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The Matrix Transformation y = Ax

When A is an m x n matrix, we can define a transformation (aka, a
function) from R” to R™ via the rule y = T(X) = AX.
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The Matrix Transformation y = Ax

When A is an m x n matrix, we can define a transformation (aka, a
function) from R” to R™ via the rule y = T(X) = AX.

Here the input variable X comes from R”, it gets multiplied by the matrix
A via the formula
X131 + X3 + -+ + Xpap,

where &; is the j*™ column of A,
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The Matrix Transformation y = Ax

When A is an m x n matrix, we can define a transformation (aka, a
function) from R” to R™ via the rule y = T(X) = AX.

Here the input variable X comes from R”, it gets multiplied by the matrix
A via the formula
X131 + X3 + -+ + Xpap,

where 3; is the j™ column of A, and the resulting output is y.
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The Matrix Transformation y = Ax

When A is an m x n matrix, we can define a transformation (aka, a
function) from R” to R™ via the rule y = T(X) = AX.

Here the input variable X comes from R”, it gets multiplied by the matrix
A via the formula
X131 + X3 + -+ + Xpap,
where 3; is the j*™ column of A, and the resulting output is ¥. Thus,
Y1
-y2 — — - - - -
| =y =T(X) = AX = x131 + x2@ + - - - + Xpap.

Ym
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The Matrix Transformation y = Ax

When A is an m x n matrix, we can define a transformation (aka, a
function) from R” to R™ via the rule y = T(X) = AX.

Here the input variable X comes from R”, it gets multiplied by the matrix
A via the formula
X131 + X3 + -+ + Xpap,
where 3; is the j*™ column of A, and the resulting output is ¥. Thus,
Y1
-y2 — — - - - -
| =y =T(X) = AX = x131 + x2@ + - - - + Xpap.

Ym

We write R” L> R™ (and say, T is a transformation from R"” to R™),
meaning that R” is the domain of T and R™ the codomain.
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: : T
Linear Transformations R?” — R™

T . . .
We call R” — R™ a linear transformation provided
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: : T
Linear Transformations R?” — R™

T . . .
We call R” — R™ a linear transformation provided

T(o+ V)= T(a)+ T(V)

for all &, v in R” and all scalars s.
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We call R” 5 R™ a finear transformation provided
T(o+ V)= T(a)+ T(V)

and

for all &, v in R” and all scalars s.

For example, every matrix transformation has these two properties.
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This holds by simple properties of the matrix product AX.
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For example, every matrix transformation has these two properties.
This holds by simple properties of the matrix product AX.

Which of the geometric transformations are linear?
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T(o+ V)= T(a)+ T(V)

and

for all &, v in R” and all scalars s.

For example, every matrix transformation has these two properties.
This holds by simple properties of the matrix product AX.

Which of the geometric transformations are linear? (Most, but not all!)
Note that for any LT T we always have T(0) =
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Linear Transformations R?” — R™

We call R” 5 R™ a finear transformation provided
T(o+ V)= T(a)+ T(V)

and

for all &, v in R” and all scalars s.

For example, every matrix transformation has these two properties.
This holds by simple properties of the matrix product AX.

Which of the geometric transformations are linear? (Most, but not all!)
Note that for any LT T we always have T((f) — 0. Right?
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: : T
Linear Transformations R?” — R™

We call R” 5 R™ a finear transformation provided
T(o+ V)= T(a)+ T(V)

and

for all &, v in R” and all scalars s.

For example, every matrix transformation has these two properties.
This holds by simple properties of the matrix product AX.

Which of the geometric transformations are linear? (Most, but not all!)
Note that for any LT T we always have T(0) = 0. Right? Why?
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Properties of Linear Transformations

T : .
Let R" — R™ be a linear transformation. Then
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Properties of Linear Transformations

Let R” s R™ be a linear transformation. Then T(0)=0|

More importantly, T preserves all linear combinations; i.e., the T-image of
a LC of vectors v; is a LC of T(Vj) using the same scalars.
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Properties of Linear Transformations

Let R” s R™ be a linear transformation. Then T(0)=0|

More importantly, T preserves all linear combinations; i.e., the T-image of
a LC of vectors v; is a LC of T(V}) using the same scalars. That is,

T(51\71 + v+ Sp‘7p) =5 T(\71) + S T(\72) + -+ 5 T(Vp)
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Properties of Linear Transformations

