$$\mathcal{S}\textit{pan}\{\vec{v}_{1},\vec{v}_{2},\ldots,\vec{v}_{\rho}\} = \left\{\vec{w} \mid \vec{w} = s_{1}\vec{v}_{1} + s_{2}\vec{v}_{2} + \cdots + s_{\rho}\vec{v}_{\rho}\,, s_{j} \text{ scalars}\right\}$$

The span of a single vector is a line. Except when this is not true. $\ddot{\ }$

The *span* of a two vectors is:

$$\mathcal{S}\textit{pan}\{\vec{v}_{1},\vec{v}_{2},\ldots,\vec{v}_{\rho}\} = \left\{\vec{w} \mid \vec{w} = s_{1}\vec{v}_{1} + s_{2}\vec{v}_{2} + \cdots + s_{\rho}\vec{v}_{\rho}\,, s_{j} \text{ scalars}\right\}$$

The span of a single vector is a line. Except when this is not true. $\ddot{\ }$

The span of a two vectors is:

a line if the two vectors are parallel

$$\mathcal{S}\textit{pan}\{\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_p\} = \left\{\vec{w} \mid \vec{w} = s_1\vec{v}_1 + s_2\vec{v}_2 + \cdots + s_p\vec{v}_p \,, s_j \text{ scalars} \right\}$$

The span of a single vector is a line. Except when this is not true. $\ddot{\ }$

The span of a two vectors is:

- a line if the two vectors are parallel
- a plane if the two vectors are not parallel

$$Span\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\} = \{\vec{w} \mid \vec{w} = s_1\vec{v}_1 + s_2\vec{v}_2 + \dots + s_p\vec{v}_p, s_j \text{ scalars}\}$$

The *span* of a single vector is a line. Except when this is not true. $\ddot{\smile}$

The span of a two vectors is:

- a line if the two vectors are parallel
- a plane if the two vectors are not parallel
- ullet except when this is not true $\ddot{\ }$

$$\mathcal{S}\textit{pan}\{\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_p\} = \left\{\vec{w} \mid \vec{w} = s_1\vec{v}_1 + s_2\vec{v}_2 + \cdots + s_p\vec{v}_p\,, s_j \text{ scalars}\right\}$$

The *span* of a single vector is a line. Except when this is not true. $\ddot{\smile}$

The span of a two vectors is:

- a line if the two vectors are parallel
- a plane if the two vectors are not parallel
- ullet except when this is not true $\ddot{\ }$

What "is" the span of 7 vectors?

$$\mathcal{S}\textit{pan}\{\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_p\} = \left\{\vec{w} \mid \vec{w} = s_1\vec{v}_1 + s_2\vec{v}_2 + \cdots + s_p\vec{v}_p\,, s_j \text{ scalars}\right\}$$

The *span* of a single vector is a line. Except when this is not true. $\ddot{\smile}$

The span of a two vectors is:

- a line if the two vectors are parallel
- a plane if the two vectors are not parallel
- ullet except when this is not true $\ddot{\ }$

What "is" the span of 7 vectors?

It depends....

The vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$ are *linearly* <u>dependent</u> if there is a <u>non-trivial</u> LC of them that equals $\vec{0}$:

The vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$ are *linearly dependent* if there is a <u>non-trivial</u> LC of them that equals $\vec{0}$: that is, if there are scalars s_1, s_2, \dots, s_p so that

$$s_1\vec{v}_1 + s_2\vec{v}_2 + \cdots + s_p\vec{v}_p = \vec{0},$$

The vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$ are *linearly dependent* if there is a <u>non-trivial</u> LC of them that equals $\vec{0}$: that is, if there are scalars s_1, s_2, \dots, s_p so that

$$s_1\vec{v}_1 + s_2\vec{v}_2 + \cdots + s_p\vec{v}_p = \vec{0},$$

and (at least) one of the scalars is non-zero.

The vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$ are *linearly dependent* if there is a <u>non-trivial</u> LC of them that equals $\vec{0}$: that is, if there are scalars s_1, s_2, \dots, s_p so that

$$s_1\vec{v}_1 + s_2\vec{v}_2 + \cdots + s_p\vec{v}_p = \vec{0},$$

and (at least) one of the scalars is non-zero.

Linearly dependent vectors carry redundant information.

The vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$ are *linearly dependent* if there is a <u>non-trivial</u> LC of them that equals $\vec{0}$: that is, if there are scalars s_1, s_2, \dots, s_p so that

$$s_1\vec{v}_1 + s_2\vec{v}_2 + \cdots + s_p\vec{v}_p = \vec{0},$$

and (at least) one of the scalars is non-zero.

When is a single vector \vec{v} LD ? (good quiz question!)

The vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$ are *linearly dependent* if there is a <u>non-trivial</u> LC of them that equals $\vec{0}$: that is, if there are scalars s_1, s_2, \dots, s_p so that

$$s_1\vec{v}_1 + s_2\vec{v}_2 + \cdots + s_p\vec{v}_p = \vec{0},$$

and (at least) one of the scalars is non-zero.

When is a pair of vectors \vec{v}_1, \vec{v}_2 LD ? (better quiz question!)

The vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$ are *linearly dependent* if there is a <u>non-trivial</u> LC of them that equals $\vec{0}$: that is, if there are scalars s_1, s_2, \dots, s_p so that

$$s_1\vec{v}_1 + s_2\vec{v}_2 + \cdots + s_p\vec{v}_p = \vec{0},$$

and (at least) one of the scalars is *non-zero*.

Vectors that are *not* LD are said to be *linearly independent*.

The vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$ are *linearly* <u>dependent</u> if there is a <u>non-trivial</u> LC of them that equals $\vec{0}$: that is, if there are scalars s_1, s_2, \dots, s_p so that

$$s_1\vec{v}_1 + s_2\vec{v}_2 + \cdots + s_p\vec{v}_p = \vec{0},$$

and (at least) one of the scalars is *non-zero*.

Vectors that are *not* LD are said to be *linearly* <u>independent</u>. Linearly independent vectors carry NO redundant information.

Are the vectors
$$\begin{bmatrix} 1\\0\\1 \end{bmatrix}$$
, $\begin{bmatrix} 2\\1\\3 \end{bmatrix}$, $\begin{bmatrix} 3\\1\\4 \end{bmatrix}$ LD or LI?

Are the vectors
$$\begin{bmatrix} 1\\0\\1 \end{bmatrix}$$
, $\begin{bmatrix} 2\\1\\3 \end{bmatrix}$, $\begin{bmatrix} 3\\1\\4 \end{bmatrix}$ LD or LI? Notice that $\begin{bmatrix} 1\\0\\1 \end{bmatrix} + \begin{bmatrix} 2\\1\\3 \end{bmatrix} = \begin{bmatrix} 3\\1\\4 \end{bmatrix}$.

Are the vectors
$$\begin{bmatrix} 1\\0\\1 \end{bmatrix}$$
, $\begin{bmatrix} 2\\1\\3 \end{bmatrix}$, $\begin{bmatrix} 3\\1\\4 \end{bmatrix}$ LD or LI? Notice that $\begin{bmatrix} 1\\0\\1 \end{bmatrix} + \begin{bmatrix} 2\\1\\3 \end{bmatrix} = \begin{bmatrix} 3\\1\\4 \end{bmatrix}$. Thus $\begin{bmatrix} 1\\0\\1 \end{bmatrix} + \begin{bmatrix} 2\\1\\3 \end{bmatrix} - \begin{bmatrix} 3\\1\\4 \end{bmatrix} = \vec{0}$.

Are the vectors
$$\begin{bmatrix} 1\\0\\1 \end{bmatrix}$$
, $\begin{bmatrix} 2\\1\\3 \end{bmatrix}$, $\begin{bmatrix} 3\\1\\4 \end{bmatrix}$ LD or LI? Notice that $\begin{bmatrix} 1\\0\\1 \end{bmatrix} + \begin{bmatrix} 2\\1\\3 \end{bmatrix} = \begin{bmatrix} 3\\1\\4 \end{bmatrix}$.

Thus
$$\begin{bmatrix} 1\\0\\1 \end{bmatrix} + \begin{bmatrix} 2\\1\\3 \end{bmatrix} - \begin{bmatrix} 3\\1\\4 \end{bmatrix} = \vec{0}$$
. So the three vectors are LD.

Are the vectors
$$\begin{bmatrix} 1\\0\\1 \end{bmatrix}$$
, $\begin{bmatrix} 2\\1\\3 \end{bmatrix}$, $\begin{bmatrix} 3\\1\\4 \end{bmatrix}$ LD or LI? Notice that $\begin{bmatrix} 1\\0\\1 \end{bmatrix} + \begin{bmatrix} 2\\1\\3 \end{bmatrix} = \begin{bmatrix} 3\\1\\4 \end{bmatrix}$. Thus $\begin{bmatrix} 1\\0\\1 \end{bmatrix} + \begin{bmatrix} 2\\1\\3 \end{bmatrix} = \vec{0}$. So the three vectors are LD.

