Linear Transformations and their Standard Matrix

Applied Linear Algebra MATH 5112/6012

When A is an $m \times n$ matrix, we can define a transformation (aka, a function) from \mathbb{R}^n to \mathbb{R}^m via the rule $\vec{y} = T(\vec{x}) = A\vec{x}$.

When A is an $m \times n$ matrix, we can define a transformation (aka, a function) from \mathbb{R}^n to \mathbb{R}^m via the rule $\vec{y} = T(\vec{x}) = A\vec{x}$.

Here the input variable \vec{x} comes from \mathbb{R}^n ,

When A is an $m \times n$ matrix, we can define a transformation (aka, a function) from \mathbb{R}^n to \mathbb{R}^m via the rule $\vec{y} = T(\vec{x}) = A\vec{x}$.

Here the input variable \vec{x} comes from \mathbb{R}^n , it gets multiplied by the matrix A via the formula

$$x_1\vec{a}_1+x_2\vec{a}_2+\cdots+x_n\vec{a}_n,$$

where $\vec{a_j}$ is the j^{th} column of A,

When A is an $m \times n$ matrix, we can define a transformation (aka, a function) from \mathbb{R}^n to \mathbb{R}^m via the rule $\vec{y} = T(\vec{x}) = A\vec{x}$.

Here the input variable \vec{x} comes from \mathbb{R}^n , it gets multiplied by the matrix A via the formula

$$x_1\vec{a}_1+x_2\vec{a}_2+\cdots+x_n\vec{a}_n,$$

where $\vec{a_j}$ is the j^{th} column of A, and the resulting output is \vec{y} .

When A is an $m \times n$ matrix, we can define a transformation (aka, a function) from \mathbb{R}^n to \mathbb{R}^m via the rule $\vec{y} = T(\vec{x}) = A\vec{x}$.

Here the input variable \vec{x} comes from \mathbb{R}^n , it gets multiplied by the matrix A via the formula

$$x_1\vec{a}_1+x_2\vec{a}_2+\cdots+x_n\vec{a}_n,$$

where $\vec{a_j}$ is the j^{th} column of A, and the resulting output is \vec{y} . Thus,

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} = \vec{y} = T(\vec{x}) = A\vec{x} = x_1\vec{a}_1 + x_2\vec{a}_2 + \dots + x_n\vec{a}_n.$$

When A is an $m \times n$ matrix, we can define a transformation (aka, a function) from \mathbb{R}^n to \mathbb{R}^m via the rule $\vec{y} = T(\vec{x}) = A\vec{x}$.

Here the input variable \vec{x} comes from \mathbb{R}^n , it gets multiplied by the matrix A via the formula

$$x_1\vec{a}_1+x_2\vec{a}_2+\cdots+x_n\vec{a}_n,$$

where $\vec{a_j}$ is the j^{th} column of A, and the resulting output is \vec{y} . Thus,

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} = \vec{y} = T(\vec{x}) = A\vec{x} = x_1 \vec{a}_1 + x_2 \vec{a}_2 + \dots + x_n \vec{a}_n.$$

We write $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ (and say, T is a transformation from \mathbb{R}^n to \mathbb{R}^m), meaning that \mathbb{R}^n is the *domain* of T and \mathbb{R}^m the *codomain*.

We call $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ a *linear transformation* provided

We call $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ a *linear transformation* provided

$$T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$$

for all \vec{u} , \vec{v} in \mathbb{R}^n and all scalars s.

We call $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ a *linear transformation* provided

$$T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$$

and

$$T(s\vec{v}) = sT(\vec{v})$$

for all \vec{u} , \vec{v} in \mathbb{R}^n and all scalars s.

We call $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ a *linear transformation* provided

$$T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$$

and

$$T(s\vec{v}) = sT(\vec{v})$$

for all \vec{u} , \vec{v} in \mathbb{R}^n and all scalars s.

For example, every matrix transformation has these two properties.

