Bases and Coordinates

Linear Algebra MATH 5112/6012

Bases

Let \mathbb{V} be a vector subspace of \mathbb{R}^n .

Definition

A bunch of vectors $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_p\}$ is called a *basis* for \mathbb{V} if and only if

- ullet is linearly independent, and
- ullet spans $\mathbb V$ (i.e., $\mathbb V=\mathcal S\mathit{pan}(\mathcal B)$).

So, what are bases useful for? Why do we care about these?

First, since $\mathbb{V} = \mathcal{S}pan(\mathcal{B})$, each vector \vec{x} in \mathbb{V} can be written as a LC of basis vectors. That is, there are scalars scalars c_1, c_2, \ldots, c_p such that

$$ec{x} = c_1 ec{v}_1 + c_2 ec{v}_2 + \dots + c_p ec{v}_p \quad \Big(ext{more compactly} \,, \; ec{x} = \sum_{i=1}^p c_i ec{v}_i \Big).$$

Next, $\mathcal B$ linearly independent says this is the **only** way $\vec x$ can be so written.

Bases

Why is $\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_p \vec{v}_p = \sum_{i=1}^p c_i \vec{v}_i$ the **only** way that \vec{x} can be written as a LC of vectors in the basis $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_p\}$?

To see this, suppose we also have $\vec{x} = \sum_{i=1}^{p} d_i \vec{v_i}$ for some scalars d_i . Then by subtracting $\vec{x} = \sum_{i=1}^{p} d_i \vec{v_i}$ from $\vec{x} = \sum_{i=1}^{p} c_i \vec{v_i}$ we get

$$\sum_{i=1}^{p} (c_i - d_i) \vec{v}_i = \sum_{i=1}^{p} c_i \vec{v}_i - \sum_{i=1}^{p} d_i \vec{v}_i = \vec{x} - \vec{x} = \vec{0}.$$

But since \mathcal{B} is LI, this implies that $c_i = d_i$ for all i. Right?

Using a Basis

Let $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_p\}$ be a basis for a vector subspace \mathbb{V} . Then for each vector \vec{x} in \mathbb{V} , there are unique scalars c_1, c_2, \ldots, c_n such that

$$ec{x} = c_1 ec{v}_1 + c_2 ec{v}_2 + \dots + c_p ec{v}_p \quad \Big(ext{more compactly} \,, \; ec{x} = \sum_{i=1}^p c_i ec{v}_i \Big).$$

Definition

We call c_1, c_2, \ldots, c_p the coordinates of \vec{x} relative to \mathcal{B} .

We also call c_1, c_2, \ldots, c_p the \mathcal{B} -coordinates of \vec{x} and $\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \end{bmatrix}$ Note that $\begin{bmatrix} \vec{z} \end{bmatrix}$ is

Note that $[\vec{x}]_{R}$ is a vector in \mathbb{R}^{p} .

Example

Let's find a basis for the plane \mathbb{W} in \mathbb{R}^3 given by x+2y+3z=0. One way to do this is to recognize that $\mathbb{W}=\mathcal{NS}\big([1\ 2\ 3]\big)$ and proceed "as usual". However, it is pretty darn easy to find two LI vectors that span \mathbb{W} ; these two vectors will form a basis for \mathbb{W} .

How can we find *one non-zero* vector in \mathbb{W} ; i.e., one *non-zero* solution to x+2y+3z=0? (We did this sort of thing on the first day of class!) Just set one variable equal to 0, one variable equal to 1, and solve for the third variable; right?

