Solutions Sets Homogeneous Equations Span

Linear Algebra MATH 2076

Solution Sets

We wish to better understand the structure of the solution set for an SLE

For example, if the matrix equation

$$A\vec{x} = \vec{b}$$

has a solution, and we change the rhs, do we still get a solution? (The *homogeneous equation* $A\vec{x} = \vec{0}$ always has a solution, right?)

If there are infinitely many solutions, how do any two of them compare to each other?

Solution Sets

We also want to understand Theorem 6 on the top of page 47. We'll start by looking at SLEs with 1 equation; so a single linear equation.

Recall that, in general, the solution set to a linear equation

$$a_1x_1+a_2x_2+\cdots+a_nx_n=b$$

is a *hyperplane* (aka, an (n-1)-plane) in \mathbb{R}^n .

(We need some $a_j \neq 0$; then we can solve for x_j in terms of the remaining variables; these remaining n-1 variables are the *free variables*.)

How does the solution set to the above LE change when we change the rhs constant b? What if we make b = 0?

Lines in \mathbb{R}^2

What is the solution set for x + 2y = 3?

How does it compare to the solution set for x + 2y = 0?

The solution set for x + 2y = 3 consists of all vectors

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} + t \begin{bmatrix} -2 \\ 1 \end{bmatrix} \quad \text{where } t \text{ can be any scalar}.$$

This is a line in \mathbb{R}^2 thru $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ in the direction $\vec{m} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$.

Thus the solution set for x+2y=3 is parallel to \mathbb{L} (the solution set for x+2y=0); it is a *translation* of the homogeneous solution set \mathbb{L} .

Planes in \mathbb{R}^3

What is the solution set for x + 2y + 3z = 4?

How does it compare to the solution set for x + 2y + 3z = 0?

The solution set for x + 2y + 3z = 4 consists of all vectors

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}$$
 where *s* and *t* can be any scalars.

This is a plane in \mathbb{R}^3 thru $\begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix}$ and parallel to the plane $\mathbb{W} = \mathcal{S}pan\{\vec{v}, \vec{w}\}.$

Thus the solution set for x + 2y + 3z = 4 is parallel to \mathbb{W} (the solution set for x + 2y + 3z = 0); it is a *translation* of the homogeneous solution set \mathbb{W} .

Theorem 6—top of page 47

Let \vec{p} be a solution to $A\vec{x} = \vec{b}$; we call \vec{p} a particular solution.

If \vec{z} is a solution to the homogeneous equation $A\vec{x} = \vec{0}$, then $\vec{x} = \vec{p} + \vec{z}$ is a solution to $A\vec{x} = \vec{b}$.

If \vec{x} is a solution to the equation $A\vec{x} = \vec{b}$, then $\vec{z} = \vec{x} - \vec{p}$ is a solution to the homogeneous equation $A\vec{x} = \vec{0}$.

Thus the solution set for $A\vec{x} = \vec{b}$ is the *translation* by \vec{p} of the solution set for $A\vec{x} = \vec{0}$. These two solution sets are *parallel*.

To better understand the solution set for $A\vec{x} = \vec{b}$, we need to better understand the solution set for $A\vec{x} = \vec{0}$.

The solution set for $A\vec{x} = \vec{0}$ is **always** just the **span** of some vectors; always!