Linear Transformations Chapter 3, Section 6 An Example

Applied Linear Algebra MATH 5112/6012

Define
$$T(\vec{x}) = A\vec{x}$$
 where $A = \begin{bmatrix} 1 & -2 & 1 \\ 3 & -4 & 5 \\ 0 & 1 & 1 \\ -3 & 5 & -4 \end{bmatrix}$.

- Find the domain, codomain, and range of T.
- Determine whether or not \vec{b} belongs to the range of T, and if so, find all vectors \vec{x} such that the T image of \vec{x} is \vec{b} , where

$$\vec{b} = \begin{bmatrix} 1 \\ 9 \\ 3 \\ -6 \end{bmatrix}$$
.

Define
$$T(\vec{x}) = A\vec{x}$$
 where $A = \begin{bmatrix} 1 & -2 & 1 \\ 3 & -4 & 5 \\ 0 & 1 & 1 \\ -3 & 5 & -4 \end{bmatrix}$.

- Find the domain, codomain, and range of T.
- Determine whether or not \vec{b} belongs to the range of T, and if so, find all vectors \vec{x} such that the T image of \vec{x} is \vec{b} , where

$$\vec{b} = \begin{bmatrix} 1 \\ 9 \\ 3 \\ -6 \end{bmatrix}.$$

First, A is a 4×3 matrix, so $\mathbb{R}^3 \xrightarrow{\mathcal{T}} \mathbb{R}^4$. That is,

Define
$$T(\vec{x}) = A\vec{x}$$
 where $A = \begin{bmatrix} 1 & -2 & 1 \\ 3 & -4 & 5 \\ 0 & 1 & 1 \\ -3 & 5 & -4 \end{bmatrix}$.

- Find the domain, codomain, and range of T.
- Determine whether or not \vec{b} belongs to the range of T, and if so, find all vectors \vec{x} such that the T image of \vec{x} is \vec{b} , where

$$\vec{b} = \begin{bmatrix} 1 \\ 9 \\ 3 \\ -6 \end{bmatrix}.$$

First, A is a 4×3 matrix, so $\mathbb{R}^3 \xrightarrow{T} \mathbb{R}^4$. That is,

• the domain of T is \mathbb{R}^3 ,

Define
$$T(\vec{x}) = A\vec{x}$$
 where $A = \begin{bmatrix} 1 & -2 & 1 \\ 3 & -4 & 5 \\ 0 & 1 & 1 \\ -3 & 5 & -4 \end{bmatrix}$.

- Find the domain, codomain, and range of T.
- Determine whether or not \vec{b} belongs to the range of T, and if so, find all vectors \vec{x} such that the T image of \vec{x} is \vec{b} , where

$$\vec{b} = \begin{bmatrix} 1 \\ 9 \\ 3 \\ -6 \end{bmatrix}.$$

First, A is a 4×3 matrix, so $\mathbb{R}^3 \xrightarrow{T} \mathbb{R}^4$. That is,

- the domain of T is \mathbb{R}^3 ,
- the codomain is \mathbb{R}^4 .

Define
$$T(\vec{x}) = A\vec{x}$$
 where $A = \begin{bmatrix} 1 & -2 & 1 \\ 3 & -4 & 5 \\ 0 & 1 & 1 \\ -3 & 5 & -4 \end{bmatrix}$.

- Find the domain, codomain, and range of T.
- Determine whether or not \vec{b} belongs to the range of T, and if so, find all vectors \vec{x} such that the T image of \vec{x} is \vec{b} , where

$$\vec{b} = \begin{bmatrix} 1 \\ 9 \\ 3 \\ -6 \end{bmatrix}.$$

First, A is a 4×3 matrix, so $\mathbb{R}^3 \xrightarrow{T} \mathbb{R}^4$. That is,

- the domain of T is \mathbb{R}^3 ,
- the codomain is \mathbb{R}^4 .

Finding the range of T requires more work.

What is the range of T?

What is the range of T?

 $\mathcal{R}ng(T)$ is just all possible images $T(\vec{x})$, for all possible \vec{x} in \mathbb{R}^3 .

What is the range of T?

 $\mathcal{R}ng(T)$ is just all possible images $T(\vec{x})$, for all possible \vec{x} in \mathbb{R}^3 . That is, all possible $T(\vec{x}) = A\vec{x}$.

What is the range of T?

 $\mathcal{R}ng(T)$ is just all possible images $T(\vec{x})$, for all possible \vec{x} in \mathbb{R}^3 . That is, all possible $T(\vec{x}) = A\vec{x}$.

Let $\vec{a}_1, \vec{a}_2, \vec{a}_3$ be the columns of A.

What is the range of T?

 $\mathcal{R}ng(T)$ is just all possible images $T(\vec{x})$, for all possible \vec{x} in \mathbb{R}^3 . That is, all possible $T(\vec{x}) = A\vec{x}$.

Let $\vec{a}_1, \vec{a}_2, \vec{a}_3$ be the columns of \vec{A} . Then, $\vec{A}\vec{x} = x_1\vec{a}_1 + x_2\vec{a}_2 + x_3\vec{a}_3$ where x_1, x_2, x_3 are the coordinates of \vec{x} .

