Bases and Coordinates

Linear Algebra MATH 5112/6012

Bases

Let $\mathbb {V}$ be a vector subspace of $\mathbb {R}^n$.

Definition

A bunch of vectors $\mathcal{B} = {\vec{v_1}, \dots, \vec{v_p}}$ is called a *basis* for V if and only if

 \bullet β is linearly independent, and

•
$$
\mathcal B
$$
 spans $\mathbb V$ (i.e., $\mathbb V = \mathcal Span(\mathcal B)$).

So, what are bases useful for? Why do we care about these?

First, since $\mathbb{V} = \mathcal{S}$ pan (\mathcal{B}) , each vector \vec{x} in $\mathbb {V}$ can be written as a LC of basis vectors. That is, there are scalars scalars c_1, c_2, \ldots, c_p such that

$$
\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_p \vec{v}_p \quad \left(\text{more compactly}, \ \vec{x} = \sum_{i=1}^p c_i \vec{v}_i\right).
$$

Next, B linearly independent says this is the only way \vec{x} can be so written.

Why is $\vec{x} = c_1\vec{v}_1 + c_2\vec{v}_2 + \cdots + c_p\vec{v}_p = \sum_{i=1}^p c_i\vec{v}_i$ the **only** way that \vec{x} can be written as a LC of vectors in the basis $\mathcal{B} = {\vec{v_1}, \dots, \vec{v_p}}$?

To see this, suppose we also have $\vec{x} = \sum_{i=1}^{p} d_i \vec{v}_i$ for some scalars d_i . Then by subtracting $\vec{x} = \sum_{i=1}^{p} d_i \vec{v}_i$ from $\vec{x} = \sum_{i=1}^{p} c_i \vec{v}_i$ we get

$$
\sum_{i=1}^p (c_i - d_i) \vec{v}_i = \sum_{i=1}^p c_i \vec{v}_i - \sum_{i=1}^p d_i \vec{v}_i = \vec{x} - \vec{x} = \vec{0}.
$$

But since $\mathcal B$ is LI, this implies that $c_i = d_i$ for all i. Right?

Using a Basis

Let $\mathcal{B} = {\vec{x}_1, \ldots, \vec{v}_p}$ be a basis for a vector subspace V. Then for each vector \vec{x} in \mathbb{V} , there are *unique* scalars c_1, c_2, \ldots, c_p such that

$$
\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_p \vec{v}_p \quad \left(\text{more compactly}, \ \vec{x} = \sum_{i=1}^p c_i \vec{v}_i\right).
$$

Definition

We call c_1, c_2, \ldots, c_p the *coordinates of* \vec{x} *relative to B*.

We also call c_1, c_2, \ldots, c_p the *B-coordinates of* \vec{x} and $\left[\vec{x}\right]_{\mathcal{B}} =$ is the B-coordinate vector for \vec{x} .

$$
\begin{bmatrix}c_1\\c_2\\ \vdots\\c_p\end{bmatrix}
$$

Note that $\left[\vec{x}\right]_{\mathcal{B}}$ is a vector in \mathbb{R}^p .

Example

Let's find a basis for the plane $\mathbb W$ in $\mathbb R^3$ given by $x+2y+3z=0.$ One way to do this is to recognize that $\mathbb{W} = \mathcal{NS}([1\ 2\ 3])$ and proceed "as usual". However, it is pretty darn easy to find two LI vectors that span W; these two vectors will form a basis for W.

How can we find *one non-zero* vector in W; i.e., one *non-zero* solution to $x + 2y + 3z = 0$? (We did this sort of thing on the first day of class!) Just set one variable equal to 0, one variable equal to 1, and solve for the third variable; right?

