Linear Transformations Chapter 3, Section 6 An Example

> Applied Linear Algebra MATH 5112/6012

Define $T(\vec{x}) = A\vec{x}$ where $A =$ $\sqrt{ }$ $\overline{}$ $1 -2 1$ $3 -4 5$ 0 1 1 -3 5 -4 1 $\overline{}$.

- \bullet Find the domain, codomain, and range of T.
- Determine whether or not \vec{b} belongs to the range of T, and if so, find all vectors \vec{x} such that the T image of \vec{x} is \vec{b} , where

$$
\vec{b} = \begin{bmatrix} 1 \\ 9 \\ 3 \\ -6 \end{bmatrix}
$$

.

First, A is a 4 \times 3 matrix, so $\mathbb{R}^3 \xrightarrow{T} \mathbb{R}^4$. That is,

- the domain of $\mathcal T$ is $\mathbb R^3$,
- the codomain is \mathbb{R}^4 .

Finding the range of T requires more work.

First—the range of T

What is the range of T?

 \mathcal{R} ng (\mathcal{T}) is just all possible images $\mathcal{T}(\vec{x})$, for all possible \vec{x} in \mathbb{R}^3 . That is, all possible $T(\vec{x}) = A\vec{x}$.

Let $\vec{a}_1, \vec{a}_2, \vec{a}_3$ be the columns of A. Then, $A\vec{x} = x_1\vec{a}_1 + x_2\vec{a}_2 + x_3\vec{a}_3$ where x_1, x_2, x_3 are the coordinates of \vec{x} .

So, we want all possible $T(\vec{x}) = A\vec{x} = x_1\vec{a_1} + x_2\vec{a_2} + x_3\vec{a_3}$.

This is all possible LCs of $\vec{a}_1, \vec{a}_2, \vec{a}_3$. This is \mathcal{S} pan $\left\{\vec{a}_1, \vec{a}_2, \vec{a}_3\right\}$.

That is,
$$
\left[\mathcal{R}ng(\mathcal{T}) = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \vec{a}_3\} \right]
$$
; $\mathcal{R}ng(\mathcal{T}) = \mathcal{CS}(A)$.

There are two different ways to proceed.

The range of $\mathcal T$ is $\mathcal S$ pan $\left\{\vec a_1, \vec a_2, \vec a_3\right\}$

Let's row reduce $A=\left[\vec a_1 \; \vec a_2 \; \vec a_3\right]$. Not hard to see that

$$
A = \begin{bmatrix} 1 & -2 & 1 \\ 3 & -4 & 5 \\ 0 & 1 & 1 \\ -3 & 5 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 1 \\ 0 & 2 & 2 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}
$$

Now, what exactly does this tell us? We see that

$$
A\vec{x} = \vec{0} \iff \vec{x} = t \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}
$$
 where *t* is any scalar,

so the solution set to $A\vec{x}=\vec{0}$ is exactly $\mathbb{L}=\mathcal{S}$ pan $\big\{$ $\sqrt{ }$ $\overline{1}$ 3 1 −1 1 \mathbf{I} $\Big\}$;

this is a line in \mathbb{R}^3 thru $\vec{0}$.

.

Finding $\mathcal{R}ng(\mathcal{T})=\mathcal{S}pan\{\vec{a}_1,\vec{a}_2,\vec{a}_3\}$

Thus the solution set to $A\vec{x} = \vec{0}$ is the line $\mathbb{L} = \mathcal{S}$ pan $\left\{ \right.$ $\sqrt{ }$ $\overline{1}$ 3 1 -1 1 \mathbf{I} $\big\}$. So, for example, A $\sqrt{ }$ $\overline{1}$ 3 1 -1 1 $\Big| = \vec{0}$, which says that $3\vec{a}_1 + \vec{a}_2 - \vec{a}_3 = \vec{0}$. That is, $\vec a_3=3\vec a_1+\vec a_2$. Therefore, $\mathcal S$ pan $\left\{\vec a_1,\vec a_2,\vec a_3\right\}= \mathcal S$ pan $\left\{\vec a_1,\vec a_2\right\}$.

