Matrix Transformations Introduction to Linear Transformations Applied Linear Algebra MATH 5112/6012 #### Another look at the matrix product $A\vec{x}$ Let $\vec{a_i}$ be the j^{th} column of some $m \times n$ matrix A, and \vec{x} be in \mathbb{R}^n , so $$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}, \quad \vec{a_j} = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix}, \quad \text{and} \quad \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}.$$ Recall that the product $A\vec{x}$ is defined to be the LC $$x_1\vec{a}_1+x_2\vec{a}_2+\cdots+x_n\vec{a}_n.$$ Since each $\vec{a_j}$ is a vector in \mathbb{R}^m , so is $A\vec{x}$. Thus we can define a vector function by the rule $|\vec{y} = A\vec{x}|$. Here $$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} = \vec{y} = A\vec{x} = x_1 \vec{a}_1 + x_2 \vec{a}_2 + \dots + x_n \vec{a}_n.$$ #### The matrix transformation $\vec{y} = A\vec{x}$ This defines a function from \mathbb{R}^n to \mathbb{R}^m ; the input variable \vec{x} comes from \mathbb{R}^n , it gets multiplied by the matrix A via the formula $$x_1\vec{a}_1 + x_2\vec{a}_2 + \cdots + x_n\vec{a}_n$$ and we call the resulting output \vec{y} . That is, $$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} = \vec{y} = A\vec{x} = x_1\vec{a}_1 + x_2\vec{a}_2 + \dots + x_n\vec{a}_n.$$ In linear algebra, functions are usually called transformations. We write $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ to indicate that T is a transformation from \mathbb{R}^n to \mathbb{R}^m , meaning that the input variable \vec{x} comes from \mathbb{R}^n and the resulting output $\vec{y} = T(\vec{x})$ is a vector in \mathbb{R}^m . ## A transformation (aka function) $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ Here \mathbb{R}^n is the *domain* of T- where the input variables \vec{x} live, and \mathbb{R}^m is the *codomain* of T- where the resulting output $\vec{y} = T(\vec{x})$ lives. For each \vec{x} in \mathbb{R}^n , $\vec{y} = T(\vec{x})$ is called the T-image of \vec{x} . If \mathbb{S} is a bunch of vectors in \mathbb{R}^n (i.e., $\mathbb{S} \subset \mathbb{R}^n$), then $$T(S) = \{ \text{all images } T(\vec{x}) \text{ where } \vec{x} \text{ is in } S \}$$ is called the T-image of \mathbb{S} . The range of T is $\mathcal{R}ng(T) = T(\mathbb{R}^n)$, the set of <u>all</u> images $T(\vec{x})$; \vec{b} is in $\mathcal{R}ng(T)$ if and only if $\vec{b} = T(\vec{x})$ for some \vec{x} . Evidently, $\mathcal{R}ng(T)$ is a subset of the codomain of T; $\mathcal{R}ng(T) \subset \mathbb{R}^m$. An important question is to know which vectors \vec{b} are in the range of T. That is: Given \vec{b} , when can we find an \vec{x} in \mathbb{R}^n with $T(\vec{x}) = \vec{b}$? ### A matrix transformation $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ Here we assume that $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is given by the rule $T(\vec{x}) = A\vec{x}$ for some $m \times n$ matrix A. So, for each \vec{x} in \mathbb{R}^n , $$T(\vec{x}) = A\vec{x} = x_1\vec{a}_1 + x_2\vec{a}_2 + \cdots + x_n\vec{a}_n$$ where $\vec{a_j}$ is the j^{th} column of A. Thus each image $T(\vec{x})$ is a LC of the columns of A. Therefore, the range of T, which is the set of <u>all</u> images $T(\vec{x})$, is the set of all linear combinations of the columns of A; i.e., the range of T is the *span* of the columns of A. Look at: Given \vec{b} , when can we find an \vec{x} in \mathbb{R}^n with $T(\vec{x}) = \vec{b}$? Here we are just asking whether or not we can solve $A\vec{x} = \vec{b}$. The range of T is exactly all rhs vectors \vec{b} such that $A\vec{x} = \vec{b}$ has a solution. ## The range of $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ Assume $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ is given by $T(\vec{x}) = A\vec{x}$ for some $m \times n$ matrix A. The range of T is $\mathcal{R}ng(T) = T(\mathbb{R}^n)$ (the T-image of \mathbb{R}^n). There are many equivalent ways to view the range of T! - $\mathcal{R}ng(T)$ is all images $T(\vec{x})$ for \vec{x} in \mathbb{R}^n - ullet \mathcal{R} ng(\mathcal{T}) is all $ec{b}$ in \mathbb{R}^m such that $ec{b} = \mathcal{T}(ec{x})$ for some $ec{x}$ in \mathbb{R}^n - ullet \mathcal{R} ng(T) is all $ec{b}$ in \mathbb{R}^m such that $Aec{x}=ec{b}$ has a solution (is consistent) - Rng(T) is the *span* of the columns of A