Vector Equations Matrix Equations Linear Combinations

> Linear Algebra MATH 2076

Linear Algebra [VEs, MEs, LCs](#page-22-0) Chapter 1, Sections 1.3 & 1.4 1 / 6

 2990

Let \vec{a}_{j} be the j^{th} column of the coefficient matrix A for some <code>SLE</code>

 $a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2$ $a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m$.

 Ω

Let \vec{a}_{j} be the j^{th} column of the coefficient matrix A for some <code>SLE</code>

$$
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1
$$

\n
$$
a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2
$$

\n
$$
\vdots \qquad \vdots
$$

\n
$$
a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m
$$

So

つくい

Let \vec{a}_{j} be the j^{th} column of the coefficient matrix A for some <code>SLE</code>

$$
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1
$$

\n
$$
a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2
$$

\n
$$
\vdots \qquad \vdots
$$

\n
$$
a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m
$$

The above SLE has exactly the same solutions as the vector equation

$$
x_1\vec{a}_1 + x_2\vec{a}_2 + \cdots + x_n\vec{a}_n = \vec{b}
$$

Let \vec{a}_{j} be the j^{th} column of the coefficient matrix A for some <code>SLE</code>

$$
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1
$$

\n
$$
a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2
$$

\n
$$
\vdots \qquad \vdots
$$

\n
$$
a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m
$$

The above SLE has exactly the same solutions as the vector equation

$$
x_1\vec{a}_1 + x_2\vec{a}_2 + \cdots + x_n\vec{a}_n = \vec{b}
$$

which in turn has exactly the same solutions as the matrix equation

$$
A\vec{x}=\vec{b}.
$$

つのい

REF Solution Information

Look at a REF for the augmented matrix associated with the SLE.

 \leftarrow

REF Solution Information

Look at a REF for the *augmented* matrix associated with the SLE. If the last column has a row leader, there are NO solutions;

 QQQ

REF Solution Information

Look at a REF for the *augmented* matrix associated with the SLE. If the last column has a row leader, there are NO solutions; assume otherwise.

 QQQ

Identify the columns that do not have row leaders;

Identify the columns that do *not* have row leaders; the corresponding variables are free.

Identify the columns that do *not* have row leaders; the corresponding variables are free.

If there are no free variables, get a unique solution; if there are free variables, get infinitely many solutions and need to describe all of them.

 PQQ

Identify the columns that do *not* have row leaders; the corresponding variables are free.

If there are no free variables, get a unique solution; if there are free variables, get infinitely many solutions and need to describe all of them.

Each basic (aka,non-free) variable can be expressed in terms of the free variables.

Identify the columns that do *not* have row leaders; the corresponding variables are free.

If there are no free variables, get a unique solution; if there are free variables, get infinitely many solutions and need to describe all of them.

Each basic (aka,non-free) variable can be expressed in terms of the free variables. We can do this by back substitution, or by continuing to row reduce to get reduced REF.

Suppose s_1, s_2, \ldots, s_p are scalars and $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ are vectors (all in the same space \mathbb{R}^n).

 \leftarrow

Suppose s_1, s_2, \ldots, s_p are scalars and $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ are vectors (all in the same space \mathbb{R}^n). We call

$$
s_1\vec{v}_1 + s_2\vec{v}_2 + \cdots + s_p\vec{v}_p
$$

a linear combination of the vectors $\vec{v}_1, \vec{v}_2, \ldots \vec{v}_p$.

Suppose s_1, s_2, \ldots, s_p are scalars and $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ are vectors (all in the same space \mathbb{R}^n). We call

$$
s_1\vec{v}_1+s_2\vec{v}_2+\cdots+s_p\vec{v}_p
$$

a linear combination of the vectors $\vec{v}_1, \vec{v}_2, \ldots \vec{v}_p$. For example, we always have the trivial linear combination

$$
0\cdot \vec{v}_1+0\cdot \vec{v}_2+\cdots+0\cdot \vec{v}_p=\vec{0}.
$$

 Ω

Suppose s_1, s_2, \ldots, s_p are scalars and $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ are vectors (all in the same space \mathbb{R}^n). We call

$$
s_1\vec{v}_1+s_2\vec{v}_2+\cdots+s_p\vec{v}_p
$$

a linear combination of the vectors $\vec{v}_1, \vec{v}_2, \ldots \vec{v}_p$. For example, we always have the trivial linear combination

$$
0\cdot \vec{v}_1+0\cdot \vec{v}_2+\cdots+0\cdot \vec{v}_p=\vec{0}.
$$

We'll be most interested in the set of all LCs of $\vec{v}_1, \vec{v}_2, \ldots \vec{v}_p$.

 200

Suppose s_1, s_2, \ldots, s_p are scalars and $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ are vectors (all in the same space \mathbb{R}^n). We call

$$
s_1\vec{v}_1+s_2\vec{v}_2+\cdots+s_p\vec{v}_p
$$

a linear combination of the vectors $\vec{v}_1, \vec{v}_2, \ldots \vec{v}_p$. For example, we always have the trivial linear combination

$$
0\cdot \vec{v}_1+0\cdot \vec{v}_2+\cdots+0\cdot \vec{v}_p=\vec{0}.
$$

We'll be most interested in the set of all LCs of $\vec{v}_1, \vec{v}_2, \ldots \vec{v}_p$. We call this the span of the vectors $\vec{v}_1, \vec{v}_2, \ldots \vec{v}_p$, and write is as

 $Span{\{\vec{v_1}, \vec{v_2}, \dots \vec{v_n}\}}$.

 Ω

Solutions

Remember that a vector equation such as

$$
x_1\vec{a}_1 + x_2\vec{a}_2 + \cdots + x_n\vec{a}_n = \vec{b}
$$

has a solution if and only if the rhs \vec{b} is a LC of $\vec{a}_1, \ldots, \vec{a}_n$.

 2990

Solutions

Remember that a vector equation such as

$$
x_1\vec{a}_1 + x_2\vec{a}_2 + \cdots + x_n\vec{a}_n = \vec{b}
$$

has a solution if and only if the rhs \vec{b} is a LC of $\vec{a}_1, \ldots, \vec{a}_n$.

This means that there is a solution if and only if \vec{b} belongs to

$$
\mathcal{S}\text{pan}\{\vec{a}_1,\vec{a}_2,\ldots\vec{a}_n\}\,.
$$

つのい

Solutions

Remember that a vector equation such as

$$
x_1\vec{a}_1 + x_2\vec{a}_2 + \cdots + x_n\vec{a}_n = \vec{b}
$$

has a solution if and only if the rhs \vec{b} is a LC of $\vec{a}_1, \ldots, \vec{a}_n$.

This means that there is a solution if and only if \vec{b} belongs to

$$
\mathcal{S}\text{pan}\{\vec{a}_1,\vec{a}_2,\ldots\vec{a}_n\}\,.
$$

This does not tell us how to find the solution.

つのい

Theorem 4—bottom of page 37 in Section 1.4

G.

 $2QQ$

 $\mathbf{A} = \mathbf{A} \times \mathbf{B} + \mathbf{A} \times \mathbf{B} + \mathbf{A}$

∢ □ ▶ ∢ [†]

Theorem 4—bottom of page 37 in Section 1.4

Look at this!

 \leftarrow

 $2QQ$

画