Let R” s R™ be a linear transformation. Then T(0)=0|

More importantly, T preserves all linear combinations; i.e., the T-image of
a LC of vectors v; is a LC of T(V}) using the same scalars. That is,

T(51\71 + v+ Sp‘7p) =5 T(\71) + S T(\72) + -+ 5 T(Vp)

or more simply—using “summation” notation—

P P
T(Z ) — Y 5 T(@).
j=1 j=1
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Properties of Linear Transformations

Let R” s R™ be a linear transformation. Then T(0)=0|

More importantly, T preserves all linear combinations; i.e., the T-image of
a LC of vectors v; is a LC of T(V}) using the same scalars. That is,

T(51\71 + v+ Sp‘7p) =5 T(\71) + S T(\72) + -+ 5 T(Vp)

or more simply—using “summation” notation—
P P
(X s%) =L 5@,
Jj=1 Jj=1
This is called the linearity principle.
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: : T
Linear Transformations R?” — R™

We call R” 15 R™ a linear transformation provided
T(o+ V)= T(a)+ T(V)
and
T(svV) =sT(V)

for all @,V in R™ and all scalars s.
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Linear Transformations are Matrix Transformations

T : .
Let R” — R™ be a linear transformation. Then
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Linear Transformations are Matrix Transformations

T : . . )
Let R" — R™ be a linear transformation. Then there is an m X n matrix
A so that T(X) = AX.
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Linear Transformations are Matrix Transformations

Let R” l> R™ be a linear transformation. Then there is an m X n matrix
A so that T(X) = AX. We call A the standard matrix for T.
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Linear Transformations are Matrix Transformations

Let R” l> R™ be a linear transformation. Then there is an m X n matrix
A so that T(X) = AX. We call A the standard matrix for T.

This means that LTs and MTs are the same objects!
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Linear Transformations are Matrix Transformations

Let R” L R™ be a linear transformation. Then there is an m X n matrix
A so that T(X) = AX. We call A the standard matrix for T.

This means that LTs and MTs are the same objects!
How do we find A? We use the linearity principle!

To start, note that each vector X can be written as a LC as follows.

X1 1

X2 0
X=|. |l=x +

Xn 0
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Linear Transformations are Matrix Transformations

Let R” L R™ be a linear transformation. Then there is an m X n matrix
A so that T(X) = AX. We call A the standard matrix for T.

This means that LTs and MTs are the same objects!
How do we find A? We use the linearity principle!

To start, note that each vector X can be written as a LC as follows.

X1 1 0
. X2 0 1
X=1.[=x]. + X2 : A oceF
Xn 0 0
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Linear Transformations are Matrix Transformations

Let R” L R™ be a linear transformation. Then there is an m X n matrix
A so that T(X) = AX. We call A the standard matrix for T.

This means that LTs and MTs are the same objects!
How do we find A? We use the linearity principle!

To start, note that each vector X can be written as a LC as follows.

X1 1 0 0
. X2 0 1 0
X = : = X1 : +X2 : +"'+Xn :
Xn 0 0 1
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Each X can be written as

X1
Il
Il



Each X can be written as

X1



Each X can be written as

X1



Each X can be written as



Each X can be written as

X1 1 0
. X2 0
X=| . |=x1].| +x

Xn 0 0

We can write this more simply as follows.



Each X can be written as

X1
X2



Each X can be written as

X1 1 0

. X2 0 1

X = : =X : +X2 : +"'+Xn
Xn 0 0

We can write this more simply as follows. Let

1 0 0
o 1 0
e = ) 52: 0 ) 9 gn:

0 0 1



Each X can be written as

X1 1 0

. X2 0 1

X = : =X : +X2 : +"'+Xn
Xn 0 0

We can write this more simply as follows. Let

1 0 0

0 1 0
51: 752: o ) 76;.,:

0 0 1

Then, X = Z 1 Xj€. By the LP,



Each X can be written as

Then, x =31

X1 1
X2 0

=] : =] X]. —|— X2
Xn 0

1 0

0 1
& = , &=

0 0

1 Xj€. By the LP,

T(X) = (Z X; ej>



Each X can be written as

X1 1 0

. X2 0 1

X = : =X : +X2 : +"'+Xn
Xn 0 0

We can write this more simply as follows. Let

1 0 0

0 1 0
51: 752: o ) 76;.,:

0 0 1

Then, X = Z 1 Xj€. By the LP,

T(%) = (Zx> = éxﬁ(e:-).



