Row Echelon Form Section 1.2 Exercise $# 23$

> Linear Algebra MATH 2076

Ξ»

4 **D** F

 \leftarrow

Suppose a 3×5 coefficient matrix for a system has three pivot columns. Is the system consistent? Why or why not?

Let A be this coefficient matrix. Since A is a 3×5 matrix, the SLE consists of 3 equations involving 5 variables.

Suppose a 3×5 coefficient matrix for a system has three pivot columns. Is the system consistent? Why or why not?

Let A be this coefficient matrix. Since A is a 3×5 matrix, the SLE consists of 3 equations involving 5 variables. This means we can write

$$
A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \vec{a}_3 & \vec{a}_4 & \vec{a}_5 \end{bmatrix}
$$

where $\vec{a_{j}}$ (the j^{th} column of A) is a vector in

 Ω

Suppose a 3×5 coefficient matrix for a system has three pivot columns. Is the system consistent? Why or why not?

Let A be this coefficient matrix. Since A is a 3×5 matrix, the SLE consists of 3 equations involving 5 variables. This means we can write

 $A=\begin{bmatrix}\vec a_1 & \vec a_2 & \vec a_3 & \vec a_4 & \vec a_5\end{bmatrix}$

where $\vec a_j$ (the $j^{\rm th}$ column of A) is a vector in \mathbb{R}^3 (all the coefficients of $x_j).$

 PQQ

Suppose a 3×5 coefficient matrix for a system has three pivot columns. Is the system consistent? Why or why not?

Let A be this coefficient matrix. Since A is a 3×5 matrix, the SLE consists of 3 equations involving 5 variables. This means we can write

$$
A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \vec{a}_3 & \vec{a}_4 & \vec{a}_5 \end{bmatrix}
$$

where $\vec a_j$ (the $j^{\rm th}$ column of A) is a vector in \mathbb{R}^3 (all the coefficients of $x_j).$

To say that A has three pivot columns means that any REF for A has three row leaders. So, let E be a REF for A . Then

 PQQ

Let A be this coefficient matrix. Since A is a 3×5 matrix, the SLE consists of 3 equations involving 5 variables. This means we can write

 $A=\begin{bmatrix}\vec a_1 & \vec a_2 & \vec a_3 & \vec a_4 & \vec a_5\end{bmatrix}$

where $\vec a_j$ (the $j^{\rm th}$ column of A) is a vector in \mathbb{R}^3 (all the coefficients of $x_j).$

To say that A has three pivot columns means that any REF for A has three row leaders. So, let E be a REF for A . Then E must have three non-zero rows, and the row leaders are in 3 of the 5 columns of E , and every row of E has a row leader (so E has no zero rows).

Let A be this coefficient matrix. Since A is a 3×5 matrix, the SLE consists of 3 equations involving 5 variables. This means we can write

 $A=\begin{bmatrix}\vec a_1 & \vec a_2 & \vec a_3 & \vec a_4 & \vec a_5\end{bmatrix}$

where $\vec a_j$ (the $j^{\rm th}$ column of A) is a vector in \mathbb{R}^3 (all the coefficients of $x_j).$

To say that A has three pivot columns means that any REF for A has three row leaders. So, let E be a REF for A . Then E must have three non-zero rows, and the row leaders are in 3 of the 5 columns of E , and every row of E has a row leader (so E has no zero rows).

Consistency of the original SLE depends on a REF for the augmented coefficient matrix—i.e., whether or not it has a row leader in its last column.

Let A be this coefficient matrix. Since A is a 3×5 matrix, the SLE consists of 3 equations involving 5 variables. This means we can write

 $A=\begin{bmatrix}\vec a_1 & \vec a_2 & \vec a_3 & \vec a_4 & \vec a_5\end{bmatrix}$

where $\vec a_j$ (the $j^{\rm th}$ column of A) is a vector in \mathbb{R}^3 (all the coefficients of $x_j).$

To say that A has three pivot columns means that any REF for A has three row leaders. So, let E be a REF for A . Then E must have three non-zero rows, and the row leaders are in 3 of the 5 columns of E, and every row of E has a row leader (so E has no zero rows).

Consistency of the original SLE depends on a REF for the augmented coefficient matrix—i.e., whether or not it has a row leader in its last column[.](#page-9-0) So, let B be this *augmented* coefficient [m](#page-7-0)[at](#page-9-0)[ri](#page-0-0)[x](#page-1-0).

Let A be this coefficient matrix. Since A is a 3×5 matrix, the SLE consists of 3 equations involving 5 variables. This means we can write

 $A=\begin{bmatrix}\vec a_1 & \vec a_2 & \vec a_3 & \vec a_4 & \vec a_5\end{bmatrix}$

where $\vec a_j$ (the $j^{\rm th}$ column of A) is a vector in \mathbb{R}^3 (all the coefficients of $x_j).$

To say that A has three pivot columns means that any REF for A has three row leaders. So, let E be a REF for A . Then E must have three non-zero rows, and the row leaders are in 3 of the 5 columns of E, and every row of E has a row leader (so E has no zero rows).