This means that

$$\mathcal{S}\textit{pan}\bigg\{\begin{bmatrix}1\\0\\1\end{bmatrix},\begin{bmatrix}2\\1\\3\end{bmatrix},\begin{bmatrix}3\\1\\4\end{bmatrix}\bigg\} = \mathcal{S}\textit{pan}\bigg\{\begin{bmatrix}1\\0\\1\end{bmatrix},\begin{bmatrix}2\\1\\3\end{bmatrix}\bigg\}$$

which is a plane in \mathbb{R}^3 .

Are the vectors
$$\begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
, $\begin{bmatrix} 0\\0\\1 \end{bmatrix}$, $\begin{bmatrix} 2\\2\\7 \end{bmatrix}$ LD or LI?

Are the vectors
$$\begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
, $\begin{bmatrix} 0\\0\\1 \end{bmatrix}$, $\begin{bmatrix} 2\\2\\7 \end{bmatrix}$ LD or LI? Well, $2\begin{bmatrix} 1\\1\\1 \end{bmatrix} + 5\begin{bmatrix} 0\\0\\1 \end{bmatrix} = \begin{bmatrix} 2\\2\\7 \end{bmatrix}$,

Are the vectors
$$\begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
, $\begin{bmatrix} 0\\0\\1 \end{bmatrix}$, $\begin{bmatrix} 2\\2\\7 \end{bmatrix}$ LD or LI? Well, $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ + $\begin{bmatrix} 0\\0\\1 \end{bmatrix}$ = $\begin{bmatrix} 2\\2\\7 \end{bmatrix}$, so $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ + $\begin{bmatrix} 0\\0\\1 \end{bmatrix}$ - $\begin{bmatrix} 2\\2\\7 \end{bmatrix}$ = $\vec{0}$.

Are the vectors
$$\begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
, $\begin{bmatrix} 0\\0\\1 \end{bmatrix}$, $\begin{bmatrix} 2\\2\\7 \end{bmatrix}$ LD or LI? Well, $2\begin{bmatrix}1\\1\\1 \end{bmatrix} + 5\begin{bmatrix}0\\0\\1 \end{bmatrix} = \begin{bmatrix}2\\2\\7 \end{bmatrix}$, so $2\begin{bmatrix}1\\1\\1 \end{bmatrix} + 5\begin{bmatrix}0\\0\\1 \end{bmatrix} - \begin{bmatrix}2\\2\\7 \end{bmatrix} = \vec{0}$. Therefore, the three vectors are LD.

Are the vectors
$$\begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
, $\begin{bmatrix} 0\\0\\1 \end{bmatrix}$, $\begin{bmatrix} 2\\2\\7 \end{bmatrix}$ LD or LI? Well, $2\begin{bmatrix} 1\\1\\1 \end{bmatrix} + 5\begin{bmatrix} 0\\0\\1 \end{bmatrix} = \begin{bmatrix} 2\\2\\7 \end{bmatrix}$, so $2\begin{bmatrix} 1\\1\\1 \end{bmatrix} + 5\begin{bmatrix} 0\\0\\1 \end{bmatrix} - \begin{bmatrix} 2\\2\\7 \end{bmatrix} = \vec{0}$. Therefore, the three vectors are LD.

This means that

$$\mathcal{S}\textit{pan}\bigg\{\begin{bmatrix}1\\1\\1\end{bmatrix},\begin{bmatrix}0\\0\\1\end{bmatrix},\begin{bmatrix}2\\2\\7\end{bmatrix}\bigg\} = \mathcal{S}\textit{pan}\bigg\{\begin{bmatrix}1\\1\\1\end{bmatrix},\begin{bmatrix}0\\0\\1\end{bmatrix}\bigg\}$$

which is a plane in \mathbb{R}^3 .

Linear Algebra

LI or LD

Are the vectors
$$\begin{bmatrix} 1\\0\\1 \end{bmatrix}$$
, $\begin{bmatrix} 1\\1\\2 \end{bmatrix}$, $\begin{bmatrix} 0\\1\\1 \end{bmatrix}$ LD or LI?

Are the vectors
$$\begin{bmatrix} 1\\0\\1 \end{bmatrix}$$
, $\begin{bmatrix} 1\\1\\2 \end{bmatrix}$, $\begin{bmatrix} 0\\1\\1 \end{bmatrix}$ LD or LI? Since $-\begin{bmatrix} 1\\0\\1 \end{bmatrix} + \begin{bmatrix} 1\\1\\2 \end{bmatrix} = \begin{bmatrix} 0\\1\\1 \end{bmatrix}$,

Are the vectors
$$\begin{bmatrix} 1\\0\\1 \end{bmatrix}$$
, $\begin{bmatrix} 1\\1\\2 \end{bmatrix}$, $\begin{bmatrix} 0\\1\\1 \end{bmatrix}$ LD or LI? Since $-\begin{bmatrix} 1\\0\\1 \end{bmatrix} + \begin{bmatrix} 1\\1\\2 \end{bmatrix} = \begin{bmatrix} 0\\1\\1 \end{bmatrix}$, we get $-\begin{bmatrix} 1\\0\\1 \end{bmatrix} + \begin{bmatrix} 1\\1\\2 \end{bmatrix} - \begin{bmatrix} 0\\1\\1 \end{bmatrix} = \vec{0}$.