What is the range of T?

 $\mathcal{R}ng(T)$ is just all possible images $T(\vec{x})$, for all possible \vec{x} in \mathbb{R}^3 . That is, all possible $T(\vec{x}) = A\vec{x}$.

Let \vec{a}_1 , \vec{a}_2 , \vec{a}_3 be the columns of \vec{A} . Then, $\vec{A}\vec{x} = x_1\vec{a}_1 + x_2\vec{a}_2 + x_3\vec{a}_3$ where x_1, x_2, x_3 are the coordinates of \vec{x} .

So, we want all possible $T(\vec{x}) = A\vec{x} = x_1\vec{a}_1 + x_2\vec{a}_2 + x_3\vec{a}_3$.

What is the range of T?

 $\mathcal{R}ng(T)$ is just all possible images $T(\vec{x})$, for all possible \vec{x} in \mathbb{R}^3 . That is, all possible $T(\vec{x}) = A\vec{x}$.

Let $\vec{a}_1, \vec{a}_2, \vec{a}_3$ be the columns of \vec{A} . Then, $\vec{A}\vec{x} = x_1\vec{a}_1 + x_2\vec{a}_2 + x_3\vec{a}_3$ where x_1, x_2, x_3 are the coordinates of \vec{x} .

So, we want all possible $T(\vec{x}) = A\vec{x} = x_1\vec{a}_1 + x_2\vec{a}_2 + x_3\vec{a}_3$.

This is all possible LCs of $\vec{a}_1, \vec{a}_2, \vec{a}_3$.

What is the range of T?

 $\mathcal{R}ng(T)$ is just all possible images $T(\vec{x})$, for all possible \vec{x} in \mathbb{R}^3 . That is, all possible $T(\vec{x}) = A\vec{x}$.

Let $\vec{a}_1, \vec{a}_2, \vec{a}_3$ be the columns of \vec{A} . Then, $\vec{A}\vec{x} = x_1\vec{a}_1 + x_2\vec{a}_2 + x_3\vec{a}_3$ where x_1, x_2, x_3 are the coordinates of \vec{x} .

So, we want all possible $T(\vec{x}) = A\vec{x} = x_1\vec{a}_1 + x_2\vec{a}_2 + x_3\vec{a}_3$.

This is all possible LCs of \vec{a}_1 , \vec{a}_2 , \vec{a}_3 . This is $Span\{\vec{a}_1, \vec{a}_2, \vec{a}_3\}$.

What is the range of T?

 $\mathcal{R}ng(T)$ is just all possible images $T(\vec{x})$, for all possible \vec{x} in \mathbb{R}^3 . That is, all possible $T(\vec{x}) = A\vec{x}$.

Let $\vec{a}_1, \vec{a}_2, \vec{a}_3$ be the columns of \vec{A} . Then, $\vec{A}\vec{x} = x_1\vec{a}_1 + x_2\vec{a}_2 + x_3\vec{a}_3$ where x_1, x_2, x_3 are the coordinates of \vec{x} .

So, we want all possible $T(\vec{x}) = A\vec{x} = x_1\vec{a}_1 + x_2\vec{a}_2 + x_3\vec{a}_3$.

This is all possible LCs of $\vec{a}_1, \vec{a}_2, \vec{a}_3$. This is $Span\{\vec{a}_1, \vec{a}_2, \vec{a}_3\}$.

That is, $\boxed{\mathcal{R}\textit{ng}(T) = \mathcal{S}\textit{pan}\{\vec{a}_1, \vec{a}_2, \vec{a}_3\}}$;

What is the range of T?

 $\mathcal{R}ng(T)$ is just all possible images $T(\vec{x})$, for all possible \vec{x} in \mathbb{R}^3 . That is, all possible $T(\vec{x}) = A\vec{x}$.

Let $\vec{a}_1, \vec{a}_2, \vec{a}_3$ be the columns of \vec{A} . Then, $\vec{A}\vec{x} = x_1\vec{a}_1 + x_2\vec{a}_2 + x_3\vec{a}_3$ where x_1, x_2, x_3 are the coordinates of \vec{x} .

So, we want all possible $T(\vec{x}) = A\vec{x} = x_1\vec{a}_1 + x_2\vec{a}_2 + x_3\vec{a}_3$.

This is all possible LCs of \vec{a}_1 , \vec{a}_2 , \vec{a}_3 . This is $Span\{\vec{a}_1, \vec{a}_2, \vec{a}_3\}$.

That is, $\mathcal{R}ng(T) = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \vec{a}_3\}$; $\mathcal{R}ng(T) = \mathcal{CS}(A)$.

What is the range of T?

 $\mathcal{R}ng(T)$ is just all possible images $T(\vec{x})$, for all possible \vec{x} in \mathbb{R}^3 . That is, all possible $T(\vec{x}) = A\vec{x}$.

Let $\vec{a}_1, \vec{a}_2, \vec{a}_3$ be the columns of \vec{A} . Then, $\vec{A}\vec{x} = x_1\vec{a}_1 + x_2\vec{a}_2 + x_3\vec{a}_3$ where x_1, x_2, x_3 are the coordinates of \vec{x} .