Consistency of the original SLE depends on a REF for the augmented coefficient matrix—i.e., whether or not it has a row leader in its last column[.](#page-9-0) So, let B be this *augmented* coefficient [m](#page-8-0)[at](#page-10-0)[ri](#page-0-0)[x](#page-1-0). [Th](#page-0-0)[us,](#page-18-0)

Thus, $B=\left[\vec a_1 \; \vec a_2 \; \vec a_3 \; \vec a_4 \; \vec a_5 \; | \; \vec b \right]$ where $\vec b$ is a vector $\mathbb R^3$ whose coordinates are the rhs constants from the SLE.

Thus, $B=\left[\vec a_1 \; \vec a_2 \; \vec a_3 \; \vec a_4 \; \vec a_5 \; | \; \vec b \right]$ where $\vec b$ is a vector $\mathbb R^3$ whose coordinates are the rhs constants from the SLE.

To row reduce B , we perform **exactly** the same elementary row operations done to obtain E from A.

Thus, $B=\left[\vec a_1 \; \vec a_2 \; \vec a_3 \; \vec a_4 \; \vec a_5 \; | \; \vec b \right]$ where $\vec b$ is a vector $\mathbb R^3$ whose coordinates are the rhs constants from the SLE.

To row reduce B , we perform **exactly** the same elementary row operations done to obtain E from A. These elementary row operations transform B into some matrix F,

Thus, $B=\left[\vec a_1 \; \vec a_2 \; \vec a_3 \; \vec a_4 \; \vec a_5 \; | \; \vec b \right]$ where $\vec b$ is a vector $\mathbb R^3$ whose coordinates are the rhs constants from the SLE.

To row reduce B , we perform **exactly** the same elementary row operations done to obtain E from A. These elementary row operations transform B into some matrix F , the first 5 columns of F are exactly those of E ,

Thus, $B=\left[\vec a_1 \; \vec a_2 \; \vec a_3 \; \vec a_4 \; \vec a_5 \; | \; \vec b \right]$ where $\vec b$ is a vector $\mathbb R^3$ whose coordinates are the rhs constants from the SLE.

To row reduce B , we perform **exactly** the same elementary row operations done to obtain E from A. These elementary row operations transform B into some matrix F, the first 5 columns of F are exactly those of E , and so F is in REF (why?).

 OQ

Thus, $B=\left[\vec a_1 \; \vec a_2 \; \vec a_3 \; \vec a_4 \; \vec a_5 \; | \; \vec b \right]$ where $\vec b$ is a vector $\mathbb R^3$ whose coordinates are the rhs constants from the SLE.

To row reduce B , we perform **exactly** the same elementary row operations done to obtain E from A. These elementary row operations transform B into some matrix F, the first 5 columns of F are exactly those of E , and so F is in REF (why?).

This means that F has three row leaders, and these occur in 3 of its first 5 columns.

 PQQ

Thus, $B=\left[\vec a_1 \; \vec a_2 \; \vec a_3 \; \vec a_4 \; \vec a_5 \; | \; \vec b \right]$ where $\vec b$ is a vector $\mathbb R^3$ whose coordinates are the rhs constants from the SLE.

To row reduce B , we perform **exactly** the same elementary row operations done to obtain E from A. These elementary row operations transform B into some matrix F, the first 5 columns of F are exactly those of E , and so F is in REF (why?).

This means that F has three row leaders, and these occur in 3 of its first 5 columns. So, the last column of F does not contain a row leader.

Thus, $B=\left[\vec a_1 \; \vec a_2 \; \vec a_3 \; \vec a_4 \; \vec a_5 \; | \; \vec b \right]$ where $\vec b$ is a vector $\mathbb R^3$ whose coordinates are the rhs constants from the SLE.

To row reduce B , we perform **exactly** the same elementary row operations done to obtain E from A. These elementary row operations transform B into some matrix F, the first 5 columns of F are exactly those of E , and so F is in REF (why?).

This means that F has three row leaders, and these occur in 3 of its first 5 columns. So, the last column of F does not contain a row leader. Therefore, the original SLE has a solution; it is consistent.

Thus, $B=\left[\vec a_1 \; \vec a_2 \; \vec a_3 \; \vec a_4 \; \vec a_5 \; | \; \vec b \right]$ where $\vec b$ is a vector $\mathbb R^3$ whose coordinates are the rhs constants from the SLE.

To row reduce B , we perform **exactly** the same elementary row operations done to obtain E from A. These elementary row operations transform B into some matrix F, the first 5 columns of F are exactly those of E , and so F is in REF (why?).

This means that F has three row leaders, and these occur in 3 of its first 5 columns. So, the last column of F does not contain a row leader. Therefore, the original SLE has a solution; it is consistent.

Does the SLE have a unique solution, or infinitely many solutions?

 RQ