Vectors, Equations, Linear Combinations

Linear Algebra MATH 2076

Recall that a matrix is a rectangular array of numbers.

We call

$$
A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}
$$

an $m \times n$ matrix; it has m rows and n columns.

We write $\mathbb{R}^{m \times n}$ for the space of all $m \times n$ matrices.

Vectors

Matrices that have just a single row, or a single column, are often called row vectors, or column vectors. For us, a vector is always a column vector, that is, a matrix with exactly one column. So, a vector is an $n \times 1$ matrix, where n is the number of rows (or entries, or coordinates).

It is useful to adopt a notation that helps distinguish between numbers (aka scalars), matrices, and vectors; I'll use arrows. Thus a vector of "size" n (i.e., with n coordinates) is written as

$$
\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}
$$
 where $x_1, x_2, ..., x_n$ are the coordinates of \vec{x} .

The space of all such vectors, of "size" n, is $\mathbb{R}^{n \times 1}.$ We usually just write \mathbb{R}^n , but this is not exactly correct, is it?

Vector Arithmetic

We can add two vectors, provided they have the same number of coordinates. If \vec{x} and \vec{y} are both in \mathbb{R}^n , say with coordinates x_1,\ldots,x_n and y_1, \ldots, y_n , then

$$
\vec{x} + \vec{y} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{bmatrix}
$$

We can also multiply vectors by scalars. If s is any scalar, then

$$
s\vec{x} = s \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} s x_1 \\ s x_2 \\ \vdots \\ s x_n \end{bmatrix}.
$$

.

Linear Combinations

Suppose s_1, s_2, \ldots, s_p are scalars and $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ are vectors (all in the same space \mathbb{R}^n). We call

$$
s_1\vec{v}_1+s_2\vec{v}_2+\cdots+s_p\vec{v}_p
$$

a linear combination of the vectors $\vec{v}_1, \vec{v}_2, \ldots \vec{v}_p$. For example, we always have the trivial linear combination

$$
0\cdot \vec{v}_1 + 0\cdot \vec{v}_2 + \cdots + 0\cdot \vec{v}_p = \vec{0}.
$$

Consider the vectors
$$
\vec{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}
$$
, $\vec{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\vec{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. Notice that
\n
$$
x_1 \vec{e}_1 + x_2 \vec{e}_2 + x_3 \vec{e}_3 = x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.
$$

Thus every vector in \mathbb{R}^3 can be expressed as a LC of $\vec{e}_1, \vec{e}_2, \vec{e}_3$.

Vector Equations

Let $\vec{a}_1, \ldots, \vec{a}_n$ and \vec{b} be given vectors (all in the same space \mathbb{R}^m). Then $x_1\vec{a}_1 + x_2\vec{a}_2 + \cdots + x_n\vec{a}_n = \vec{b}$

is called a *vector equation*; here x_1, x_2, \ldots, x_n are the variables. For example, the vector equation

$$
x_1 \vec{e}_1 + x_2 \vec{e}_2 + x_3 \vec{e}_3 = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}
$$

has solution $x_1 = b_1, x_2 = b_2, x_3 = b_3$, or more simply, $\vec{x} = \vec{b}$.

Notice that the above vector equation (at top of page) has a solution if and only if the rhs \vec{b} is a LC of $\vec{a}_1, \ldots, \vec{a}_n$. Right?

If A is the coefficient matrix for some SLE, and $\vec{a_j}$ is the j^{th} column of A , then

$$
x_1\vec{a}_1 + x_2\vec{a}_2 + \cdots + x_n\vec{a}_n = \vec{b}
$$

has exactly the same solutions as the original SLE.

Thus, an SLE has a solution if and only if \dots
Linear Algebra

Matrix Multiplication—preliminary product

Let \vec{x} be a vector in \mathbb{R}^n and A a matrix in $\mathbb{R}^{m \times n}$. So

$$
\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \text{ and } A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}
$$

The product $A\vec{x}$ is defined to be the LC

$$
x_1\vec{a}_1 + x_2\vec{a}_2 + \cdots + x_n\vec{a}_n
$$

where \vec{a}_{j} is the j^{th} column of A . If \vec{b} is a vector in \mathbb{R}^m , we call $\left| A \vec{x} = \vec{b} \right|$ a *matrix equation*; here \vec{x} is the variable.

.

Three Views of Same Idea

Let \vec{a}_{j} be the j^{th} column of the coefficient matrix A for some <code>SLE</code>

$$
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1
$$

\n
$$
a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2
$$

\n
$$
\vdots \qquad \vdots
$$

\n
$$
a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m
$$

The above SLE has exactly the same solutions as the vector equation

$$
x_1\vec{a}_1 + x_2\vec{a}_2 + \cdots + x_n\vec{a}_n = \vec{b}
$$

which in turn has exactly the same solutions as the matrix equation

$$
A\vec{x}=\vec{b}.
$$