Are the vectors
$$\begin{bmatrix} 1\\0\\1 \end{bmatrix}$$
, $\begin{bmatrix} 1\\1\\2 \end{bmatrix}$, $\begin{bmatrix} 0\\1\\1 \end{bmatrix}$ LD or LI? Since $-\begin{bmatrix} 1\\0\\1 \end{bmatrix} + \begin{bmatrix} 1\\1\\2 \end{bmatrix} = \begin{bmatrix} 0\\1\\1 \end{bmatrix}$, we get $-\begin{bmatrix} 1\\0\\1 \end{bmatrix} + \begin{bmatrix} 1\\1\\2 \end{bmatrix} - \begin{bmatrix} 0\\1\\1 \end{bmatrix} = \vec{0}$. So the three vectors are LD.

Are the vectors
$$\begin{bmatrix} 1\\0\\1 \end{bmatrix}$$
, $\begin{bmatrix} 1\\1\\2 \end{bmatrix}$, $\begin{bmatrix} 0\\1\\1 \end{bmatrix}$ LD or LI? Since $-\begin{bmatrix} 1\\0\\1 \end{bmatrix} + \begin{bmatrix} 1\\1\\2 \end{bmatrix} = \begin{bmatrix} 0\\1\\1 \end{bmatrix}$, we get $-\begin{bmatrix} 1\\0\\1 \end{bmatrix} + \begin{bmatrix} 1\\1\\2 \end{bmatrix} - \begin{bmatrix} 0\\1\\1 \end{bmatrix} = \vec{0}$. So the three vectors are LD.

This means that

$$\mathcal{S}\textit{pan}\bigg\{\begin{bmatrix}1\\0\\1\end{bmatrix},\begin{bmatrix}1\\1\\2\end{bmatrix},\begin{bmatrix}0\\1\\1\end{bmatrix}\bigg\} = \mathcal{S}\textit{pan}\bigg\{\begin{bmatrix}1\\0\\1\end{bmatrix},\begin{bmatrix}1\\1\\2\end{bmatrix}\bigg\}$$

which is a plane in \mathbb{R}^3 .

Linear Algebra

Are the vectors
$$\vec{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 1 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 2 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 2 \\ -1 \\ 6 \\ 1 \end{bmatrix}$ LD or LI?

Are the vectors
$$\vec{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 1 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 2 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 2 \\ -1 \\ 6 \\ 1 \end{bmatrix}$ LD or LI?

Easy to see that $\vec{v}_3 = 3\vec{v}_1 - \vec{v}_2$,

Are the vectors
$$\vec{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 1 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 2 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 2 \\ -1 \\ 6 \\ 1 \end{bmatrix}$ LD or LI?

Easy to see that $\vec{v}_3=3\vec{v}_1-\vec{v}_2$, so $3\vec{v}_1-\vec{v}_2-\vec{v}_3=\vec{0}$ and therefore $\vec{v}_1,\vec{v}_2,\vec{v}_3$ are LD.

Are the vectors
$$\vec{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 1 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 2 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 2 \\ -1 \\ 6 \\ 1 \end{bmatrix}$ LD or LI?

Easy to see that $\vec{v}_3=3\vec{v}_1-\vec{v}_2$, so $3\vec{v}_1-\vec{v}_2-\vec{v}_3=\vec{0}$ and therefore $\vec{v}_1,\vec{v}_2,\vec{v}_3$ are LD. Also, $\mathcal{S}pan\{\vec{v}_1,\vec{v}_2,\vec{v}_3\}=\mathcal{S}pan\{\vec{v}_1,\vec{v}_2\}$ which is a 2-plane in \mathbb{R}^4 .

Are the vectors
$$\vec{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 1 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 2 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 2 \\ -1 \\ 6 \\ 1 \end{bmatrix}$ LD or LI?

Easy to see that $\vec{v}_3=3\vec{v}_1-\vec{v}_2$, so $3\vec{v}_1-\vec{v}_2-\vec{v}_3=\vec{0}$ and therefore $\vec{v}_1,\vec{v}_2,\vec{v}_3$ are LD. Also, $\mathcal{S}\textit{pan}\{\vec{v}_1,\vec{v}_2,\vec{v}_3\}=\mathcal{S}\textit{pan}\{\vec{v}_1,\vec{v}_2\}$ which is a 2-plane in \mathbb{R}^4 .