We call $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ a *linear transformation* provided

$$T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$$

and

$$T(s\vec{v}) = sT(\vec{v})$$

for all \vec{u} , \vec{v} in \mathbb{R}^n and all scalars s.

For example, every matrix transformation has these two properties. This holds by simple properties of the matrix product $A\vec{x}$.

Linear Transformations $\mathbb{R}^n \stackrel{\mathcal{T}}{\rightarrow} \mathbb{R}^m$

We call $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ a *linear transformation* provided

$$T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$$

and

$$T(s\vec{v}) = sT(\vec{v})$$

for all \vec{u} , \vec{v} in \mathbb{R}^n and all scalars s.

For example, every matrix transformation has these two properties. This holds by simple properties of the matrix product $A\vec{x}$.

Which of the geometric transformations are linear?

We call $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ a *linear transformation* provided

$$T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$$

and

$$T(s\vec{v}) = sT(\vec{v})$$

for all \vec{u} , \vec{v} in \mathbb{R}^n and all scalars s.

For example, every matrix transformation has these two properties. This holds by simple properties of the matrix product $A\vec{x}$.

Which of the geometric transformations are linear? (Most, but not all!)

We call $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ a *linear transformation* provided

$$T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$$

and

$$T(s\vec{v}) = sT(\vec{v})$$

for all \vec{u} , \vec{v} in \mathbb{R}^n and all scalars s.

For example, every matrix transformation has these two properties. This holds by simple properties of the matrix product $A\vec{x}$.

Which of the geometric transformations are linear? (Most, but not all!)

Note that for any LT T we always have $T(\vec{0}) =$

We call $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ a *linear transformation* provided

$$T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$$

and

$$T(s\vec{v}) = sT(\vec{v})$$

for all \vec{u} , \vec{v} in \mathbb{R}^n and all scalars s.

For example, every matrix transformation has these two properties. This holds by simple properties of the matrix product $A\vec{x}$.

Which of the geometric transformations are linear? (Most, but not all!)

Note that for any LT T we always have $T(\vec{0}) = \vec{0}$. Right?

We call $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ a *linear transformation* provided

$$T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$$

and

$$T(s\vec{v}) = sT(\vec{v})$$

for all \vec{u} , \vec{v} in \mathbb{R}^n and all scalars s.

For example, every matrix transformation has these two properties. This holds by simple properties of the matrix product $A\vec{x}$.

Which of the geometric transformations are linear? (Most, but not all!)

Note that for any LT T we always have $T(\vec{0}) = \vec{0}$. Right? Why?

Let $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ be a linear transformation. Then

Let $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ be a linear transformation. Then $\mathcal{T}(\vec{0}) = \vec{0}$.

Let $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ be a linear transformation. Then $\boxed{\mathcal{T}(\vec{0}) = \vec{0}}$.

More importantly, T preserves all linear combinations;

Let $\mathbb{R}^n \xrightarrow{I} \mathbb{R}^m$ be a linear transformation. Then $|T(\vec{0}) = \vec{0}|$.

$$T(\vec{0}) = \vec{0}$$

More importantly, T preserves all linear combinations; i.e., the T-image of a LC of vectors $\vec{v_i}$ is a LC of $T(\vec{v_i})$ using the same scalars.

Let $\mathbb{R}^n \xrightarrow{I} \mathbb{R}^m$ be a linear transformation. Then $|T(\vec{0}) = \vec{0}|$.

$$T(\vec{0}) = \vec{0}.$$

More importantly, T preserves all linear combinations; i.e., the T-image of a LC of vectors $\vec{v_i}$ is a LC of $T(\vec{v_i})$ using the same scalars. That is,

$$T(s_1\vec{v}_1 + s_2\vec{v}_2 + \dots + s_p\vec{v}_p) = s_1T(\vec{v}_1) + s_2T(\vec{v}_2) + \dots + s_pT(\vec{v}_p)$$

Let $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ be a linear transformation. Then $\boxed{\mathcal{T}(\vec{0}) = \vec{0}}$.