With z = 0, y = 1 we get x = -2; and with y = 0, z = 1 we get x = -3. It now follows that a basis for \mathbb{W} is given by

$$\mathcal{B} = \{ \vec{w_1}, \vec{w_2} \}$$
 where $\vec{w_1} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \ \vec{w_2} = \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}.$

Example

So, a basis for the plane \mathbb{W} (i.e. the soln set to x+2y+3z=0) is given by

$$\mathcal{B} = \{ \vec{w_1}, \vec{w_2} \}$$
 where $\vec{w_1} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \ \vec{w_2} = \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}.$

Thus every vector \vec{w} in \mathbb{W} can be written in a unique way as $\vec{w} = c_1 \vec{w}_1 + c_2 \vec{w}_2$ where c_1, c_2 are the \mathcal{B} -coordinates of \vec{w} , and then

$$\begin{bmatrix} \vec{w} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$
 is the \mathcal{B} -coordinate vector for \vec{w} .

For example,

$$\vec{w} = \begin{bmatrix} -1 \\ -4 \\ 3 \end{bmatrix} = 4\vec{w}_1 - 3\vec{w}_2$$
 is in \mathbb{W} and $\begin{bmatrix} \vec{w} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 4 \\ -3 \end{bmatrix}$.

Note that while \vec{w} is in \mathbb{R}^3 , $[\vec{w}]_{\mathcal{B}}$ is in \mathbb{R}^2 .

Example—Null Space and Column Space

Find bases for the null space and column space of

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 3 & 6 & 9 & 2 & -5 \\ 2 & 4 & 6 & 1 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & -2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Using elem row ops, we find the indicated REF and RREF for A. Thus columns 1,2,4 are pivot columns for A, so a basis for $\mathcal{CS}(A)$ is given

by
$$\left\{ \begin{bmatrix} 1\\0\\3\\2 \end{bmatrix}, \begin{bmatrix} 2\\1\\6\\4 \end{bmatrix}, \begin{bmatrix} 4\\1\\2\\1 \end{bmatrix} \right\}$$
 and we see that $\mathcal{CS}(A)$ is a 3-plane in \mathbb{R}^4 .

Let's focus on $\mathcal{NS}(A)$. So, we need to "solve" $A\vec{x} = \vec{0}$. The free variables are $x_3 = s$, $x_5 = t$; then $x_4 = -2t$, $x_2 = -s + 2t$, $x_1 = -s - t$.

Example—Null Space and Column Space

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 3 & 6 & 9 & 2 & -5 \\ 2 & 4 & 6 & 1 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & -2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

 $\mathcal{NS}(A)$ is a vector subspace of \mathbb{R}^5 . To "find" $\mathcal{NS}(A)$, we solve $A\vec{x} = \vec{0}$. Free vrbls are $x_3 = s$, $x_5 = t$; then $x_4 = -2t$, $x_2 = -s + 2t$, $x_1 = -s - t$.

Thus
$$A\vec{x} = \vec{0}$$
 iff $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -s+t \\ -s+2t \\ s \\ -2t \\ t \end{bmatrix} = s \begin{bmatrix} -1 \\ -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ 2 \\ 0 \\ -2 \\ 1 \end{bmatrix}.$

So, $\mathcal{NS}(A)$ is a 2-plane in \mathbb{R}^5 and the above two vectors form a basis.

Example—Null Space and Column Space

$$\mathcal{NS}(A)\text{, a 2-plane in }\mathbb{R}^5\text{, has basis }\mathcal{B}=\{\vec{v_1},\vec{v_2}\}\text{ where }\begin{bmatrix}-1\\-1\\1\\0\\0\end{bmatrix},\vec{v_2}=\begin{bmatrix}-1\\2\\0\\-2\\1\end{bmatrix}.$$
 If \vec{x} in $\mathcal{NS}(A)$ is given by $\vec{x}=s\vec{v_1}+t\vec{v_2}$, $\vec{v_1}=\begin{bmatrix}-1\\1\\0\\0\end{bmatrix}$, $\vec{v_2}=\begin{bmatrix}-1\\2\\0\\-2\\1\end{bmatrix}$. then $[\vec{x}]_{\mathcal{B}}=\begin{bmatrix}s\\t\end{bmatrix}$ which is a vector in \mathbb{R}^2 .

We can identify NS(A) with the st-plane!