But what if we had five (or fifteen) vectors?

Are the vectors
$$\vec{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 1 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 2 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} 2 \\ -1 \\ 6 \\ 1 \end{bmatrix}$$
 LD or LI?

Easy to see that $\vec{v}_3=3\vec{v}_1-\vec{v}_2$, so $3\vec{v}_1-\vec{v}_2-\vec{v}_3=\vec{0}$ and therefore $\vec{v}_1,\vec{v}_2,\vec{v}_3$ are LD. Also, $\mathcal{S}\textit{pan}\{\vec{v}_1,\vec{v}_2,\vec{v}_3\}=\mathcal{S}\textit{pan}\{\vec{v}_1,\vec{v}_2\}$ which is a 2-plane in \mathbb{R}^4 .

But what if we had five (or fifteen) vectors? Let $A = \begin{bmatrix} \vec{v_1} & \vec{v_2} & \vec{v_3} \end{bmatrix}$ be the matrix with columns given by $\vec{v_1}, \vec{v_2}, \vec{v_3}$.

Are the vectors
$$\vec{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 1 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 2 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 2 \\ -1 \\ 6 \\ 1 \end{bmatrix}$ LD or LI?

Easy to see that $\vec{v}_3=3\vec{v}_1-\vec{v}_2$, so $3\vec{v}_1-\vec{v}_2-\vec{v}_3=\vec{0}$ and therefore $\vec{v}_1,\vec{v}_2,\vec{v}_3$ are LD. Also, $\mathcal{S}pan\{\vec{v}_1,\vec{v}_2,\vec{v}_3\}=\mathcal{S}pan\{\vec{v}_1,\vec{v}_2\}$ which is a 2-plane in \mathbb{R}^4 .

But what if we had five (or fifteen) vectors? Let $A = \begin{bmatrix} \vec{v_1} & \vec{v_2} & \vec{v_3} \end{bmatrix}$ be the matrix with columns given by $\vec{v_1}, \vec{v_2}, \vec{v_3}$. Recall that $A\vec{x}$ is the LC of the columns of A given by

$$A\vec{x} = A \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_1 \vec{v}_1 + x_2 \vec{v}_2 + x_3 \vec{v}_3.$$

8 / 1

Are the vectors
$$\vec{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 1 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 2 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} 2 \\ -1 \\ 6 \\ 1 \end{bmatrix}$$
 LD or LI?

Easy to see that $\vec{v}_3=3\vec{v}_1-\vec{v}_2$, so $3\vec{v}_1-\vec{v}_2-\vec{v}_3=\vec{0}$ and therefore $\vec{v}_1,\vec{v}_2,\vec{v}_3$ are LD. Also, $\mathcal{S}pan\{\vec{v}_1,\vec{v}_2,\vec{v}_3\}=\mathcal{S}pan\{\vec{v}_1,\vec{v}_2\}$ which is a 2-plane in \mathbb{R}^4 .

But what if we had five (or fifteen) vectors? Let $A = \begin{bmatrix} \vec{v_1} & \vec{v_2} & \vec{v_3} \end{bmatrix}$ be the matrix with columns given by $\vec{v_1}, \vec{v_2}, \vec{v_3}$. Recall that $A\vec{x}$ is the LC of the columns of A given by

$$A\vec{x} = A \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_1 \vec{v}_1 + x_2 \vec{v}_2 + x_3 \vec{v}_3.$$

See that there is a non-trivial LC $x_1\vec{v}_1+x_2\vec{v}_2+x_3\vec{v}_3=\vec{0}$ if and only if

8 / 1

Linear Algebra LI or LD Chapter 1, Section 7

Are the vectors
$$\vec{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 1 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 2 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} 2 \\ -1 \\ 6 \\ 1 \end{bmatrix}$$
 LD or LI?

Easy to see that $\vec{v}_3=3\vec{v}_1-\vec{v}_2$, so $3\vec{v}_1-\vec{v}_2-\vec{v}_3=\vec{0}$ and therefore $\vec{v}_1,\vec{v}_2,\vec{v}_3$ are LD. Also, $\mathcal{S}pan\{\vec{v}_1,\vec{v}_2,\vec{v}_3\}=\mathcal{S}pan\{\vec{v}_1,\vec{v}_2\}$ which is a 2-plane in \mathbb{R}^4 .