So, we want all possible $T(\vec{x}) = A\vec{x} = x_1\vec{a}_1 + x_2\vec{a}_2 + x_3\vec{a}_3$.

This is all possible LCs of $\vec{a}_1, \vec{a}_2, \vec{a}_3$. This is $Span\{\vec{a}_1, \vec{a}_2, \vec{a}_3\}$.

That is,
$$\mathcal{R}ng(T) = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \vec{a}_3\}$$
; $\mathcal{R}ng(T) = \mathcal{CS}(A)$.

There are two different ways to proceed.

Let's row reduce $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \vec{a_3} \end{bmatrix}$.

$$A = \begin{bmatrix} 1 & -2 & 1 \\ 3 & -4 & 5 \\ 0 & 1 & 1 \\ -3 & 5 & -4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 & 1 \\ 3 & -4 & 5 \\ 0 & 1 & 1 \\ -3 & 5 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 1 \\ 0 & 2 & 2 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 & 1 \\ 3 & -4 & 5 \\ 0 & 1 & 1 \\ -3 & 5 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 1 \\ 0 & 2 & 2 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 & 1 \\ 3 & -4 & 5 \\ 0 & 1 & 1 \\ -3 & 5 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 1 \\ 0 & 2 & 2 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Let's row reduce $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \vec{a_3} \end{bmatrix}$. Not hard to see that

$$A = \begin{bmatrix} 1 & -2 & 1 \\ 3 & -4 & 5 \\ 0 & 1 & 1 \\ -3 & 5 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 1 \\ 0 & 2 & 2 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Now, what exactly does this tell us?

Let's row reduce $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \vec{a_3} \end{bmatrix}$. Not hard to see that

$$A = \begin{bmatrix} 1 & -2 & 1 \\ 3 & -4 & 5 \\ 0 & 1 & 1 \\ -3 & 5 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 1 \\ 0 & 2 & 2 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Now, what exactly does this tell us? We see that

$$A\vec{x} = \vec{0} \iff \vec{x} = t \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}$$
 where t is any scalar,

Let's row reduce $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \vec{a_3} \end{bmatrix}$. Not hard to see that

$$A = \begin{bmatrix} 1 & -2 & 1 \\ 3 & -4 & 5 \\ 0 & 1 & 1 \\ -3 & 5 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 1 \\ 0 & 2 & 2 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Now, what exactly does this tell us? We see that

$$A\vec{x} = \vec{0} \iff \vec{x} = t \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}$$
 where t is any scalar,

so the solution set to $A\vec{x}=\vec{0}$ is exactly $\mathbb{L}=\mathcal{S}\mathit{pan}\Big\{egin{bmatrix}3\\1\\-1\end{bmatrix}\Big\};$

Let's row reduce $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \vec{a_3} \end{bmatrix}$. Not hard to see that

$$A = \begin{bmatrix} 1 & -2 & 1 \\ 3 & -4 & 5 \\ 0 & 1 & 1 \\ -3 & 5 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 1 \\ 0 & 2 & 2 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Now, what exactly does this tell us? We see that

$$A\vec{x} = \vec{0} \iff \vec{x} = t \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}$$
 where t is any scalar,

so the solution set to $A\vec{x} = \vec{0}$ is exactly $\mathbb{L} = \mathcal{S}pan\left\{\begin{bmatrix} 3\\1\\-1\end{bmatrix}\right\}$;

this is a line in \mathbb{R}^3 thru $\vec{0}$.

Thus the solution set to $A\vec{x} = \vec{0}$ is the line $\mathbb{L} = \mathcal{S}pan\left\{\begin{bmatrix} 3\\1\\-1\end{bmatrix}\right\}$.

Thus the solution set to $A\vec{x} = \vec{0}$ is the line $\mathbb{L} = \mathcal{S}pan \left\{ \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix} \right\}$.

So, for example,
$$A\begin{bmatrix} 3\\1\\-1\end{bmatrix} = \vec{0}$$
,

Thus the solution set to $A\vec{x} = \vec{0}$ is the line $\mathbb{L} = \mathcal{S}pan \left\{ \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix} \right\}$.

So, for example,
$$A\begin{bmatrix} 3\\1\\-1\end{bmatrix}=\vec{0}$$
, which says that $3\vec{a}_1+\vec{a}_2-\vec{a}_3=\vec{0}$.

Thus the solution set to $A\vec{x} = \vec{0}$ is the line $\mathbb{L} = \mathcal{S}pan \left\{ \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix} \right\}$.

So, for example,
$$A\begin{bmatrix} 3\\1\\-1\end{bmatrix}=\vec{0}$$
, which says that $3\vec{a}_1+\vec{a}_2-\vec{a}_3=\vec{0}$.

That is, $\vec{a}_3 = 3\vec{a}_1 + \vec{a}_2$.

Thus the solution set to $A\vec{x} = \vec{0}$ is the line $\mathbb{L} = \mathcal{S}pan\left\{\begin{bmatrix} 3\\1\\-1\end{bmatrix}\right\}$.

