Applied Linear Algebra MATH 5112/6012 These are transformations $\mathbb{R}^2 \to \mathbb{R}^2$ that include translations - translations - dilations - translations - dilations - rotations - translations - dilations - rotations - reflections - translations - dilations - rotations - reflections - projections - translations - dilations - rotations - reflections - projections - shearing These are transformations $\mathbb{R}^2 \to \mathbb{R}^2$ that include - translations - dilations - rotations - reflections - projections - shearing By using compositions of these, we can create all sorts of transformations. These are transformations $\mathbb{R}^2 \to \mathbb{R}^2$ that include - translations - dilations - rotations - reflections - projections - shearing By using compositions of these, we can create all sorts of transformations. Many of the above can also be defined as maps $\mathbb{R}^n \to \mathbb{R}^n$. A translation of \mathbb{R}^2 by \vec{a} is the map $\mathbb{R}^2 \xrightarrow{\mathcal{T}} \mathbb{R}^2$ defined by $$T(\vec{x}) = \vec{x} + \vec{a};$$ A translation of \mathbb{R}^2 by \vec{a} is the map $\mathbb{R}^2 \xrightarrow{T} \mathbb{R}^2$ defined by $$T(\vec{x}) = \vec{x} + \vec{a};$$ here \vec{a} is some fixed vector in \mathbb{R}^2 . A translation of \mathbb{R}^2 by \vec{a} is the map $\mathbb{R}^2 \xrightarrow{T} \mathbb{R}^2$ defined by $$T(\vec{x}) = \vec{x} + \vec{a};$$ here \vec{a} is some fixed vector in \mathbb{R}^2 . A dilation/scaling of \mathbb{R}^2 by k is the map $\mathbb{R}^2 \xrightarrow{S} \mathbb{R}^2$ defined by $$S(\vec{x}) = k\vec{x}$$; A translation of \mathbb{R}^2 by \vec{a} is the map $\mathbb{R}^2 \xrightarrow{T} \mathbb{R}^2$ defined by $$T(\vec{x}) = \vec{x} + \vec{a};$$ here \vec{a} is some fixed vector in \mathbb{R}^2 . A dilation/scaling of \mathbb{R}^2 by k is the map $\mathbb{R}^2 \xrightarrow{S} \mathbb{R}^2$ defined by $$S(\vec{x}) = k\vec{x}$$; here k > 0 is some fixed positive scalar. A translation of \mathbb{R}^2 by \vec{a} is the map $\mathbb{R}^2 \xrightarrow{T} \mathbb{R}^2$ defined by $$T(\vec{x}) = \vec{x} + \vec{a};$$ here \vec{a} is some fixed vector in \mathbb{R}^2 . A dilation/scaling of \mathbb{R}^2 by k is the map $\mathbb{R}^2 \xrightarrow{S} \mathbb{R}^2$ defined by $$S(\vec{x}) = k\vec{x}$$; here k > 0 is some fixed positive scalar. Both translations and dilations can be defined in \mathbb{R}^n ; we can even use exactly the same formulas. The reflection $\mathbb{R}^2 \xrightarrow{R} \mathbb{R}^2$ across \mathbb{L} is given by letting $R(\vec{x})$ be the vector obtained by reflecting \vec{x} across the line \mathbb{L} ; The reflection $\mathbb{R}^2 \xrightarrow{R} \mathbb{R}^2$ across \mathbb{L} is given by letting $R(\vec{x})$ be the vector obtained by reflecting \vec{x} across the line \mathbb{L} ; \mathbb{L} is some fixed line in \mathbb{R}^2 . The reflection $\mathbb{R}^2 \xrightarrow{R} \mathbb{R}^2$ across \mathbb{L} is given by letting $R(\vec{x})$ be the vector obtained by reflecting \vec{x} across the line \mathbb{L} ; \mathbb{L} is some fixed line in \mathbb{R}^2 . Reflection across the x-axis is $$R\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) =$$ The reflection $\mathbb{R}^2 \xrightarrow{R} \mathbb{R}^2$ across \mathbb{L} is given by letting $R(\vec{x})$ be the vector obtained by reflecting \vec{x} across the line \mathbb{L} ; \mathbb{L} is some fixed line in \mathbb{R}^2 . Reflection across the x-axis is $$R\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \\ -y \end{bmatrix}.$$ The reflection $\mathbb{R}^2 \xrightarrow{R} \mathbb{R}^2$ across \mathbb{L} is given by letting $R(\vec{x})$ be the vector obtained by reflecting \vec{x} across the line \mathbb{L} ; \mathbb{L} is some fixed line in \mathbb{R}^2 . Reflection across the x-axis is $$R\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \\ -y \end{bmatrix}.