But what if we had five (or fifteen) vectors? Let $A = \begin{bmatrix} \vec{v_1} & \vec{v_2} & \vec{v_3} \end{bmatrix}$ be the matrix with columns given by $\vec{v_1}, \vec{v_2}, \vec{v_3}$. Recall that $A\vec{x}$ is the LC of the columns of A given by

$$A\vec{x} = A \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_1 \vec{v}_1 + x_2 \vec{v}_2 + x_3 \vec{v}_3.$$

See that there is a non-trivial LC $x_1\vec{v}_1 + x_2\vec{v}_2 + x_3\vec{v}_3 = \vec{0}$ if and only if there is a non-trivial (i.e., non-zero) solution to $A\vec{x} = \vec{0}$,

We row reduce A to get

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 2 & 0 & 6 \\ 1 & 2 & 1 \end{bmatrix}$$

We row reduce A to get

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 2 & 0 & 6 \\ 1 & 2 & 1 \end{bmatrix} \xrightarrow{R_3 - 2*R_1} \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & -2 & 2 \\ 0 & 1 & -1 \end{bmatrix}$$

We row reduce A to get

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 2 & 0 & 6 \\ 1 & 2 & 1 \end{bmatrix} \xrightarrow{R_3 - 2*R_1} \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & -2 & 2 \\ 0 & 1 & -1 \end{bmatrix} \xrightarrow{R_3 + 2*R_2} \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

We row reduce A to get

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 2 & 0 & 6 \\ 1 & 2 & 1 \end{bmatrix} \xrightarrow{R_3 - 2*R_1} \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & -2 & 2 \\ 0 & 1 & -1 \end{bmatrix} \xrightarrow{R_3 + 2*R_2} \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Since the last column has no row leader, we know that x_3 is a free variable.

We row reduce A to get

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 2 & 0 & 6 \\ 1 & 2 & 1 \end{bmatrix} \xrightarrow{R_3 - 2*R_1} \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & -2 & 2 \\ 0 & 1 & -1 \end{bmatrix} \xrightarrow{R_3 + 2*R_2} \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Since the last column has no row leader, we know that x_3 is a free variable. Thus $x_3 = t$ (with t any scalar),

We row reduce A to get

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 2 & 0 & 6 \\ 1 & 2 & 1 \end{bmatrix} \xrightarrow{R_3 - 2*R_1} \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & -2 & 2 \\ 0 & 1 & -1 \end{bmatrix} \xrightarrow{R_3 + 2*R_2} \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Since the last column has no row leader, we know that x_3 is a free variable. Thus $x_3 = t$ (with t any scalar), $x_2 = t$ and

We row reduce A to get

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 2 & 0 & 6 \\ 1 & 2 & 1 \end{bmatrix} \xrightarrow{R_3 - 2*R_1} \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & -2 & 2 \\ 0 & 1 & -1 \end{bmatrix} \xrightarrow{R_3 + 2*R_2} \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Since the last column has no row leader, we know that x_3 is a free variable. Thus $x_3 = t$ (with t any scalar), $x_2 = t$ and $x_1 = -3t$.

We row reduce A to get

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 2 & 0 & 6 \\ 1 & 2 & 1 \end{bmatrix} \xrightarrow{R_3 - 2*R_1} \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & -2 & 2 \\ 0 & 1 & -1 \end{bmatrix} \xrightarrow{R_3 + 2*R_2} \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Since the last column has no row leader, we know that x_3 is a free variable. Thus $x_3 = t$ (with t any scalar), $x_2 = t$ and $x_1 = -3t$.

There are infinitely many solutions to $A\vec{x} = \vec{0}$, and all but one of these is non-trivial.

We row reduce A to get

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 2 & 0 & 6 \\ 1 & 2 & 1 \end{bmatrix} \xrightarrow{R_3 - 2*R_1} \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & -2 & 2 \\ 0 & 1 & -1 \end{bmatrix} \xrightarrow{R_3 + 2*R_2} \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Since the last column has no row leader, we know that x_3 is a free variable. Thus $x_3 = t$ (with t any scalar), $x_2 = t$ and $x_1 = -3t$.

There are infinitely many solutions to $A\vec{x}=\vec{0}$, and all but one of these is non-trivial. Thus, there are infinitely many non-trival LCs $s_1\vec{v}_1+s_2\vec{v}_2+s_3\vec{v}_3=\vec{0}$.

Suppose the vectors \vec{v} , \vec{w} are LD. This means

Suppose the vectors \vec{v}, \vec{w} are LD. This means there are scalars s, t such that $s\vec{v} + t\vec{w} = \vec{0}$ and

Suppose the vectors \vec{v}, \vec{w} are LD. This means there are scalars s, t such that $s\vec{v}+t\vec{w}=\vec{0}$ and s,t are NOT both zero. Assume $s\neq 0$.

Suppose the vectors \vec{v}, \vec{w} are LD. This means there are scalars s, t such that $s\vec{v}+t\vec{w}=\vec{0}$ and s,t are NOT both zero. Assume $s\neq 0$. Then we can write $\vec{v}=-(t/s)\vec{w}$.

