Applied Linear Algebra MATH 5112/6012

These are transformations $\mathbb{R}^2 \to \mathbb{R}^2$ that include

translations

- translations
- dilations

- translations
- dilations
- rotations

- translations
- dilations
- rotations
- reflections

- translations
- dilations
- rotations
- reflections
- projections

- translations
- dilations
- rotations
- reflections
- projections
- shearing

These are transformations $\mathbb{R}^2 \to \mathbb{R}^2$ that include

- translations
- dilations
- rotations
- reflections
- projections
- shearing

By using compositions of these, we can create all sorts of transformations.

These are transformations $\mathbb{R}^2 \to \mathbb{R}^2$ that include

- translations
- dilations
- rotations
- reflections
- projections
- shearing

By using compositions of these, we can create all sorts of transformations.

Many of the above can also be defined as maps $\mathbb{R}^n \to \mathbb{R}^n$.

A translation of \mathbb{R}^2 by \vec{a} is the map $\mathbb{R}^2 \xrightarrow{\mathcal{T}} \mathbb{R}^2$ defined by

$$T(\vec{x}) = \vec{x} + \vec{a};$$

A translation of \mathbb{R}^2 by \vec{a} is the map $\mathbb{R}^2 \xrightarrow{T} \mathbb{R}^2$ defined by

$$T(\vec{x}) = \vec{x} + \vec{a};$$

here \vec{a} is some fixed vector in \mathbb{R}^2 .

A translation of \mathbb{R}^2 by \vec{a} is the map $\mathbb{R}^2 \xrightarrow{T} \mathbb{R}^2$ defined by

$$T(\vec{x}) = \vec{x} + \vec{a};$$

here \vec{a} is some fixed vector in \mathbb{R}^2 .

A dilation/scaling of \mathbb{R}^2 by k is the map $\mathbb{R}^2 \xrightarrow{S} \mathbb{R}^2$ defined by

$$S(\vec{x}) = k\vec{x}$$
;

A translation of \mathbb{R}^2 by \vec{a} is the map $\mathbb{R}^2 \xrightarrow{T} \mathbb{R}^2$ defined by

$$T(\vec{x}) = \vec{x} + \vec{a};$$

here \vec{a} is some fixed vector in \mathbb{R}^2 .

A dilation/scaling of \mathbb{R}^2 by k is the map $\mathbb{R}^2 \xrightarrow{S} \mathbb{R}^2$ defined by

$$S(\vec{x}) = k\vec{x}$$
;

here k > 0 is some fixed positive scalar.

A translation of \mathbb{R}^2 by \vec{a} is the map $\mathbb{R}^2 \xrightarrow{T} \mathbb{R}^2$ defined by

$$T(\vec{x}) = \vec{x} + \vec{a};$$

here \vec{a} is some fixed vector in \mathbb{R}^2 .

A dilation/scaling of \mathbb{R}^2 by k is the map $\mathbb{R}^2 \xrightarrow{S} \mathbb{R}^2$ defined by

$$S(\vec{x}) = k\vec{x}$$
;

here k > 0 is some fixed positive scalar.

Both translations and dilations can be defined in \mathbb{R}^n ; we can even use exactly the same formulas.

The reflection $\mathbb{R}^2 \xrightarrow{R} \mathbb{R}^2$ across \mathbb{L} is given by letting $R(\vec{x})$ be the vector obtained by reflecting \vec{x} across the line \mathbb{L} ;

The reflection $\mathbb{R}^2 \xrightarrow{R} \mathbb{R}^2$ across \mathbb{L} is given by letting $R(\vec{x})$ be the vector obtained by reflecting \vec{x} across the line \mathbb{L} ; \mathbb{L} is some fixed line in \mathbb{R}^2 .

The reflection $\mathbb{R}^2 \xrightarrow{R} \mathbb{R}^2$ across \mathbb{L} is given by letting $R(\vec{x})$ be the vector obtained by reflecting \vec{x} across the line \mathbb{L} ; \mathbb{L} is some fixed line in \mathbb{R}^2 .

Reflection across the x-axis is

$$R\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) =$$

The reflection $\mathbb{R}^2 \xrightarrow{R} \mathbb{R}^2$ across \mathbb{L} is given by letting $R(\vec{x})$ be the vector obtained by reflecting \vec{x} across the line \mathbb{L} ; \mathbb{L} is some fixed line in \mathbb{R}^2 .

Reflection across the x-axis is

$$R\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \\ -y \end{bmatrix}.$$

The reflection $\mathbb{R}^2 \xrightarrow{R} \mathbb{R}^2$ across \mathbb{L} is given by letting $R(\vec{x})$ be the vector obtained by reflecting \vec{x} across the line \mathbb{L} ; \mathbb{L} is some fixed line in \mathbb{R}^2 .