So, for example,
$$A\begin{bmatrix}3\\1\\-1\end{bmatrix}=\vec{0}$$
, which says that $3\vec{a}_1+\vec{a}_2-\vec{a}_3=\vec{0}$.

That is, $\vec{a}_3 = 3\vec{a}_1 + \vec{a}_2$. Therefore, $Span\{\vec{a}_1, \vec{a}_2, \vec{a}_3\} = Span\{\vec{a}_1, \vec{a}_2\}$.

Thus the solution set to $A\vec{x} = \vec{0}$ is the line $\mathbb{L} = \mathcal{S}pan \left\{ \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix} \right\}$.

So, for example, $A\begin{bmatrix} 3\\1\\-1\end{bmatrix}=\vec{0}$, which says that $3\vec{a}_1+\vec{a}_2-\vec{a}_3=\vec{0}$.

That is, $\vec{a}_3 = 3\vec{a}_1 + \vec{a}_2$. Therefore, $\mathcal{S}\textit{pan}\{\vec{a}_1, \vec{a}_2, \vec{a}_3\} = \mathcal{S}\textit{pan}\{\vec{a}_1, \vec{a}_2\}$.

We have found $\mathcal{R}ng(T) = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2\} = \mathcal{S}pan\left\{\begin{bmatrix}1\\3\\0\\-3\end{bmatrix}, \begin{bmatrix}-2\\-4\\1\\5\end{bmatrix}\right\}$.

Thus the solution set to $A\vec{x} = \vec{0}$ is the line $\mathbb{L} = \mathcal{S}pan\left\{\begin{bmatrix} 3\\1\\-1\end{bmatrix}\right\}$.

So, for example,
$$A\begin{bmatrix} 3\\1\\-1\end{bmatrix}=\vec{0}$$
, which says that $3\vec{a}_1+\vec{a}_2-\vec{a}_3=\vec{0}$.

That is, $\vec{a}_3 = 3\vec{a}_1 + \vec{a}_2$. Therefore, $\mathcal{S}\mathit{pan}\{\vec{a}_1, \vec{a}_2, \vec{a}_3\} = \mathcal{S}\mathit{pan}\{\vec{a}_1, \vec{a}_2\}$.

We have found
$$\mathcal{R}ng(T) = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2\} = \mathcal{S}pan\{\begin{bmatrix}1\\3\\0\\-3\end{bmatrix}, \begin{bmatrix}-2\\-4\\1\\5\end{bmatrix}\}.$$

This is a 2-plane in \mathbb{R}^4 thru $\vec{0}$.

Finding \mathcal{R} ng $(T) = \mathcal{S}$ pan $\left\{ \vec{a_1}, \vec{a_2}, \vec{a_3} \right\}$

Thus the solution set to $A\vec{x} = \vec{0}$ is the line $\mathbb{L} = \mathcal{S}pan\left\{\begin{bmatrix} 3\\1\\-1\end{bmatrix}\right\}$.

So, for example,
$$A\begin{bmatrix} 3\\1\\-1\end{bmatrix}=\vec{0}$$
, which says that $3\vec{a}_1+\vec{a}_2-\vec{a}_3=\vec{0}$.

That is, $\vec{a}_3 = 3\vec{a}_1 + \vec{a}_2$. Therefore, $\mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \vec{a}_3\} = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2\}$.

We have found
$$\mathcal{R}ng(T) = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2\} = \mathcal{S}pan\{\begin{bmatrix}1\\3\\0\\-3\end{bmatrix}, \begin{bmatrix}-2\\-4\\1\\5\end{bmatrix}\}.$$

This is a 2-plane in \mathbb{R}^4 thru $\vec{0}$.

Note that \vec{a}_1 and \vec{a}_2 are the pivot columns of A, right?

Last part of problem

We now know that $\mathcal{R}ng(T)$ is the 2-plane $\mathcal{S}pan\left\{ \begin{bmatrix} 1\\3\\0\\-3 \end{bmatrix}, \begin{bmatrix} -2\\-4\\1\\5 \end{bmatrix} \right\}$.

Now we must...

Last part of problem

We now know that $\mathcal{R}ng(T)$ is the 2-plane $\mathcal{S}pan\left\{\begin{bmatrix}1\\3\\0\\-3\end{bmatrix},\begin{bmatrix}-2\\-4\\1\\5\end{bmatrix}\right\}$.

Now we must... Determine whether or not \vec{b} belongs to the range of T, and if so, find all vectors \vec{x} such that the T image of \vec{x} is \vec{b} , where

$$\vec{b} = \begin{bmatrix} 1 \\ 9 \\ 3 \\ -6 \end{bmatrix}.$$

Last part of problem

We now know that $\mathcal{R}ng(T)$ is the 2-plane $\mathcal{S}pan\left\{\begin{bmatrix}1\\3\\0\\-3\end{bmatrix},\begin{bmatrix}-2\\-4\\1\\5\end{bmatrix}\right\}$.