More importantly, T preserves all linear combinations; i.e., the T-image of a LC of vectors $\vec{v_i}$ is a LC of $T(\vec{v_i})$ using the same scalars. That is,

$$T(s_1\vec{v}_1 + s_2\vec{v}_2 + \dots + s_p\vec{v}_p) = s_1T(\vec{v}_1) + s_2T(\vec{v}_2) + \dots + s_pT(\vec{v}_p)$$

or more simply—using "summation" notation—

$$T\left(\sum_{j=1}^{p} \mathbf{s}_{j} \vec{\mathbf{v}}_{j}\right) = \sum_{j=1}^{p} \mathbf{s}_{j} T(\vec{\mathbf{v}}_{j}).$$

Let $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ be a linear transformation. Then $\boxed{\mathcal{T}(\vec{0}) = \vec{0}}$.

More importantly, T preserves all linear combinations; i.e., the T-image of a LC of vectors $\vec{v_i}$ is a LC of $T(\vec{v_i})$ using the same scalars. That is,

$$T(s_1\vec{v}_1 + s_2\vec{v}_2 + \dots + s_p\vec{v}_p) = s_1T(\vec{v}_1) + s_2T(\vec{v}_2) + \dots + s_pT(\vec{v}_p)$$

or more simply—using "summation" notation—

$$T\left(\sum_{j=1}^{p} \mathbf{s}_{j} \vec{v}_{j}\right) = \sum_{j=1}^{p} \mathbf{s}_{j} T(\vec{v}_{j}).$$

This is called the *linearity principle*.

We call $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ a *linear transformation* provided

$$T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$$

and

$$T(s\vec{v}) = sT(\vec{v})$$

for all \vec{u} , \vec{v} in \mathbb{R}^n and all scalars s.

Let $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ be a linear transformation. Then

Let $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ be a linear transformation. Then there is an $m \times n$ matrix A so that $\mathcal{T}(\vec{x}) = A\vec{x}$.

Let $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ be a linear transformation. Then there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. We call A the *standard matrix* for T.

Let $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ be a linear transformation. Then there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. We call A the *standard matrix* for T.

This means that LTs and MTs are the same objects!

Let $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ be a linear transformation. Then there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. We call A the *standard matrix* for T.

This means that LTs and MTs are the same objects!

How do we find A?

Let $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ be a linear transformation. Then there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. We call A the *standard matrix* for T.

This means that LTs and MTs are the same objects!

How do we find A? We use the linearity principle!

Let $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ be a linear transformation. Then there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. We call A the *standard matrix* for T.

This means that LTs and MTs are the same objects!

How do we find A? We use the linearity principle!

Let $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ be a linear transformation. Then there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. We call A the *standard matrix* for T.

This means that LTs and MTs are the same objects!

How do we find A? We use the linearity principle!

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} =$$

Let $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ be a linear transformation. Then there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. We call A the *standard matrix* for T.

This means that LTs and MTs are the same objects!

How do we find A? We use the linearity principle!

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} +$$

Let $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ be a linear transformation. Then there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. We call A the *standard matrix* for T.

This means that LTs and MTs are the same objects!

How do we find A? We use the linearity principle!

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} + \dots + \qquad .$$

Let $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ be a linear transformation. Then there is an $m \times n$ matrix A so that $\mathcal{T}(\vec{x}) = A\vec{x}$. We call A the *standard matrix* for \mathcal{T} .

This means that LTs and MTs are the same objects!

How do we find A? We use the linearity principle!

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} + \dots + x_n \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}.$$

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} =$$

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} +$$

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} + \dots + \dots$$

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} + \dots + x_n \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}.$$

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} + \dots + x_n \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}.$$

We can write this more simply as follows.

