Dimension, Rank, Nullity

Applied Linear Algebra – MATH 5112/6012

Basic Facts About Bases

Let \mathbb{V} be a non-trivial vector space; so $\mathbb{V} \neq \{\vec{0}\}$. Then:

- V has a basis, and,
- ullet any two bases for ${\mathbb V}$ contain the same number of vectors.

Definition

If $\mathbb V$ has a finite basis, we call $\mathbb V$ *finite dimensional*; otherwise, we say that $\mathbb V$ is *infinite dimensional*.

Definition

If $\mathbb V$ is *finite dimensional*, then the *dimension of* $\mathbb V$ is the number of vectors in any basis for $\mathbb V$; we write $\dim \mathbb V$ for the dimension of $\mathbb V$.

The *dimension* of the trivial vector space $\{\vec{0}\}$ is defined to be 0.

Dimension Examples

Examples

- ullet \mathbb{R}^n has dimension n, bcuz $\mathcal{S} = \{ ec{e}_1, \ldots, ec{e}_n \}$ is a basis for \mathbb{R}^n
- $\mathbb{R}^{\infty} = \{(x_n)_{n=1}^{\infty} \mid x_n \in \mathbb{R}\}$ is infinite dimensional
- If $\{\vec{a}_1,\ldots,\vec{a}_p\}$ is a LI set of vectors in \mathbb{R}^n , then $\mathbb{V}=\mathcal{S}pan\{\vec{a}_1,\ldots,\vec{a}_p\}$ is a p-dimensional vector subspace of \mathbb{R}^n . We call \mathbb{V} a p-plane in \mathbb{R}^n .

Examples

Let $\mathbb{U}^{2\times 2}$ and $\mathbb{S}^{2\times 2}$ be the spaces of all upper triangular and all symmetric 2×2 matrices, respectively. Let's find dim $\mathbb{U}^{2\times 2}$ and dim $\mathbb{S}^{2\times 2}$. We just need bases, right?

First, what does an upper triangular 2×2 matrix look like? Just $\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$, right? But

$$\begin{bmatrix} a & b \\ 0 & c \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

so the three matrices on the above right certainly span $\mathbb{U}^{2\times 2}$. It's not hard to see that they are LI, so they form a basis. Therefore, dim $\mathbb{U}^{2\times 2}=3$.

What about upper triangular and symmetric $n \times n$ matrices?

$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \dots \ \vec{a}_n \end{bmatrix}$$
 an $m \times n$ matrix and $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$

$$\begin{split} \mathcal{NS}(A) &= \{\vec{x} \mid A\vec{x} = \vec{0}\} \quad \text{and} \\ \mathcal{CS}(A) &= \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\} \\ &= \{\vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution}\} \\ &= \mathcal{CS}(A) = \mathcal{R}ng(T) \end{split}$$

Dimensions of Null Space and Column Space

Gotta find bases for the null space $\mathcal{NS}(A)$ and column space $\mathcal{CS}(A)$ of A. Just:

- row reduce A to E, a REF (or RREF) for A
- columns of E with row leaders correspond to pivot columns of A
- the *pivot* columns of A are LI and span $\mathcal{CS}(A)$, so form a basis
- write the SS for $A\vec{x} = \vec{0}$ in parametric vector form
- ullet identify LI vectors that span $\mathcal{NS}(A)$, these form a basis

$$\dim \mathcal{CS}(A) = \# \text{ of pivot cols of } A \qquad \text{ and } \\ = \# \text{ of row leaders in } E \qquad \dim \mathcal{NS}(A) = \# \text{ of free variables} \\ = \# \text{ of non-zero rows in } E \qquad = \# \text{ of cols of } A - r \\ = r \qquad = n - r = q.$$

Notice that r + q = n = # of columns of A.

Example—Null Space and Column Space

Find the dimensions of the null space and column space of

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 3 & 6 & 9 & 2 & -5 \\ 2 & 4 & 6 & 1 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & -2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Using elem row ops, we find the indicated REF and RREF for A.

Thus columns 1,2,4 are pivot columns for A, so dim CS(A) = 3.

There are two free variables $(x_3 \text{ and } x_5)$, so dim $\mathcal{NS}(A) = 2$.

Notice that 3 + 2 = 5 = # of columns of A.

Rank and Nullity

Let A be an $m \times n$ matrix.

The dimension of CS(A) is called the *rank* of A; rank(A) = dim CS(A).

The dimension of $\mathcal{NS}(A)$ is called the *nullity* of A; $\text{null}(A) = \dim \mathcal{NS}(A)$. So,

$$r = \operatorname{rank}(A) = \dim \mathcal{CS}(A) = \#$$
 of pivot columns of A , $q = \operatorname{null}(A) = \dim \mathcal{NS}(A) = \#$ of free variables

and

$$rank(A) + null(A) = r + q = n = \#$$
 of columns of A .

This last fact is called the Rank-Nullity Theorem.

Having the Right Number of Vectors

Let $\mathbb V$ be a vector space. Recall that $\mathcal B$ is a basis for $\mathbb V$ iff both $\mathcal B$ is LI and $\mathbb V = \operatorname{\mathcal Span} \mathcal B$.

Suppose we know that dim $\mathbb{V} = p$. Let $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$ be any vectors in \mathbb{V} . The following are equivalent:

- ullet $\{ec{v}_1,ec{v}_2,\ldots,ec{v}_p\}$ is a basis for $\mathbb V$
- $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ is LI
- $\bullet \ \mathbb{V} = \mathcal{S} pan\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$

If we know the dimension ahead of time, it is easier to find a basis.

The Rank-Nullity Theorem helps here!

Example

Suppose A is a 20 \times 17 matrix. What can we say about $A\vec{x} = \vec{b}$?

Recall that $\mathcal{NS}(A)$ is a subspace of \mathbb{R}^{17} and $\mathcal{CS}(A)$ is a subspace of \mathbb{R}^{20} .

Since $\operatorname{rank}(A) + \operatorname{null}(A) = 17$, $\dim \mathcal{CS}(A) = \operatorname{rank}(A) \leq 17 < 20$. Therefore, $\mathcal{CS}(A) \neq \mathbb{R}^{20}$.

This means that there is some vector \vec{b} in \mathbb{R}^{20} that is <u>not</u> in $\mathcal{CS}(A)$. But, \vec{b} not in $\mathcal{CS}(A)$ means that $A\vec{x} = \vec{b}$ has no solution.

Example

Let A be a 19×56 matrix. Suppose that $A\vec{x} = \vec{b}$ always has a solution. What can we say about the solution spaces to $A\vec{x} = \vec{b}$?

Recall that $\mathcal{NS}(A)$ is a subspace of \mathbb{R}^{56} and $\mathcal{CS}(A)$ is a subspace of \mathbb{R}^{19} .

To say that $A\vec{x} = \vec{b}$ always has a solution means that $\mathcal{CS}(A) = \mathbb{R}^{19}$, so rank $(A) = \dim \mathcal{CS}(A) = 19$.

Also,
$$rank(A) + null(A) = 56$$
, so dim $\mathcal{NS}(A) = null(A) = 56 - 19 = 37$.

Thus $\mathcal{NS}(A)$ is a 37-plane in \mathbb{R}^{56} . Remember, the solution spaces to $A\vec{x} = \vec{b}$ are all just translates of $\mathcal{NS}(A)$. Thus every solution space to $A\vec{x} = \vec{b}$ is an affine 37-plane in \mathbb{R}^{56} .