With $z = 0$, $y = 1$ we get $x = -2$; and with $y = 0$, $z = 1$ we get $x = -3$. It now follows that a basis for W is given by

$$
\mathcal{B} = \{\vec{w}_1, \vec{w}_2\} \quad \text{where} \quad \vec{w}_1 = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \ \vec{w}_2 = \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}.
$$

Example

So, a basis for the plane W (i.e. the soln set to $x + 2y + 3z = 0$) is given by

$$
\mathcal{B} = \{\vec{w}_1, \vec{w}_2\} \quad \text{where} \quad \vec{w}_1 = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \ \vec{w}_2 = \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}.
$$

Thus every vector \vec{w} in W can be written in a unique way as $\vec{w} = c_1\vec{w}_1 + c_2\vec{w}_2$ where c_1, c_2 are the B-coordinates of \vec{w} , and then

$$
\begin{bmatrix} \vec{w} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}
$$
 is the *B*-coordinate vector for \vec{w} .

For example,

$$
\vec{w} = \begin{bmatrix} -1 \\ -4 \\ 3 \end{bmatrix} = 4\vec{w}_1 - 3\vec{w}_2 \text{ is in } \mathbb{W} \text{ and } \begin{bmatrix} \vec{w} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 4 \\ -3 \end{bmatrix}.
$$

Note that while \vec{w} is in \mathbb{R}^3 , $\left[\vec{w}\right]_{\mathcal{B}}$ is in \mathbb{R}^2 .

Example—Null Space and Column Space

Find bases for the null space and column space of

$$
A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 3 & 6 & 9 & 2 & -5 \\ 2 & 4 & 6 & 1 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & -2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}
$$

Using elem row ops, we find the indicated REF and RREF for A. Thus columns 1,2,4 are pivot columns for A, so a basis for $\mathcal{CS}(A)$ is given

by
$$
\left\{ \begin{bmatrix} 1 \\ 0 \\ 3 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 6 \\ 4 \end{bmatrix}, \begin{bmatrix} 4 \\ 1 \\ 2 \\ 1 \end{bmatrix} \right\}
$$
 and we see that $CS(A)$ is a 3-plane in \mathbb{R}^4 .

Let's focus on $NS(A)$. So, we need to "solve" $A\vec{x} = 0$. The free variables are $x_3 = s$, $x_5 = t$; then $x_4 = -2t$, $x_2 = -s + 2t$, $x_1 = -s - t$.

.

Example—Null Space and Column Space

$$
A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 3 & 6 & 9 & 2 & -5 \\ 2 & 4 & 6 & 1 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & -2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}
$$

 $\mathcal{NS}(A)$ is a vector subspace of $\mathbb{R}^5.$ To "find" $\mathcal{NS}(A)$, we solve $A\vec{x}=\vec{0}.$ Free vrbls are $x_3 = s$, $x_5 = t$; then $x_4 = -2t$, $x_2 = -s + 2t$, $x_1 = -s - t$. Thus $A\vec{x} = \vec{0}$ iff $\vec{x} =$ $\sqrt{ }$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ x_1 x_2 x_3 x_4 x_5 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \end{array}$ = $\sqrt{ }$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \end{array}$ $-s + t$ $-s+2t$ s $-2t$ t 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \end{array}$ $= s$ $\sqrt{ }$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ -1 −1 1 0 0 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \end{array}$ $+$ t $\sqrt{ }$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ -1 2 0 −2 1 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \end{array}$.

So, $\mathcal{N}\mathcal{S}(A)$ is a 2-plane in \mathbb{R}^5 and the above two vectors form a basis.

Example—Null Space and Column Space

$$
\mathcal{NS}(A), \text{ a 2-plane in } \mathbb{R}^5, \text{ has basis } \mathcal{B} = \{ \vec{v_1}, \vec{v_2} \} \text{ where } \begin{bmatrix} -1 \\ -1 \\ -1 \\ 0 \\ 0 \end{bmatrix}, \vec{v_2} = \begin{bmatrix} -1 \\ 2 \\ 0 \\ 0 \\ -2 \\ 1 \end{bmatrix}
$$

If \vec{x} in $\mathcal{NS}(A)$ is given by $\vec{x} = s\vec{v_1} + t\vec{v_2},$
then $[\vec{x}]_B = \begin{bmatrix} s \\ t \end{bmatrix}$ which is a vector in \mathbb{R}^2 .
 $\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$

We can identify $NS(A)$ with the st-plane!

.