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} + \dots + x_n \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}.$$

We can write this more simply as follows. Let

$$ec{e_1} = egin{bmatrix} 1 \ 0 \ dots \ 0 \end{bmatrix} \;,\;\; ec{e_2} = egin{bmatrix} 0 \ 1 \ dots \ 0 \end{bmatrix} \;,\ldots,\;\; ec{e_n} = egin{bmatrix} 0 \ 0 \ dots \ 1 \end{bmatrix} \;.$$

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} + \dots + x_n \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}.$$

We can write this more simply as follows. Let

$$ec{e_1} = egin{bmatrix} 1 \ 0 \ dots \ 0 \end{bmatrix} \;,\;\; ec{e_2} = egin{bmatrix} 0 \ 1 \ dots \ 0 \end{bmatrix} \;, \ldots,\;\; ec{e_n} = egin{bmatrix} 0 \ 0 \ dots \ 1 \end{bmatrix} \;.$$

Then,
$$\vec{x} = \sum_{j=1}^{n} x_j \vec{e_j}$$
.

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} + \dots + x_n \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}.$$

We can write this more simply as follows. Let

$$ec{e_1} = egin{bmatrix} 1 \ 0 \ dots \ 0 \end{bmatrix} \;,\;\; ec{e_2} = egin{bmatrix} 0 \ 1 \ dots \ 0 \end{bmatrix} \;,\ldots,\;\; ec{e_n} = egin{bmatrix} 0 \ 0 \ dots \ 1 \end{bmatrix} \;.$$

Then, $\vec{x} = \sum_{j=1}^{n} x_j \vec{e_j}$. By the LP,

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} + \dots + x_n \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}.$$

We can write this more simply as follows. Let

$$ec{e_1} = egin{bmatrix} 1 \ 0 \ dots \ 0 \end{bmatrix}, \quad ec{e_2} = egin{bmatrix} 0 \ 1 \ dots \ 0 \end{bmatrix}, \ldots, \quad ec{e_n} = egin{bmatrix} 0 \ 0 \ dots \ 1 \end{bmatrix}.$$

Then, $\vec{x} = \sum_{j=1}^{n} x_j \vec{e_j}$. By the LP,

$$T(\vec{x}) = T\left(\sum_{j=1}^{n} x_j \vec{e_j}\right) =$$

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} + \dots + x_n \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}.$$

We can write this more simply as follows. Let

$$ec{e_1} = egin{bmatrix} 1 \ 0 \ dots \ 0 \end{bmatrix}, \quad ec{e_2} = egin{bmatrix} 0 \ 1 \ dots \ 0 \end{bmatrix}, \ldots, \quad ec{e_n} = egin{bmatrix} 0 \ 0 \ dots \ 1 \end{bmatrix}.$$

Then, $\vec{x} = \sum_{i=1}^{n} x_i \vec{e_i}$. By the LP,

$$T(\vec{x}) = T\left(\sum_{j=1}^{n} x_j \vec{e_j}\right) = \sum_{j=1}^{n} x_j T(\vec{e_j}).$$

We have $\vec{x} = \sum_{j=1}^{n} x_j \vec{e_j}$, and then by the LP,

$$T(\vec{x}) = T\left(\sum_{i=1}^{n} x_i \vec{e_i}\right) = \sum_{i=1}^{n} x_i T(\vec{e_i}).$$

We have $\vec{x} = \sum_{j=1}^{n} x_j \vec{e_j}$, and then by the LP,

$$T(\vec{x}) = T\left(\sum_{j=1}^{n} x_j \vec{e_j}\right) = \sum_{j=1}^{n} x_j T(\vec{e_j}).$$

Setting $\vec{a_j} = T(\vec{e_j})$ we get

$$T(\vec{x}) = \sum_{i=1}^{n} x_j \vec{a}_j = x_1 \vec{a}_1 + x_2 \vec{a}_2 + \cdots + x_n \vec{a}_n,$$

We have $\vec{x} = \sum_{j=1}^{n} x_j \vec{e_j}$, and then by the LP,

$$T(\vec{x}) = T\left(\sum_{j=1}^{n} x_j \vec{e_j}\right) = \sum_{j=1}^{n} x_j T(\vec{e_j}).$$

Setting $\vec{a}_j = T(\vec{e}_j)$ we get

$$T(\vec{x}) = \sum_{j=1}^{n} x_j \vec{a}_j = x_1 \vec{a}_1 + x_2 \vec{a}_2 + \cdots + x_n \vec{a}_n,$$

but this means $T(\vec{x}) = A\vec{x}$ where A is the matrix with columns $\vec{a_j}$.

