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The Matrix Transformation ~y = A~x

When A is an m × n matrix, we can define a transformation (aka, a
function) from Rn to Rm via the rule ~y = T (~x) = A~x .

Here the input variable ~x comes from Rn, it gets multiplied by the matrix
A via the formula

x1~a1 + x2~a2 + · · ·+ xn~an,

where ~aj is the j th column of A, and the resulting output is ~y . Thus,
y1
y2
...
ym

 = ~y = T (~x) = A~x = x1~a1 + x2~a2 + · · ·+ xn~an.

We write Rn T−→ Rm (and say, T is a transformation from Rn to Rm),
meaning that Rn is the domain of T and Rm the codomain.
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Linear Transformations Rn T−→ Rm

We call Rn T−→ Rm a linear transformation provided

T (~u + ~v) = T (~u) + T (~v)

and

T (s~v) = sT (~v)

for all ~u, ~v in Rn and all scalars s.

For example, every matrix transformation has these two properties.
This holds by simple properties of the matrix product A~x .

Which of the geometric transformations are linear? (Most, but not all!)

Note that for any LT T we always have T (~0) = ~0. Right? Why?
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Properties of Linear Transformations

Let Rn T−→ Rm be a linear transformation. Then

T (~0) = ~0 .

More importantly, T preserves all linear combinations; i.e., the T -image of
a LC of vectors ~vj is a LC of T (~vj) using the same scalars. That is,

T (s1~v1 + s2~v2 + · · ·+ sp~vp) = s1T (~v1) + s2T (~v2) + · · ·+ spT (~vp)

or more simply—using “summation” notation—

T

( p∑
j=1

sj~vj

)
=

p∑
j=1

sjT (~vj).

This is called the linearity principle.
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Linear Transformations are Matrix Transformations

Let Rn T−→ Rm be a linear transformation. Then

there is an m × n matrix
A so that T (~x) = A~x . We call A the standard matrix for T .

This means that LTs and MTs are the same objects!

How do we find A? We use the linearity principle!

To start, note that each vector ~x can be written as a LC as follows.

~x =


x1
x2
...
xn

 =

x1


1
0
...
0

+ x2


0
1
...
0

+ · · ·+ xn


0
0
...
1



.
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Each ~x can be written as

~x =


x1
x2
...
xn

 =

x1


1
0
...
0

+ x2


0
1
...
0

+ · · ·+ xn


0
0
...
1



.

We can write this more simply as follows. Let

~e1 =


1
0
...
0

 , ~e2 =


0
1
...
0

 , . . . , ~en =


0
0
...
1

 .

Then, ~x =
∑n

j=1 xj~ej . By the LP,

T (~x) = T

( n∑
j=1

xj~ej

)
=

n∑
j=1

xjT (~ej).
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Linear Transformations are Matrix Transformations

Let Rn T−→ Rm be a linear transformation. Then

there is an m × n matrix
A so that T (~x) = A~x . We call A the standard matrix for T .

The columns of A are simply ~aj = T (~ej) ; these n vectors live in Rm.

Thus A =
[
~a1 ~a2 . . . ~an

]
.
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An Example

Suppose R3 T−→ R4 is given by T
(xy

z

) =


x + 2y − 3z
x + y + z
y − 2z
3x + z

.

What is the standard matrix for T? It’s A =
[
T (~e1) T (~e2) T (~e3)

]
.

Here

T (~e1) =

T
(1

0
0

) =


1
1
0
3

 ,

T (~e2) =


2
1
1
0

 ,

T (~e3) =


−3
1
−2
1



and so

A =


1 2 −3
1 1 1
0 1 −2
3 0 1



.

Therefore, T
(xy

z

) =


1 2 −3
1 1 1
0 1 −2
3 0 1


xy
z

 .
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