Suppose the vectors \vec{v}, \vec{w} are LD. This means there are scalars s, t such that $s\vec{v}+t\vec{w}=\vec{0}$ and s,t are NOT both zero. Assume $s\neq 0$. Then we can write $\vec{v}=-(t/s)\vec{w}$. Thus \vec{v} is a scalar multiple of \vec{w} ; i.e..

Suppose the vectors \vec{v}, \vec{w} are LD. This means there are scalars s, t such that $s\vec{v}+t\vec{w}=\vec{0}$ and s,t are NOT both zero. Assume $s\neq 0$. Then we can write $\vec{v}=-(t/s)\vec{w}$. Thus \vec{v} is a scalar multiple of \vec{w} ; i.e., \vec{v} is a LC of \vec{w} .

Suppose \vec{v}_1 is a LC of $\vec{v}_2, \vec{v}_3, \dots, \vec{v}_n$. This means

Suppose the vectors \vec{v}, \vec{w} are LD. This means there are scalars s, t such that $s\vec{v}+t\vec{w}=\vec{0}$ and s,t are NOT both zero. Assume $s\neq 0$. Then we can write $\vec{v}=-(t/s)\vec{w}$. Thus \vec{v} is a scalar multiple of \vec{w} ; i.e., \vec{v} is a LC of \vec{w} .

Suppose the vectors \vec{v}, \vec{w} are LD. This means there are scalars s, t such that $s\vec{v}+t\vec{w}=\vec{0}$ and s,t are NOT both zero. Assume $s\neq 0$.

Then we can write $\vec{v} = -(t/s)\vec{w}$. Thus \vec{v} is a scalar multiple of \vec{w} ; i.e., \vec{v} is a LC of \vec{w} .

Suppose $\vec{v_1}$ is a LC of $\vec{v_2}, \vec{v_3}, \dots, \vec{v_p}$. This means there are scalars s_2, s_3, \dots, s_p so that

$$\vec{v}_1 = s_2 \vec{v}_2 + s_3 \vec{v}_3 + \cdots + s_p \vec{v}_p.$$

Suppose the vectors \vec{v}, \vec{w} are LD. This means there are scalars s, t such that $s\vec{v}+t\vec{w}=\vec{0}$ and s, t are NOT both zero. Assume $s\neq 0$.

Then we can write $\vec{v} = -(t/s)\vec{w}$. Thus \vec{v} is a scalar multiple of \vec{w} ; i.e., \vec{v} is a LC of \vec{w} .

Suppose $\vec{v_1}$ is a LC of $\vec{v_2}, \vec{v_3}, \dots, \vec{v_p}$. This means there are scalars s_2, s_3, \dots, s_p so that

$$\vec{v}_1 = s_2 \vec{v}_2 + s_3 \vec{v}_3 + \cdots + s_p \vec{v}_p.$$

Then

$$\vec{v}_1 - (s_2\vec{v}_2 + s_3\vec{v}_3 + \cdots + s_p\vec{v}_p) = \vec{0}.$$

so we see that $\vec{v}_1, \vec{v}_2, \vec{v}_3, \dots, \vec{v}_p$ are LD.

Suppose the vectors \vec{v}, \vec{w} are LD. This means there are scalars s, t such that $s\vec{v}+t\vec{w}=\vec{0}$ and s, t are NOT both zero. Assume $s\neq 0$.

Then we can write $\vec{v} = -(t/s)\vec{w}$. Thus \vec{v} is a scalar multiple of \vec{w} ; i.e., \vec{v} is a LC of \vec{w} .

Suppose $\vec{v_1}$ is a LC of $\vec{v_2}, \vec{v_3}, \dots, \vec{v_p}$. This means there are scalars s_2, s_3, \dots, s_p so that

$$\vec{v}_1 = s_2 \vec{v}_2 + s_3 \vec{v}_3 + \cdots + s_p \vec{v}_p.$$

Then

$$\vec{v}_1 - (s_2\vec{v}_2 + s_3\vec{v}_3 + \cdots + s_p\vec{v}_p) = \vec{0}.$$

so we see that $\vec{v}_1, \vec{v}_2, \vec{v}_3, \dots, \vec{v}_p$ are LD.

If some \vec{v}_j is an LC of the other vectors, then $\vec{v}_1, \vec{v}_2, \vec{v}_3, \dots, \vec{v}_p$ are LD.

Suppose the vectors \vec{v}, \vec{w} are LD. This means there are scalars s, t such that $s\vec{v}+t\vec{w}=\vec{0}$ and s,t are NOT both zero. Assume $s\neq 0$.