Let $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ be a linear transformation. Then

Let $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ be a linear transformation. Then there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$.

Let $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ be a linear transformation. Then there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. We call A the *standard matrix* for T.

Let $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ be a linear transformation. Then there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. We call A the *standard matrix* for T.

The *columns* of A are simply $\vec{a_j} = T(\vec{e_j})$; these n vectors live in \mathbb{R}^m .

Let $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ be a linear transformation. Then there is an $m \times n$ matrix A so that $T(\vec{x}) = A\vec{x}$. We call A the *standard matrix* for T.

The *columns* of A are simply $\vec{a_j} = T(\vec{e_j})$; these n vectors live in \mathbb{R}^m .

Thus
$$A = [\vec{a}_1 \ \vec{a}_2 \dots \vec{a}_n]$$
.

Suppose
$$\mathbb{R}^3 \xrightarrow{T} \mathbb{R}^4$$
 is given by $T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x + 2y - 3z \\ x + y + z \\ y - 2z \\ 3x + z \end{bmatrix}$.

Suppose
$$\mathbb{R}^3 \xrightarrow{T} \mathbb{R}^4$$
 is given by $T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x + 2y - 3z \\ x + y + z \\ y - 2z \\ 3x + z \end{bmatrix}$.

What is the standard matrix for T?

Suppose
$$\mathbb{R}^3 \xrightarrow{T} \mathbb{R}^4$$
 is given by $T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x + 2y - 3z \\ x + y + z \\ y - 2z \\ 3x + z \end{bmatrix}$.

Suppose
$$\mathbb{R}^3 \xrightarrow{T} \mathbb{R}^4$$
 is given by $T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x + 2y - 3z \\ x + y + z \\ y - 2z \\ 3x + z \end{bmatrix}$.

$$T(\vec{e_1}) =$$

Suppose
$$\mathbb{R}^3 \xrightarrow{T} \mathbb{R}^4$$
 is given by $T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x + 2y - 3z \\ x + y + z \\ y - 2z \\ 3x + z \end{bmatrix}$.

$$\mathcal{T}(ec{e_1}) = \mathcal{T}\Big(egin{bmatrix} 1 \ 0 \ 0 \end{bmatrix}\Big) =$$

Suppose
$$\mathbb{R}^3 \xrightarrow{T} \mathbb{R}^4$$
 is given by $T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x + 2y - 3z \\ x + y + z \\ y - 2z \\ 3x + z \end{bmatrix}$.

$$\mathcal{T}(ec{e_1}) = \mathcal{T}\Big(egin{bmatrix}1\\0\\0\end{bmatrix}\Big) = egin{bmatrix}1\\1\\0\\3\end{bmatrix} \; ,$$

Suppose
$$\mathbb{R}^3 \xrightarrow{T} \mathbb{R}^4$$
 is given by $T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x + 2y - 3z \\ x + y + z \\ y - 2z \\ 3x + z \end{bmatrix}$.

$$T(ec{e}_1) = T\Big(egin{bmatrix}1\\0\\0\end{bmatrix}\Big) = egin{bmatrix}1\\1\\0\\3\end{bmatrix}, \ T(ec{e}_2) = egin{bmatrix}1\\0\\3\end{bmatrix}$$

Suppose
$$\mathbb{R}^3 \xrightarrow{T} \mathbb{R}^4$$
 is given by $T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x + 2y - 3z \\ x + y + z \\ y - 2z \\ 3x + z \end{bmatrix}$.

$$T(\vec{e_1}) = T\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right) = \begin{bmatrix}1\\1\\0\\3\end{bmatrix}, \ T(\vec{e_2}) = \begin{bmatrix}2\\1\\1\\0\end{bmatrix},$$

Suppose
$$\mathbb{R}^3 \xrightarrow{T} \mathbb{R}^4$$
 is given by $T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x + 2y - 3z \\ x + y + z \\ y - 2z \\ 3x + z \end{bmatrix}$.