We have found
$$
\mathcal{R}ng(\mathcal{T}) = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2\} = \mathcal{S}pan\left\{\begin{bmatrix} 1\\3\\0\\-3 \end{bmatrix}, \begin{bmatrix} -2\\-4\\1\\5 \end{bmatrix} \right\}.
$$

This is a 2-plane in \mathbb{R}^4 thru $\vec{0}$. Note that \vec{a}_1 and \vec{a}_2 are the pivot columns of A, right?

Last part of problem

We now know that \mathcal{R} *ng*(*T*) is the 2-plane \mathcal{S} *pan* $\Big\{$ $\sqrt{ }$ $\overline{}$ 1 3 0 −3 1 \parallel , $\sqrt{ }$ $\Bigg\}$

Now we must... Determine whether or not \vec{b} belongs to the range of T, and if so, find all vectors \vec{x} such that the T image of \vec{x} is \vec{b} , where

$$
\vec{b} = \begin{bmatrix} 1 \\ 9 \\ 3 \\ -6 \end{bmatrix}.
$$

Can we find scalars s_1, s_2 so that

$$
\vec{b} = s_1 \vec{a}_1 + s_2 \vec{a}_2 = s_1 \begin{bmatrix} 1 \\ 3 \\ 0 \\ -3 \end{bmatrix} + s_2 \begin{bmatrix} -2 \\ -4 \\ 1 \\ 5 \end{bmatrix}?
$$

 -2 -4 1 5

1

 $\overline{}$ $\bigg\}$.

Is \overline{b} in \mathcal{R} ng (T) ?

Actually, it is easy to find scalars s_1, s_2 so that

$$
\begin{bmatrix} 1 \\ 9 \\ 3 \\ -6 \end{bmatrix} = \vec{b} = s_1 \vec{a}_1 + s_2 \vec{a}_2 = s_1 \begin{bmatrix} 1 \\ 3 \\ 0 \\ -3 \end{bmatrix} + s_2 \begin{bmatrix} -2 \\ -4 \\ 1 \\ 5 \end{bmatrix} = \begin{bmatrix} s_1 - 2s_2 \\ 3s_1 - 4s_2 \\ s_2 \\ -3s_1 + 5s_2 \end{bmatrix}
$$

We see that $s_2 = 3$, and $s_1 = 7$. Thus,

$$
\vec{b} = 7\vec{a}_1 + 3\vec{a}_2 = A \begin{bmatrix} 7 \\ 3 \\ 0 \end{bmatrix} = T \begin{bmatrix} 7 \\ 3 \\ 0 \end{bmatrix}.
$$

Are there other vectors \vec{x} with \vec{T} images equal to \vec{b} ? What does it mean to say that the T image of \vec{x} is \vec{b} ? This just means that $T(\vec{x}) = \vec{b}$; right?

So, we must find all solutions to $T(\vec{x}) = \vec{b}$, or equivalently, all solutions to $A\vec{x} = \vec{b}$.

What is the solution set for $T(\vec{x}) = b$?

We seek all solutions to $T(\vec{x}) = \vec{b}$, i.e., the solution set for $A\vec{x} = \vec{b}$. The solution sets for $A\vec{x} = \vec{b}$ and $A\vec{x} = \vec{0}$ are related in a special way, each is just a translate of the other—they are parallel to each other.

We know that the solution set to $A\vec{x} = \vec{0}$ is the line $\mathbb{L} = \mathcal{S}$ pan $\left\{ \right.$ $\sqrt{ }$ $\overline{1}$ 3 1 −1 1 \mathbf{I} $\big\}$.

Also,
$$
A\begin{bmatrix} 7 \\ 3 \\ 0 \end{bmatrix} = \vec{b}
$$
; that is, $\vec{p} = \begin{bmatrix} 7 \\ 3 \\ 0 \end{bmatrix}$ is a particular solution to $A\vec{x} = \vec{b}$.

Therefore, the solution set for $A\vec{x} = \vec{b}$ is the line thru \vec{p} that is parallel to the line L. Algebraically, in parametric vector form, these solutions are

$$
\vec{x} = \vec{p} + t \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 7 \\ 3 \\ 0 \end{bmatrix} + t \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}
$$
 where *t* is any scalar.

These are the only vectors \vec{x} with $T(\vec{x}) = b$. ($\ddot{\smile}$)