Now we must... Determine whether or not \vec{b} belongs to the range of T, and if so, find all vectors \vec{x} such that the T image of \vec{x} is \vec{b} , where

$$\vec{b} = \begin{bmatrix} 1 \\ 9 \\ 3 \\ -6 \end{bmatrix}$$
.

Can we find scalars s_1, s_2 so that

$$\vec{b} = s_1 \vec{a}_1 + s_2 \vec{a}_2$$

Last part of problem

We now know that $\mathcal{R}ng(T)$ is the 2-plane $\mathcal{S}pan\left\{\begin{bmatrix}1\\3\\0\\-3\end{bmatrix},\begin{bmatrix}-2\\-4\\1\\5\end{bmatrix}\right\}$.

Now we must... Determine whether or not \vec{b} belongs to the range of T, and if so, find all vectors \vec{x} such that the T image of \vec{x} is \vec{b} , where

$$\vec{b} = \begin{bmatrix} 1 \\ 9 \\ 3 \\ -6 \end{bmatrix}.$$

Can we find scalars s_1, s_2 so that

$$\vec{b} = s_1 \vec{a}_1 + s_2 \vec{a}_2 = s_1 \begin{bmatrix} 1 \\ 3 \\ 0 \\ -3 \end{bmatrix} + s_2 \begin{bmatrix} -2 \\ -4 \\ 1 \\ 5 \end{bmatrix}$$
?

Actually, it is easy to find scalars s_1, s_2 so that

$$\vec{b} = s_1 \vec{a}_1 + s_2 \vec{a}_2 = s_1 \begin{bmatrix} 1 \\ 3 \\ 0 \\ -3 \end{bmatrix} + s_2 \begin{bmatrix} -2 \\ -4 \\ 1 \\ 5 \end{bmatrix}$$

Actually, it is easy to find scalars s_1, s_2 so that

$$\begin{bmatrix} 1 \\ 9 \\ 3 \\ -6 \end{bmatrix} = \vec{b} = s_1 \vec{a}_1 + s_2 \vec{a}_2 = s_1 \begin{bmatrix} 1 \\ 3 \\ 0 \\ -3 \end{bmatrix} + s_2 \begin{bmatrix} -2 \\ -4 \\ 1 \\ 5 \end{bmatrix}$$

Actually, it is easy to find scalars s_1, s_2 so that

$$\begin{bmatrix} 1 \\ 9 \\ 3 \\ -6 \end{bmatrix} = \vec{b} = s_1 \vec{a}_1 + s_2 \vec{a}_2 = s_1 \begin{bmatrix} 1 \\ 3 \\ 0 \\ -3 \end{bmatrix} + s_2 \begin{bmatrix} -2 \\ -4 \\ 1 \\ 5 \end{bmatrix} = \begin{bmatrix} s_1 - 2s_2 \\ 3s_1 - 4s_2 \\ s_2 \\ -3s_1 + 5s_2 \end{bmatrix}$$

Actually, it is easy to find scalars s_1, s_2 so that

$$\begin{bmatrix} 1 \\ 9 \\ 3 \\ -6 \end{bmatrix} = \vec{b} = s_1 \vec{a}_1 + s_2 \vec{a}_2 = s_1 \begin{bmatrix} 1 \\ 3 \\ 0 \\ -3 \end{bmatrix} + s_2 \begin{bmatrix} -2 \\ -4 \\ 1 \\ 5 \end{bmatrix} = \begin{bmatrix} s_1 - 2s_2 \\ 3s_1 - 4s_2 \\ s_2 \\ -3s_1 + 5s_2 \end{bmatrix}$$

We see that $s_2 = 3$,

Actually, it is easy to find scalars s_1, s_2 so that

$$\begin{bmatrix} 1 \\ 9 \\ 3 \\ -6 \end{bmatrix} = \vec{b} = s_1 \vec{a}_1 + s_2 \vec{a}_2 = s_1 \begin{bmatrix} 1 \\ 3 \\ 0 \\ -3 \end{bmatrix} + s_2 \begin{bmatrix} -2 \\ -4 \\ 1 \\ 5 \end{bmatrix} = \begin{bmatrix} s_1 - 2s_2 \\ 3s_1 - 4s_2 \\ s_2 \\ -3s_1 + 5s_2 \end{bmatrix}$$

We see that $s_2 = 3$, and $s_1 = 7$.

Actually, it is easy to find scalars s_1, s_2 so that

$$\begin{bmatrix} 1\\9\\3\\-6 \end{bmatrix} = \vec{b} = s_1 \vec{a}_1 + s_2 \vec{a}_2 = s_1 \begin{bmatrix} 1\\3\\0\\-3 \end{bmatrix} + s_2 \begin{bmatrix} -2\\-4\\1\\5 \end{bmatrix} = \begin{bmatrix} s_1 - 2s_2\\3s_1 - 4s_2\\s_2\\-3s_1 + 5s_2 \end{bmatrix}$$