We have X = Y7, x;€j, and then by the LP,

T(%) = T(Z) = _Ej;x,-ne;).



We have X = > 7, x;é, and then by the LP,
n n
@ =7(358) = L uT(@),
j=1 Jj=1
Setting a; = T(€j) we get

n
T()_(’) = E Xja_} = X151 +X2‘§’2 qF e +Xn5n7
J=1



We have X = > 7, x;é, and then by the LP,
n n
@ =7(358) = L uT(@),
j=1 Jj=1
Setting a; = T(€j) we get

n
T()_(’) = E Xja_} = X151 +X2‘§’2 qF e +Xn5n7
J=1

but this means T(X) = AX where A is the matrix with columns 3.



Linear Transformations are Matrix Transformations

T : .
Let R" — R™ be a linear transformation. Then
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Linear Transformations are Matrix Transformations

Let R” l> R™ be a linear transformation. Then there is an m X n matrix
A so that | T(X) = AX| We call A the standard matrix for T.

The columns of A are simply | a; = T (&) |, these n vectors live in R".
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Linear Transformations are Matrix Transformations

Let R” l> R™ be a linear transformation. Then there is an m X n matrix
A so that | T(X) = AX| We call A the standard matrix for T.

The columns of A are simply | a; = T (&) |, these n vectors live in R".

Thus [A=[31 &...3] |
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An Example

X+2y —3z
X+y+z
y — 2z

X

Suppose R3 L R*is given by T( y ) =
z

3x+z
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An Example

X+2y —3z

Suppose R3 L, R4 is given by T( 3% ): x—|—_y2+z
z y— ez

3x+z

What is the standard matrix for T7?
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An Example

. X+2y —3z

Suppose R3 L R is given by T( 3% ): x—|—_y2+z
z y=o

3x+z

What is the standard matrix for T? It's A= [T (&) T(&) T(&)].
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An Example

. X+2y —3z

Suppose R3 L R is given by T( 3% ): x—|—_y2+z
z y=o

3x+z

What is the standard matrix for T? It's A= [T (&) T(&) T(&)].
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An Example

. X+2y —3z

Suppose R3 L R is given by T( 3% ): x—|—_y2+z
z y=o

3x+z

What is the standard matrix for T? It's A= [T (&) T(&) T(&)].
Here

1
ri@ = ([o]) -
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An Example

. X+2y —3z

Suppose R3 L R is given by T( 3% ): x—|—_y2+z
z y=o

3x+z

What is the standard matrix for T? It's A= [T (&) T(&) T(&)].
Here

1
ri@ = ([o]) -

W o= =
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An Example

. X+2y —3z
Suppose R3 LR is given by T( 3% ) = x—|—y2—i—z
z y=o
3x+z
What is the standard matrix for 77 It's A= [T (&) T(&) T(&)]
Here
0
T@) =T([0]) = o » T@ =
0 3
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An Example

. X+2y —3z

Suppose R3 L R is given by T( 3% ): x—|—_y2+z
z y=o

3x+z

What is the standard matrix for T? It's A= [T (&) T(&) T(&)].
Here

1
T(&) = T( : )= 5| TE@ =

W o= =
O~ = N
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z y=o
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Here
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An Example

. X+2y —3z

Suppose R3 L R is given by T( 3% ): x—|—_y2+z
z y=o

3x+z

What is the standard matrix for T? It's A= [T (&) T(&) T(&)].
Here

1
T(&) = T( : )= 1ol T@ = |1| . &) =
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An Example

. x+2y —3z
Suppose R3 LR is given by T( 3% ) = x—|—_y2+z
z y=o
3x+z
What is the standard matrix for 77 It's A= [T (&) T(&) T(&)]
Here
Rk . T
T@)=T([o]) = |o|  T@ = |{] T(&) =
0 0 1 -2
3 0 1
and so
1 2 -3
11 1
A= 01 -2
30 1
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An Example

. x+2y —3z
Suppose R3 LR is given by T( 3% ) = x—|—_y2+z
z y=o
3x+z
What is the standard matrix for 77 It's A= [T (&) T(&) T(&)]
Here
N A
T@)=T([o]) = |o|  T@ = |{] T(&) =
0 0 1 —2
3 0 | 1
and so
1 2 -3 " 1 2 -3] "
11 1 11 1
A= 01 -2 Therefore, T( )z/ ) =10 1 —» )z/
30 1 3 0 1]
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