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Three Views of Same Idea

Let ~aj be the j th column of the coefficient matrix A for some SLE

a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

...
...

...
...

am1x1 + am2x2 + · · ·+ amnxn = bm

.
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...
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.

So

~aj =


a1j
a2j
...

amj

 and A =
[
~a1 ~a2 . . . ~an

]
=


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

...
...

am1 am2 . . . amn
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am1x1 + am2x2 + · · ·+ amnxn = bm

.

The above SLE has exactly the same solutions as the vector equation

x1~a1 + x2~a2 + · · ·+ xn~an = ~b

which in turn has exactly the same solutions as the matrix equation

A~x = ~b.
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REF Solution Information

Look at a REF for the augmented matrix associated with the SLE.

If the last column has a row leader, there are NO solutions;
assume otherwise.

Identify the columns that do not have row leaders;

the corresponding
variables are free.

If there are no free variables, get a unique solution; if there are free
variables, get infinitely many solutions and need to describe all of them.

Each basic (aka,non-free) variable can be expressed in terms of the free
variables. We can do this by back substitution, or by continuing to row
reduce to get reduced REF.
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Linear Combinations

Suppose s1, s2, . . . , sp are scalars and ~v1, ~v2, . . . ~vp are vectors (all in the
same space Rn).

We call

s1~v1 + s2~v2 + · · ·+ sp~vp

a linear combination of the vectors ~v1, ~v2, . . . ~vp. For example, we always
have the trivial linear combination

0 · ~v1 + 0 · ~v2 + · · ·+ 0 · ~vp = ~0.

We’ll be most interested in the set of all LCs of ~v1, ~v2, . . . ~vp. We call this
the span of the vectors ~v1, ~v2, . . . ~vp, and write is as

Span{~v1, ~v2, . . . ~vp} .
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Solutions

Remember that a vector equation such as

x1~a1 + x2~a2 + · · ·+ xn~an = ~b

has a solution if and only if the rhs ~b is a LC of ~a1, . . . , ~an.

This means that there is a solution if and only if ~b belongs to

Span{~a1, ~a2, . . . ~an} .

This does not tell us how to find the solution.
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Theorem 4—bottom of page 37 in Section 1.4

Look at this!
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