Reflection across the x-axis is

$$R\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \\ -y \end{bmatrix}.$$

Reflection across the y-axis is

$$R\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} -x \\ y \end{bmatrix}$$
.

The reflection $\mathbb{R}^2 \xrightarrow{R} \mathbb{R}^2$ across \mathbb{L} is given by letting $R(\vec{x})$ be the vector obtained by reflecting \vec{x} across the line \mathbb{L} ; \mathbb{L} is some fixed line in \mathbb{R}^2 .

Reflection across the x-axis is

$$R\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \\ -y \end{bmatrix}$$
.

Reflection across the y-axis is

$$R\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} -x \\ y \end{bmatrix}$$
.

Reflection across the line y = x is

$$R\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} y \\ x \end{bmatrix}$$
.

The projection $\mathbb{R}^2 \xrightarrow{P} \mathbb{R}^2$ onto \mathbb{L} is given by letting $P(\vec{x})$ be the vector obtained by orthogonally projecting \vec{x} onto the direction vector for the line \mathbb{L} :

The projection $\mathbb{R}^2 \xrightarrow{P} \mathbb{R}^2$ onto \mathbb{L} is given by letting $P(\vec{x})$ be the vector obtained by orthogonally projecting \vec{x} onto the direction vector for the line \mathbb{L} ; \mathbb{L} is some fixed line in \mathbb{R}^2 .

The projection $\mathbb{R}^2 \xrightarrow{P} \mathbb{R}^2$ onto \mathbb{L} is given by letting $P(\vec{x})$ be the vector obtained by orthogonally projecting \vec{x} onto the direction vector for the line \mathbb{L} ; \mathbb{L} is some fixed line in \mathbb{R}^2 .

Projection onto the x-axis is

$$P(\begin{bmatrix} x \\ y \end{bmatrix}) =$$

The projection $\mathbb{R}^2 \xrightarrow{P} \mathbb{R}^2$ onto \mathbb{L} is given by letting $P(\vec{x})$ be the vector obtained by orthogonally projecting \vec{x} onto the direction vector for the line \mathbb{L} ; \mathbb{L} is some fixed line in \mathbb{R}^2 .

Projection onto the x-axis is

$$P\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \\ 0 \end{bmatrix}.$$

The projection $\mathbb{R}^2 \xrightarrow{P} \mathbb{R}^2$ onto \mathbb{L} is given by letting $P(\vec{x})$ be the vector obtained by orthogonally projecting \vec{x} onto the direction vector for the line \mathbb{L} ; \mathbb{L} is some fixed line in \mathbb{R}^2 .

Projection onto the x-axis is

$$P\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \\ 0 \end{bmatrix}.$$

Projection onto the y-axis is

$$P\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 0 \\ y \end{bmatrix} .$$

The projection $\mathbb{R}^2 \xrightarrow{P} \mathbb{R}^2$ onto \mathbb{L} is given by letting $P(\vec{x})$ be the vector obtained by orthogonally projecting \vec{x} onto the direction vector for the line \mathbb{L} ; \mathbb{L} is some fixed line in \mathbb{R}^2 .

Projection onto the x-axis is

$$P\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \\ 0 \end{bmatrix}.$$

Projection onto the y-axis is

$$P\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 0 \\ y \end{bmatrix} .$$

Projection onto the line y = x,

Let \vec{u} be a fixed vector, and \vec{x} a variable vector.

7 / 8

Let \vec{u} be a fixed vector, and \vec{x} a variable vector.

The *orthogonal projection of* \vec{x} *onto* \vec{u} is the pictured vector \vec{p}

Let \vec{u} be a fixed vector, and \vec{x} a variable vector.

The orthogonal projection of \vec{x} onto \vec{u} is the pictured vector \vec{p} which is parallel to \vec{u} (so, $\vec{p} = s\vec{u}$ for some scalar) and has the property that

Let \vec{u} be a fixed vector, and \vec{x} a variable vector.

The orthogonal projection of \vec{x} onto \vec{u} is the pictured vector \vec{p} which is parallel to \vec{u} (so, $\vec{p} = s\vec{u}$ for some scalar) and has the property that $\vec{z} = \vec{x} - \vec{p} \perp \vec{u}$.

Let \vec{u} be a fixed vector, and \vec{x} a variable vector.

The orthogonal projection of \vec{x} onto \vec{u} is the pictured vector \vec{p} which is parallel to \vec{u} (so, $\vec{p} = s\vec{u}$ for some scalar) and has the property that $\vec{z} = \vec{x} - \vec{p} \perp \vec{u}$. In Chapter 6 we will see that it is easy to determine s.