Then we can write $\vec{v} = -(t/s)\vec{w}$. Thus \vec{v} is a scalar multiple of \vec{w} ; i.e., \vec{v} is a LC of \vec{w} .

Suppose $\vec{v_1}$ is a LC of $\vec{v_2}, \vec{v_3}, \dots, \vec{v_p}$. This means there are scalars s_2, s_3, \dots, s_p so that

$$\vec{v}_1 = s_2 \vec{v}_2 + s_3 \vec{v}_3 + \cdots + s_p \vec{v}_p.$$

Then

$$\vec{v}_1 - (s_2\vec{v}_2 + s_3\vec{v}_3 + \cdots + s_p\vec{v}_p) = \vec{0}.$$

so we see that $\vec{v}_1, \vec{v}_2, \vec{v}_3, \dots, \vec{v}_p$ are LD.

If some $\vec{v_j}$ is an LC of the other vectors, then $\vec{v_1}, \vec{v_2}, \vec{v_3}, \dots, \vec{v_p}$ are LD. Converse true too!

10 / 1

If p > n, then any set of p vectors in \mathbb{R}^n is LD.

If p > n, then any set of p vectors in \mathbb{R}^n is LD.

Any 5 vectors in \mathbb{R}^4 are LD.

If p > n, then any set of p vectors in \mathbb{R}^n is LD.

Any 5 vectors in \mathbb{R}^4 are LD. Any 11 vectors in \mathbb{R}^7 are LD.

If p > n, then any set of p vectors in \mathbb{R}^n is LD.

Any 5 vectors in \mathbb{R}^4 are LD. Any 11 vectors in \mathbb{R}^7 are LD.

Why?

If p > n, then any set of p vectors in \mathbb{R}^n is LD.

Any 5 vectors in \mathbb{R}^4 are LD. Any 11 vectors in \mathbb{R}^7 are LD.

Why?

Just look at REF of appropriate coefficient matrix! $\ddot{-}$

Two vectors are *parallel* if and only if one is a scalar multiple of the other.

Two vectors are *parallel* if and only if one is a scalar multiple of the other.

Any two non-zero vectors are LI if and only if they are not parallel.

Two vectors are *parallel* if and only if one is a scalar multiple of the other.

Any two non-zero vectors are LI if and only if they are not parallel. Why?

Two vectors are parallel if and only if one is a scalar multiple of the other.

Any two *non-zero* vectors are LI if and only if they are *not* parallel. Why? (a good quiz question!)

Two vectors are parallel if and only if one is a scalar multiple of the other.

Any two *non-zero* vectors are LI if and only if they are *not* parallel. Why? (a good quiz question!)

Suppose we have three vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3$ (say, in \mathbb{R}^5) and

Two vectors are parallel if and only if one is a scalar multiple of the other.

Any two *non-zero* vectors are LI if and only if they are *not* parallel. Why? (a good quiz question!)

Suppose we have three vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3$ (say, in \mathbb{R}^5) and $\vec{v}_1 \not\parallel \vec{v}_2 \not\parallel \vec{v}_3 \not\parallel \vec{v}_1$.

Two vectors are parallel if and only if one is a scalar multiple of the other.

Any two *non-zero* vectors are LI if and only if they are *not* parallel. Why? (a good quiz question!)

Suppose we have three vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3$ (say, in \mathbb{R}^5) and $\vec{v}_1 \not\parallel \vec{v}_2 \not\parallel \vec{v}_3 \not\parallel \vec{v}_1$.

Are $\vec{v}_1, \vec{v}_2, \vec{v}_3$ LD or LI?

Two vectors are parallel if and only if one is a scalar multiple of the other.

Any two *non-zero* vectors are LI if and only if they are *not* parallel. Why? (a good quiz question!)

Suppose we have three vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3$ (say, in \mathbb{R}^5) and $\vec{v}_1 \not\parallel \vec{v}_2 \not\parallel \vec{v}_3 \not\parallel \vec{v}_1$.

Are $\vec{v}_1, \vec{v}_2, \vec{v}_3$ LD or LI?

Hint: it is not difficult to produce a simple example!

Two vectors are parallel if and only if one is a scalar multiple of the other.

Any two *non-zero* vectors are LI if and only if they are *not* parallel. Why? (a good quiz question!)

Suppose we have three vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3$ (say, in \mathbb{R}^5) and $\vec{v}_1 \not\parallel \vec{v}_2 \not\parallel \vec{v}_3 \not\parallel \vec{v}_1$.

Are $\vec{v}_1, \vec{v}_2, \vec{v}_3$ LD or LI?

Hint: it is not difficult to produce a simple example! (a good exam question $\ddot{\ }$)