We see that $s_2 = 3$, and $s_1 = 7$. Thus,

$$\vec{b} = 7\vec{a}_1 + 3\vec{a}_2$$

Actually, it is easy to find scalars s_1, s_2 so that

$$\begin{bmatrix} 1 \\ 9 \\ 3 \\ -6 \end{bmatrix} = \vec{b} = s_1 \vec{a}_1 + s_2 \vec{a}_2 = s_1 \begin{bmatrix} 1 \\ 3 \\ 0 \\ -3 \end{bmatrix} + s_2 \begin{bmatrix} -2 \\ -4 \\ 1 \\ 5 \end{bmatrix} = \begin{bmatrix} s_1 - 2s_2 \\ 3s_1 - 4s_2 \\ s_2 \\ -3s_1 + 5s_2 \end{bmatrix}$$

We see that $s_2 = 3$, and $s_1 = 7$. Thus,

$$\vec{b} = 7\vec{a_1} + 3\vec{a_2} = A \begin{bmatrix} 7 \\ 3 \\ 0 \end{bmatrix}$$

Actually, it is easy to find scalars s_1, s_2 so that

$$\begin{bmatrix} 1 \\ 9 \\ 3 \\ -6 \end{bmatrix} = \vec{b} = s_1 \vec{a}_1 + s_2 \vec{a}_2 = s_1 \begin{bmatrix} 1 \\ 3 \\ 0 \\ -3 \end{bmatrix} + s_2 \begin{bmatrix} -2 \\ -4 \\ 1 \\ 5 \end{bmatrix} = \begin{bmatrix} s_1 - 2s_2 \\ 3s_1 - 4s_2 \\ s_2 \\ -3s_1 + 5s_2 \end{bmatrix}$$

We see that $s_2 = 3$, and $s_1 = 7$. Thus,

$$\vec{b} = 7\vec{a}_1 + 3\vec{a}_2 = A \begin{bmatrix} 7 \\ 3 \\ 0 \end{bmatrix} = T \begin{pmatrix} \begin{bmatrix} 7 \\ 3 \\ 0 \end{bmatrix} \right).$$

Actually, it is easy to find scalars s_1, s_2 so that

$$\begin{bmatrix} 1 \\ 9 \\ 3 \\ -6 \end{bmatrix} = \vec{b} = s_1 \vec{a}_1 + s_2 \vec{a}_2 = s_1 \begin{bmatrix} 1 \\ 3 \\ 0 \\ -3 \end{bmatrix} + s_2 \begin{bmatrix} -2 \\ -4 \\ 1 \\ 5 \end{bmatrix} = \begin{bmatrix} s_1 - 2s_2 \\ 3s_1 - 4s_2 \\ s_2 \\ -3s_1 + 5s_2 \end{bmatrix}$$

We see that $s_2 = 3$, and $s_1 = 7$. Thus,

$$\vec{b} = 7\vec{a}_1 + 3\vec{a}_2 = A \begin{bmatrix} 7 \\ 3 \\ 0 \end{bmatrix} = T \begin{pmatrix} \begin{bmatrix} 7 \\ 3 \\ 0 \end{bmatrix} \end{pmatrix}.$$

Are there other vectors \vec{x} with T images equal to \vec{b} ?

Actually, it is easy to find scalars s_1, s_2 so that

$$\begin{bmatrix} 1 \\ 9 \\ 3 \\ -6 \end{bmatrix} = \vec{b} = s_1 \vec{a}_1 + s_2 \vec{a}_2 = s_1 \begin{bmatrix} 1 \\ 3 \\ 0 \\ -3 \end{bmatrix} + s_2 \begin{bmatrix} -2 \\ -4 \\ 1 \\ 5 \end{bmatrix} = \begin{bmatrix} s_1 - 2s_2 \\ 3s_1 - 4s_2 \\ s_2 \\ -3s_1 + 5s_2 \end{bmatrix}$$

We see that $s_2 = 3$, and $s_1 = 7$. Thus,

$$\vec{b} = 7\vec{a}_1 + 3\vec{a}_2 = A \begin{bmatrix} 7 \\ 3 \\ 0 \end{bmatrix} = T \begin{pmatrix} \begin{bmatrix} 7 \\ 3 \\ 0 \end{bmatrix} \right).$$

Are there other vectors \vec{x} with T images equal to \vec{b} ? What does it mean to say that the T image of \vec{x} is \vec{b} ?

Actually, it is easy to find scalars s_1, s_2 so that

$$\begin{bmatrix} 1 \\ 9 \\ 3 \\ -6 \end{bmatrix} = \vec{b} = s_1 \vec{a}_1 + s_2 \vec{a}_2 = s_1 \begin{bmatrix} 1 \\ 3 \\ 0 \\ -3 \end{bmatrix} + s_2 \begin{bmatrix} -2 \\ -4 \\ 1 \\ 5 \end{bmatrix} = \begin{bmatrix} s_1 - 2s_2 \\ 3s_1 - 4s_2 \\ s_2 \\ -3s_1 + 5s_2 \end{bmatrix}$$

We see that $s_2 = 3$, and $s_1 = 7$. Thus,

$$\vec{b} = 7\vec{a}_1 + 3\vec{a}_2 = A \begin{bmatrix} 7 \\ 3 \\ 0 \end{bmatrix} = T \begin{pmatrix} \begin{bmatrix} 7 \\ 3 \\ 0 \end{bmatrix} \right).$$

Are there other vectors \vec{x} with T images equal to \vec{b} ? What does it mean to say that the T image of \vec{x} is \vec{b} ? This just means that $T(\vec{x}) = \vec{b}$; right?