What is the standard matrix for T? It's $A = [T(\vec{e}_1) \ T(\vec{e}_2) \ T(\vec{e}_3)]$. Here

$$T(\vec{e_1}) = T\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right) = \begin{bmatrix}1\\1\\0\\3\end{bmatrix}, \ T(\vec{e_2}) = \begin{bmatrix}2\\1\\1\\0\end{bmatrix}, \ T(\vec{e_3}) = \begin{bmatrix}1\\1\\0\end{bmatrix}$$

◆ロト ◆個 ト ◆ 差 ト ◆ 差 ・ 夕 Q C*

Suppose
$$\mathbb{R}^3 \xrightarrow{T} \mathbb{R}^4$$
 is given by $T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x + 2y - 3z \\ x + y + z \\ y - 2z \\ 3x + z \end{bmatrix}$.

$$\mathcal{T}(ec{e}_1) = \mathcal{T}\Big(egin{bmatrix}1\\0\\0\end{bmatrix}\Big) = egin{bmatrix}1\\1\\0\\3\end{bmatrix}, \ \mathcal{T}(ec{e}_2) = egin{bmatrix}2\\1\\1\\0\end{bmatrix}, \ \mathcal{T}(ec{e}_3) = egin{bmatrix}-3\\1\\-2\\1\end{bmatrix}$$

Suppose
$$\mathbb{R}^3 \xrightarrow{T} \mathbb{R}^4$$
 is given by $T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x + 2y - 3z \\ x + y + z \\ y - 2z \\ 3x + z \end{bmatrix}$.

What is the standard matrix for T? It's $A = [T(\vec{e}_1) \ T(\vec{e}_2) \ T(\vec{e}_3)]$. Here

$$T(\vec{e_1}) = T\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right) = \begin{bmatrix}1\\1\\0\\3\end{bmatrix}, \ T(\vec{e_2}) = \begin{bmatrix}2\\1\\1\\0\end{bmatrix}, \ T(\vec{e_3}) = \begin{bmatrix}-3\\1\\-2\\1\end{bmatrix}$$

and so

$$A = \begin{bmatrix} 1 & 2 & -3 \\ 1 & 1 & 1 \\ 0 & 1 & -2 \\ 3 & 0 & 1 \end{bmatrix}.$$

Suppose
$$\mathbb{R}^3 \xrightarrow{T} \mathbb{R}^4$$
 is given by $T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x + 2y - 3z \\ x + y + z \\ y - 2z \\ 3x + z \end{bmatrix}$.

What is the standard matrix for T? It's $A = [T(\vec{e}_1) \ T(\vec{e}_2) \ T(\vec{e}_3)]$. Here

$$T(\vec{e}_1) = T\left(\begin{bmatrix}1\\0\\0\end{bmatrix}\right) = \begin{bmatrix}1\\1\\0\\3\end{bmatrix}, \ T(\vec{e}_2) = \begin{bmatrix}2\\1\\1\\0\end{bmatrix}, \ T(\vec{e}_3) = \begin{bmatrix}-3\\1\\-2\\1\end{bmatrix}$$

and so

$$A = \begin{bmatrix} 1 & 2 & -3 \\ 1 & 1 & 1 \\ 0 & 1 & -2 \\ 3 & 0 & 1 \end{bmatrix} . \quad \text{Therefore, } T \left(\begin{bmatrix} x \\ y \\ z \end{bmatrix} \right) = \begin{bmatrix} 1 & 2 & -3 \\ 1 & 1 & 1 \\ 0 & 1 & -2 \\ 3 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} .$$