$$ Reflection across the y-axis is $$R\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} -x \\ y \end{bmatrix}$$. The reflection $\mathbb{R}^2 \xrightarrow{R} \mathbb{R}^2$ across \mathbb{L} is given by letting $R(\vec{x})$ be the vector obtained by reflecting \vec{x} across the line \mathbb{L} ; \mathbb{L} is some fixed line in \mathbb{R}^2 . Reflection across the x-axis is $$R\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \\ -y \end{bmatrix}$$. Reflection across the y-axis is $$R\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} -x \\ y \end{bmatrix}$$. Reflection across the line y = x is $$R\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} y \\ x \end{bmatrix}$$. The projection $\mathbb{R}^2 \xrightarrow{P} \mathbb{R}^2$ onto \mathbb{L} is given by letting $P(\vec{x})$ be the vector obtained by orthogonally projecting \vec{x} onto the direction vector for the line \mathbb{L} : The projection $\mathbb{R}^2 \xrightarrow{P} \mathbb{R}^2$ onto \mathbb{L} is given by letting $P(\vec{x})$ be the vector obtained by orthogonally projecting \vec{x} onto the direction vector for the line \mathbb{L} ; \mathbb{L} is some fixed line in \mathbb{R}^2 . The projection $\mathbb{R}^2 \xrightarrow{P} \mathbb{R}^2$ onto \mathbb{L} is given by letting $P(\vec{x})$ be the vector obtained by orthogonally projecting \vec{x} onto the direction vector for the line \mathbb{L} ; \mathbb{L} is some fixed line in \mathbb{R}^2 . Projection onto the x-axis is $$P(\begin{bmatrix} x \\ y \end{bmatrix}) =$$ The projection $\mathbb{R}^2 \xrightarrow{P} \mathbb{R}^2$ onto \mathbb{L} is given by letting $P(\vec{x})$ be the vector obtained by orthogonally projecting \vec{x} onto the direction vector for the line \mathbb{L} ; \mathbb{L} is some fixed line in \mathbb{R}^2 . Projection onto the x-axis is $$P\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \\ 0 \end{bmatrix}.$$ The projection $\mathbb{R}^2 \xrightarrow{P} \mathbb{R}^2$ onto \mathbb{L} is given by letting $P(\vec{x})$ be the vector obtained by orthogonally projecting \vec{x} onto the direction vector for the line \mathbb{L} ; \mathbb{L} is some fixed line in \mathbb{R}^2 . Projection onto the x-axis is $$P\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \\ 0 \end{bmatrix}.$$ Projection onto the y-axis is $$P\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 0 \\ y \end{bmatrix} .$$ The projection $\mathbb{R}^2 \xrightarrow{P} \mathbb{R}^2$ onto \mathbb{L} is given by letting $P(\vec{x})$ be the vector obtained by orthogonally projecting \vec{x} onto the direction vector for the line \mathbb{L} ; \mathbb{L} is some fixed line in \mathbb{R}^2 . Projection onto the x-axis is $$P\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \\ 0 \end{bmatrix}.$$ Projection onto the y-axis is $$P\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 0 \\ y \end{bmatrix} .$$ Projection onto the line y = x, Let \vec{u} be a fixed vector, and \vec{x} a variable vector. 7 / 8 Let \vec{u} be a fixed vector, and \vec{x} a variable vector. The *orthogonal projection of* \vec{x} *onto* \vec{u} is the pictured vector \vec{p} Let \vec{u} be a fixed vector, and \vec{x} a variable vector. The orthogonal projection of \vec{x} onto \vec{u} is the pictured vector \vec{p} which is parallel to \vec{u} (so, $\vec{p} = s\vec{u}$ for some scalar) and has the property that Let \vec{u} be a fixed vector, and \vec{x} a variable vector. The orthogonal projection of \vec{x} onto \vec{u} is the pictured vector \vec{p} which is parallel to \vec{u} (so, $\vec{p} = s\vec{u}$ for some scalar) and has the property that $\vec{z} = \vec{x} - \vec{p} \perp \vec{u}$. Let \vec{u} be a fixed vector, and \vec{x} a variable vector. The orthogonal projection of \vec{x} onto \vec{u} is the pictured vector \vec{p} which is parallel to \vec{u} (so, $\vec{p} = s\vec{u}$ for some scalar) and has the property that $\vec{z} = \vec{x} - \vec{p} \perp \vec{u}$. In Chapter 6 we will see that it is easy to determine s.