Actually, it is easy to find scalars s_1, s_2 so that

$$\begin{bmatrix} 1\\9\\3\\-6 \end{bmatrix} = \vec{b} = s_1 \vec{a}_1 + s_2 \vec{a}_2 = s_1 \begin{bmatrix} 1\\3\\0\\-3 \end{bmatrix} + s_2 \begin{bmatrix} -2\\-4\\1\\5 \end{bmatrix} = \begin{bmatrix} s_1 - 2s_2\\3s_1 - 4s_2\\s_2\\-3s_1 + 5s_2 \end{bmatrix}$$

We see that $s_2 = 3$, and $s_1 = 7$. Thus,

$$\vec{b} = 7\vec{a}_1 + 3\vec{a}_2 = A \begin{bmatrix} 7 \\ 3 \\ 0 \end{bmatrix} = T \begin{pmatrix} \begin{bmatrix} 7 \\ 3 \\ 0 \end{bmatrix} \right).$$

Are there other vectors \vec{x} with T images equal to \vec{b} ? What does it mean to say that the T image of \vec{x} is \vec{b} ? This just means that $T(\vec{x}) = \vec{b}$; right?

So, we must find <u>all</u> solutions to $T(\vec{x}) = \vec{b}$,

Actually, it is easy to find scalars s_1, s_2 so that

$$\begin{bmatrix} 1 \\ 9 \\ 3 \\ -6 \end{bmatrix} = \vec{b} = s_1 \vec{a}_1 + s_2 \vec{a}_2 = s_1 \begin{bmatrix} 1 \\ 3 \\ 0 \\ -3 \end{bmatrix} + s_2 \begin{bmatrix} -2 \\ -4 \\ 1 \\ 5 \end{bmatrix} = \begin{bmatrix} s_1 - 2s_2 \\ 3s_1 - 4s_2 \\ s_2 \\ -3s_1 + 5s_2 \end{bmatrix}$$

We see that $s_2 = 3$, and $s_1 = 7$. Thus,

$$\vec{b} = 7\vec{a}_1 + 3\vec{a}_2 = A \begin{bmatrix} 7 \\ 3 \\ 0 \end{bmatrix} = T \begin{pmatrix} \begin{bmatrix} 7 \\ 3 \\ 0 \end{bmatrix} \right).$$

Are there other vectors \vec{x} with T images equal to \vec{b} ? What does it mean to say that the T image of \vec{x} is \vec{b} ? This just means that $T(\vec{x}) = \vec{b}$; right?

So, we must find <u>all</u> solutions to $T(\vec{x}) = \vec{b}$, or equivalently, all solutions to $A\vec{x} = \vec{b}$.

We seek <u>all</u> solutions to $T(\vec{x}) = \vec{b}$, i.e., the solution set for $A\vec{x} = \vec{b}$.

We seek <u>all</u> solutions to $T(\vec{x}) = \vec{b}$, i.e., the solution set for $A\vec{x} = \vec{b}$. The solution sets for $A\vec{x} = \vec{b}$ and $A\vec{x} = \vec{0}$ are related in a special way,

We seek <u>all</u> solutions to $T(\vec{x}) = \vec{b}$, i.e., the solution set for $A\vec{x} = \vec{b}$. The solution sets for $A\vec{x} = \vec{b}$ and $A\vec{x} = \vec{0}$ are related in a special way, each is just a translate of the other—they are parallel to each other.

We seek <u>all</u> solutions to $T(\vec{x}) = \vec{b}$, i.e., the solution set for $A\vec{x} = \vec{b}$. The solution sets for $A\vec{x} = \vec{b}$ and $A\vec{x} = \vec{0}$ are related in a special way, each is just a translate of the other—they are parallel to each other.

We know that the solution set to $A\vec{x} = \vec{0}$ is the line $\mathbb{L} = \mathcal{S}pan \left\{ \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix} \right\}$.

We seek <u>all</u> solutions to $T(\vec{x}) = \vec{b}$, i.e., the solution set for $A\vec{x} = \vec{b}$. The solution sets for $A\vec{x} = \vec{b}$ and $A\vec{x} = \vec{0}$ are related in a special way, each is just a translate of the other—they are parallel to each other.

We know that the solution set to $A\vec{x} = \vec{0}$ is the line $\mathbb{L} = \mathcal{S}pan\Big\{\begin{bmatrix} 3\\1\\-1\end{bmatrix}\Big\}$.

Also,
$$A \begin{bmatrix} 7 \\ 3 \\ 0 \end{bmatrix} = \vec{b};$$

We seek <u>all</u> solutions to $T(\vec{x}) = \vec{b}$, i.e., the solution set for $A\vec{x} = \vec{b}$. The solution sets for $A\vec{x} = \vec{b}$ and $A\vec{x} = \vec{0}$ are related in a special way, each is just a translate of the other—they are parallel to each other.

