Vectors, Equations, Linear Combinations

Linear Algebra MATH 2076

Recall that a *matrix* is a rectangular array of numbers.

We call

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

an $m \times n$ matrix; it has *m* rows and *n* columns.

We write $\mathbb{R}^{m \times n}$ for the space of all $m \times n$ matrices.

Vectors

Matrices that have just a single row, or a single column, are often called *row vectors*, or *column vectors*. For us, a *vector* is always a column vector, that is, a matrix with exactly one column. So, a vector is an $n \times 1$ matrix, where *n* is the number of rows (or entries, or coordinates).

It is useful to adopt a notation that helps distinguish between numbers (aka scalars), matrices, and vectors; I'll use arrows. Thus a vector of "size" n (i.e., with n coordinates) is written as

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \text{ where } x_1, x_2, \dots, x_n \text{ are the coordinates of } \vec{x}.$$

The space of all such vectors, of "size" n, is $\mathbb{R}^{n \times 1}$. We usually just write \mathbb{R}^n , but this is not exactly correct, is it?

Vector Arithmetic

We can add two vectors, provided they have the same number of coordinates. If \vec{x} and \vec{y} are both in \mathbb{R}^n , say with coordinates x_1, \ldots, x_n and y_1, \ldots, y_n , then

$$\vec{x} + \vec{y} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + yn \end{bmatrix}$$

We can also multiply vectors by scalars. If s is any scalar, then

$$s\vec{x} = s \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} s & x_1 \\ s & x_2 \\ \vdots \\ s & x_n \end{bmatrix}.$$

Linear Combinations

Suppose s_1, s_2, \ldots, s_p are scalars and $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_p}$ are vectors (all in the same space \mathbb{R}^n). We call

$$s_1\vec{v}_1+s_2\vec{v}_2+\cdots+s_p\vec{v}_p$$

a *linear combination* of the vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$. For example, we always have the *trivial* linear combination

$$0\cdot \vec{v_1} + 0\cdot \vec{v_2} + \cdots + 0\cdot \vec{v_p} = \vec{0}.$$

Consider the vectors
$$\vec{e_1} = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$$
, $\vec{e_2} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$, $\vec{e_3} = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$. Notice that
 $x_1\vec{e_1} + x_2\vec{e_2} + x_3\vec{e_3} = x_1\begin{bmatrix} 1\\0\\0 \end{bmatrix} + x_2\begin{bmatrix} 0\\1\\0 \end{bmatrix} + x_3\begin{bmatrix} 0\\0\\1 \end{bmatrix} = \begin{bmatrix} x_1\\x_2\\x_3 \end{bmatrix}$.

Thus every vector in \mathbb{R}^3 can be expressed as a LC of $\vec{e_1}, \vec{e_2}, \vec{e_3}$.

Linear Algebra

Vector Equations

Let $\vec{a_1}, \ldots, \vec{a_n}$ and \vec{b} be given vectors (all in the same space \mathbb{R}^m). Then $x_1\vec{a_1} + x_2\vec{a_2} + \cdots + x_n\vec{a_n} = \vec{b}$

is called a *vector equation*; here $x_1, x_2, ..., x_n$ are the variables. For example, the vector equation

$$x_1 \vec{e_1} + x_2 \vec{e_2} + x_3 \vec{e_3} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

has solution $x_1 = b_1, x_2 = b_2, x_3 = b_3$, or more simply, $\vec{x} = \vec{b}$.

Notice that the above vector equation (at top of page) has a solution if and only if the rhs \vec{b} is a LC of $\vec{a_1}, \ldots, \vec{a_n}$. Right?

If A is the coefficient matrix for some SLE, and \vec{a}_j is the j^{th} column of A, then

$$x_1\vec{a}_1 + x_2\vec{a}_2 + \dots + x_n\vec{a}_n = \vec{b}$$

has exactly the same solutions as the original SLE. Thus, an SLE has a solution if and only if

Linear Algebra

Matrix Multiplication—preliminary product

Let \vec{x} be a vector in \mathbb{R}^n and A a matrix in $\mathbb{R}^{m \times n}$. So

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \text{ and } A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

The product $A\vec{x}$ is defined to be the LC

$$x_1\vec{a}_1 + x_2\vec{a}_2 + \cdots + x_n\vec{a}_n$$

where $\vec{a_j}$ is the j^{th} column of A. If \vec{b} is a vector in \mathbb{R}^m , we call $A\vec{x} = \vec{b}$ a matrix equation; here \vec{x} is the variable.

Three Views of Same Idea

Let \vec{a}_i be the j^{th} column of the coefficient matrix A for some SLE

$$a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} = b_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} = b_{2}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$a_{m1}x_{1} + a_{m2}x_{2} + \dots + a_{mn}x_{n} = b_{m}$$

The above SLE has exactly the same solutions as the vector equation

$$x_1\vec{a}_1 + x_2\vec{a}_2 + \dots + x_n\vec{a}_n = \vec{b}$$

which in turn has exactly the same solutions as the matrix equation

$$A\vec{x} = \vec{b}.$$