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Basic Facts About Bases

Let V be a non-trivial vector space; so V 6= {~0}. Then:

V has a basis, and,

any two bases for V contain the same number of vectors.

Definition

If V has a finite basis, we call V finite dimensional;

otherwise, we say that
V is infinite dimensional.

Definition

If V is finite dimensional, then the dimension of V is the number of vectors
in any basis for V;

we write dim V for the dimension of V.

The dimension of the trivial vector space {~0} is defined to be 0.

Applied Linear Algebra Dim, Rank, Nullity Chapter 3, Section 5C 2 / 11



Basic Facts About Bases

Let V be a non-trivial vector space; so V 6= {~0}. Then:

V has a basis, and,

any two bases for V contain the same number of vectors.

Definition

If V has a finite basis, we call V finite dimensional;

otherwise, we say that
V is infinite dimensional.

Definition

If V is finite dimensional, then the dimension of V is the number of vectors
in any basis for V;

we write dim V for the dimension of V.

The dimension of the trivial vector space {~0} is defined to be 0.

Applied Linear Algebra Dim, Rank, Nullity Chapter 3, Section 5C 2 / 11



Basic Facts About Bases

Let V be a non-trivial vector space; so V 6= {~0}. Then:

V has a basis, and,

any two bases for V contain the same number of vectors.

Definition

If V has a finite basis, we call V finite dimensional;

otherwise, we say that
V is infinite dimensional.

Definition

If V is finite dimensional, then the dimension of V is the number of vectors
in any basis for V;

we write dim V for the dimension of V.

The dimension of the trivial vector space {~0} is defined to be 0.

Applied Linear Algebra Dim, Rank, Nullity Chapter 3, Section 5C 2 / 11



Basic Facts About Bases

Let V be a non-trivial vector space; so V 6= {~0}. Then:

V has a basis, and,

any two bases for V contain the same number of vectors.

Definition

If V has a finite basis, we call V finite dimensional;

otherwise, we say that
V is infinite dimensional.

Definition

If V is finite dimensional, then the dimension of V is the number of vectors
in any basis for V;

we write dim V for the dimension of V.

The dimension of the trivial vector space {~0} is defined to be 0.

Applied Linear Algebra Dim, Rank, Nullity Chapter 3, Section 5C 2 / 11



Basic Facts About Bases

Let V be a non-trivial vector space; so V 6= {~0}. Then:

V has a basis, and,

any two bases for V contain the same number of vectors.

Definition

If V has a finite basis, we call V finite dimensional; otherwise, we say that
V is infinite dimensional.

Definition

If V is finite dimensional, then the dimension of V is the number of vectors
in any basis for V;

we write dim V for the dimension of V.

The dimension of the trivial vector space {~0} is defined to be 0.

Applied Linear Algebra Dim, Rank, Nullity Chapter 3, Section 5C 2 / 11



Basic Facts About Bases

Let V be a non-trivial vector space; so V 6= {~0}. Then:

V has a basis, and,

any two bases for V contain the same number of vectors.

Definition

If V has a finite basis, we call V finite dimensional; otherwise, we say that
V is infinite dimensional.

Definition

If V is finite dimensional, then the dimension of V is the number of vectors
in any basis for V;

we write dim V for the dimension of V.

The dimension of the trivial vector space {~0} is defined to be 0.

Applied Linear Algebra Dim, Rank, Nullity Chapter 3, Section 5C 2 / 11



Basic Facts About Bases

Let V be a non-trivial vector space; so V 6= {~0}. Then:

V has a basis, and,

any two bases for V contain the same number of vectors.

Definition

If V has a finite basis, we call V finite dimensional; otherwise, we say that
V is infinite dimensional.

Definition

If V is finite dimensional, then the dimension of V is the number of vectors
in any basis for V; we write dim V for the dimension of V.

The dimension of the trivial vector space {~0} is defined to be 0.

Applied Linear Algebra Dim, Rank, Nullity Chapter 3, Section 5C 2 / 11



Basic Facts About Bases

Let V be a non-trivial vector space; so V 6= {~0}. Then:

V has a basis, and,

any two bases for V contain the same number of vectors.

Definition

If V has a finite basis, we call V finite dimensional; otherwise, we say that
V is infinite dimensional.

Definition

If V is finite dimensional, then the dimension of V is the number of vectors
in any basis for V; we write dim V for the dimension of V.

The dimension of the trivial vector space {~0} is defined to be 0.

Applied Linear Algebra Dim, Rank, Nullity Chapter 3, Section 5C 2 / 11



Dimension Examples

Examples

Rn has dimension n,

bcuz S = {~e1, . . . , ~en} is a basis for Rn

Pn has dimension

n + 1, bcuz P = {1, t, t2, . . . , tn} is a basis for Pn

R∞ is infinite dimensional

P is infinite dimensional

If {~a1, . . . , ~ap} is a LI set of vectors in Rn, then V = Span{~a1, . . . , ~ap}
is a p-dimensional vector subspace of Rn.