We know that the solution set to $A\vec{x} = \vec{0}$ is the line $\mathbb{L} = \mathcal{S}pan \left\{ \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix} \right\}$.

Also,
$$A \begin{bmatrix} 7 \\ 3 \\ 0 \end{bmatrix} = \vec{b}$$
; that is, $\vec{p} = \begin{bmatrix} 7 \\ 3 \\ 0 \end{bmatrix}$ is a particular solution to $A\vec{x} = \vec{b}$.

We seek <u>all</u> solutions to $T(\vec{x}) = \vec{b}$, i.e., the solution set for $A\vec{x} = \vec{b}$. The solution sets for $A\vec{x} = \vec{b}$ and $A\vec{x} = \vec{0}$ are related in a special way, each is just a translate of the other—they are parallel to each other.

We know that the solution set to $A\vec{x} = \vec{0}$ is the line $\mathbb{L} = \mathcal{S}pan \left\{ \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix} \right\}$.

Also,
$$A \begin{bmatrix} 7 \\ 3 \\ 0 \end{bmatrix} = \vec{b}$$
; that is, $\vec{p} = \begin{bmatrix} 7 \\ 3 \\ 0 \end{bmatrix}$ is a particular solution to $A\vec{x} = \vec{b}$.

Therefore, the solution set for $A\vec{x} = \vec{b}$ is the line thru \vec{p} that is parallel to the line \mathbb{L} .

We seek <u>all</u> solutions to $T(\vec{x}) = \vec{b}$, i.e., the solution set for $A\vec{x} = \vec{b}$. The solution sets for $A\vec{x} = \vec{b}$ and $A\vec{x} = \vec{0}$ are related in a special way, each is just a translate of the other—they are parallel to each other.

We know that the solution set to $A\vec{x} = \vec{0}$ is the line $\mathbb{L} = \mathcal{S}pan\left\{\begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}\right\}$.

Also,
$$A \begin{bmatrix} 7 \\ 3 \\ 0 \end{bmatrix} = \vec{b}$$
; that is, $\vec{p} = \begin{bmatrix} 7 \\ 3 \\ 0 \end{bmatrix}$ is a particular solution to $A\vec{x} = \vec{b}$.

Therefore, the solution set for $A\vec{x} = \vec{b}$ is the line thru \vec{p} that is parallel to the line \mathbb{L} . Algebraically, in parametric vector form, these solutions are

$$\vec{x} = \vec{p} + t \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}$$

We seek <u>all</u> solutions to $T(\vec{x}) = \vec{b}$, i.e., the solution set for $A\vec{x} = \vec{b}$. The solution sets for $A\vec{x} = \vec{b}$ and $A\vec{x} = \vec{0}$ are related in a special way, each is just a translate of the other—they are parallel to each other.

We know that the solution set to $A\vec{x} = \vec{0}$ is the line $\mathbb{L} = \mathcal{S}pan\left\{ \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix} \right\}$.

Also,
$$A \begin{bmatrix} 7 \\ 3 \\ 0 \end{bmatrix} = \vec{b}$$
; that is, $\vec{p} = \begin{bmatrix} 7 \\ 3 \\ 0 \end{bmatrix}$ is a particular solution to $A\vec{x} = \vec{b}$.

Therefore, the solution set for $A\vec{x} = \vec{b}$ is the line thru \vec{p} that is parallel to the line \mathbb{L} . Algebraically, in parametric vector form, these solutions are

$$\vec{x} = \vec{p} + t \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 7 \\ 3 \\ 0 \end{bmatrix} + t \begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}$$
 where t is any scalar.

We seek <u>all</u> solutions to $T(\vec{x}) = \vec{b}$, i.e., the solution set for $A\vec{x} = \vec{b}$. The solution sets for $A\vec{x} = \vec{b}$ and $A\vec{x} = \vec{0}$ are related in a special way, each is just a translate of the other—they are parallel to each other.

We know that the solution set to $A\vec{x} = \vec{0}$ is the line $\mathbb{L} = \mathcal{S}\mathit{pan}\Big\{\begin{bmatrix} 3 \\ 1 \\ -1 \end{bmatrix}\Big\}$.

Also,
$$A \begin{bmatrix} 7 \\ 3 \\ 0 \end{bmatrix} = \vec{b}$$
; that is, $\vec{p} = \begin{bmatrix} 7 \\ 3 \\ 0 \end{bmatrix}$ is a particular solution to $A\vec{x} = \vec{b}$.

Therefore, the solution set for $A\vec{x} = \vec{b}$ is the line thru \vec{p} that is parallel to the line \mathbb{L} . Algebraically, in parametric vector form, these solutions are

$$\vec{x} = \vec{p} + t \begin{vmatrix} 3 \\ 1 \\ -1 \end{vmatrix} = \begin{vmatrix} 7 \\ 3 \\ 0 \end{vmatrix} + t \begin{vmatrix} 3 \\ 1 \\ -1 \end{vmatrix}$$
 where t is any scalar.

These are the only vectors \vec{x} with $T(\vec{x}) = \vec{b}$. (\ddot{y})