We call V a p-plane in Rn.
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Examples

Let U2×2 and S2×2 be the spaces of all upper triangular and all symmetric
2× 2 matrices, respectively. Let’s find dim U2×2 and dim S2×2.

We just
need bases, right?

What about upper triangular and symmetric n × n matrices?
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Examples

Let U2×2 and S2×2 be the spaces of all upper triangular and all symmetric
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need bases, right?

First, what does an upper triangular 2 × 2 matrix look like?

Just

[
a b
0 c

]
,

right? But [
a b
0 c

]
= a

[
1 0
0 0

]
+ b

[
0 1
0 0

]
+ c

[
0 0
0 1

]
so the three matrices on the above right certainly span U2×2.

It’s not hard
to see that they are LI, so they form a basis. Therefore, dim U2×2 =

3

.

What about upper triangular and symmetric n × n matrices?
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A =
[
~a1 ~a2 . . . ~an

]
an m × n matrix and Rn T−→ Rm is T (~x) = A~x

NS(A) = {~x
∣∣ A~x = ~0} and

CS(A) = Span{~a1, ~a2, . . . , ~an}

= {~b in Rm
∣∣ A~x = ~b has a solution}

= CS(A) = Rng(T )

Rn

~p

{~x
∣∣ A~x = ~b}

NS(A)

~y = T (~x)

~y = A~x

Rm

CS(A) = Rng(T )

~b = T (~p)
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Dimensions of Null Space and Column Space

Gotta find bases for the null space NS(A) and column space CS(A) of A.
Just:

row reduce A to E , a REF (or RREF) for A

columns of E with row leaders correspond to pivot columns of A

the pivot columns of A are LI and span CS(A), so form a basis

write the SS for A~x = ~0 in parametric vector form

identify LI vectors that span NS(A), these form a basis

So,

dim CS(A) = # of pivot cols of A

= # of row leaders in E

= # of non-zero rows in E

= r

and

dim NS(A) = # of free variables

= # of cols of A− r

= n − r = q.

Notice that r + q = n = # of columns of A.
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So,

dim CS(A) = # of pivot cols of A

= # of row leaders in E

= # of non-zero rows in E

= r

and

dim NS(A) = # of free variables

= # of cols of A− r

= n − r = q.

Notice that r + q = n = # of columns of A.
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Example—Null Space and Column Space

Find the dimensions of the null space and column space of

A =


1 2 3 4 5
0 1 1 1 0
3 6 9 2 −5
2 4 6 1 −4



∼


1 2 3 4 5
0 1 1 1 0
0 0 0 1 2
0 0 0 0 0

 ∼


1 0 1 0 1
0 1 1 0 −2
0 0 0 1 2
0 0 0 0 0


Using elem row ops, we find the indicated REF

and RREF for A.

Thus columns 1,2,4 are pivot columns for A, so dim CS(A) = 3.

There are two free variables (x3 and x5), so dim NS(A) = 2.

Notice that 3 + 2 = 5 = # of columns of A.
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Rank and Nullity

Let A be an m × n matrix.

The dimension of CS(A) is called the rank of A; rank(A) = dim CS(A).

The dimension of NS(A) is called the nullity of A; null(A) = dim NS(A).
So,

r = rank(A) = dim CS(A) = # of pivot columns of A,

q = null(A) = dim NS(A) = # of free variables

and

rank(A) + null(A) = r + q = n = # of columns of A.

This last fact is called the Rank-Nullity Theorem.
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Having the Right Number of Vectors

Let V be a vector space.

Recall that B is a basis for V iff both B is LI and
V = SpanB.

Suppose we know that dim V = p. Let ~v1, ~v2, . . . , ~vp be any vectors in V.
The following are equivalent:

{~v1, ~v2, . . . , ~vp} is a basis for V

{~v1, ~v2, . . . , ~vp} is LI

V = Span{~v1, ~v2, . . . , ~vp}

If we know the dimension ahead of time, it is easier to find a basis.

The Rank-Nullity Theorem helps here!
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The Rank-Nullity Theorem helps here!
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Example

Suppose A is a 20× 17 matrix.

What can we say about A~x = ~b?

Recall that NS(A) is a subspace of R17 and CS(A) is a subspace of R20.

Since rank(A) + null(A) = 17, dim CS(A) = rank(A) ≤ 17 < 20.
Therefore, CS(A) 6= R20.

This means that there is some vector ~b in R20 that is not in CS(A).
But, ~b not in CS(A) means that A~x = ~b has no solution.
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Example

Let A be a 19× 56 matrix. Suppose that A~x = ~b always has a solution.

What can we say about the solution spaces to A~x = ~b?

Recall that NS(A) is a subspace of R56 and CS(A) is a subspace of R19.

To say that A~x = ~b always has a solution means that CS(A) = R19, so
rank(A) = dim CS(A) = 19.

Also, rank(A) + null(A) = 56, so dim NS(A) = null(A) = 56− 19 = 37.

Thus NS(A) is a 37-plane in R56. Remember, the solution spaces to
A~x = ~b are all just translates of NS(A). Thus every solution space to
A~x = ~b is an affine 37-plane in R56.
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