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Bases

Let V be a vector subspace of Rn.

Definition

A bunch of vectors B = {~v1, . . . , ~vp} is called a basis for V if and only if

B is linearly independent, and

B spans V (i.e., V = Span
(
B
)
).

So, what are bases useful for? Why do we care about these?

First, since V = Span
(
B
)
, each vector ~x in V can be written as a LC of

basis vectors. That is, there are scalars scalars c1, c2, . . . , cp such that

~x = c1~v1 + c2~v2 + · · ·+ cp~vp
(

more compactly , ~x =

p∑
i=1

ci~vi

)
.

Next, B linearly independent says this is the only way ~x can be so written.
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Bases

Why is ~x = c1~v1 + c2~v2 + · · ·+ cp~vp =
∑p

i=1 ci~vi the only way that ~x can
be written as a LC of vectors in the basis B = {~v1, . . . , ~vp}?

To see this, suppose we also have ~x =
∑p

i=1 di~vi for some scalars di . Then
by subtracting ~x =

∑p
i=1 di~vi from ~x =

∑p
i=1 ci~vi we get

p∑
i=1

(ci − di )~vi =

p∑
i=1

ci~vi −
p∑

i=1

di~vi = ~x − ~x = ~0.

But since B is LI, this implies that ci = di for all i .

Right?
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Using a Basis

Let B = {~v1, . . . , ~vp} be a basis for a vector subspace V.

Then for each
vector ~x in V, there are unique scalars c1, c2, . . . , cp such that

~x = c1~v1 + c2~v2 + · · ·+ cp~vp
(

more compactly , ~x =

p∑
i=1

ci~vi

)
.

Definition

We call c1, c2, . . . , cp the coordinates of ~x relative to B.

We also call c1, c2, . . . , cp the B-coordinates of ~x and
[
~x
]
B =


c1
c2
...
cp


is the B-coordinate vector for ~x .

Note that
[
~x
]
B is a vector in Rp.
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Example

Let’s find a basis for the plane W in R3 given by x + 2y + 3z = 0.

One
way to do this is to recognize that W = NS

(
[1 2 3]

)
and proceed “as

usual”. However, it is pretty darn easy to find two LI vectors that span W;
these two vectors will form a basis for W.

How can we find one non-zero vector in W; i.e., one non-zero solution to
x + 2y + 3z = 0? (We did this sort of thing on the first day of class!) Just
set one variable equal to 0, one variable equal to 1, and solve for the third
variable; right?

With z = 0, y = 1 we get x = −2; and with y = 0, z = 1 we get x = −3.
It now follows that a basis for W is given by

B = {~w1, ~w2} where ~w1 =

 2
−1
0

 , ~w2 =

 3
0
−1

 .
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Example

So, a basis for the plane W (i.e. the soln set to x + 2y + 3z = 0) is given
by

B = {~w1, ~w2} where ~w1 =

 2
−1
0

 , ~w2 =

 3
0
−1

 .

Thus every vector ~w in W can be written in a unique way as
~w = c1~w1 + c2~w2 where c1, c2 are the B-coordinates of ~w , and then[

~w
]
B =

[
c1
c2

]
is the B-coordinate vector for ~w .

For example,

~w =

−1
−4
3

 = 4~w1 − 3~w2 is in W and
[
~w
]
B =

[
4
−3

]
.

Note that while ~w is in R3,
[
~w
]
B is in R2.
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Example—Null Space and Column Space

Find bases for the null space and column space of

A =


1 2 3 4 5
0 1 1 1 0
3 6 9 2 −5
2 4 6 1 −4



∼


1 2 3 4 5
0 1 1 1 0
0 0 0 1 2
0 0 0 0 0

 ∼


1 0 1 0 1
0 1 1 0 −2
0 0 0 1 2
0 0 0 0 0



.

Using elem row ops, we find the indicated REF

and RREF for A.

Thus columns 1,2,4 are pivot columns for A, so a basis for CS(A) is given

by

{
1
0
3
2

 ,


2
1
6
4

 ,


4
1
2
1


}

and we see that CS(A) is a 3-plane in R4.

Let’s focus on NS(A). So, we need to “solve” A~x = ~0. The free variables
are x3 = s, x5 = t; then x4 = −2t, x2 = −s + 2t, x1 = −s − t.
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4
1
2
1


}

and we see that CS(A) is a 3-plane in R4.

Let’s focus on NS(A). So, we need to “solve” A~x = ~0. The free variables
are x3 = s, x5 = t; then x4 = −2t, x2 = −s + 2t, x1 = −s − t.
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NS(A) is a vector subspace of

R5. To “find” NS(A), we solve A~x = ~0.
Free vrbls are x3 = s, x5 = t; then x4 = −2t, x2 = −s + 2t, x1 = −s − t.

Thus A~x = ~0 iff ~x =


x1
x2
x3
x4
x5

 =


−s + t
−s + 2t

s
−2t
t

 = s


−1
−1
1
0
0

+ t


−1
2
0
−2
1

.

So, NS(A) is a 2-plane in R5 and the above two vectors form a basis.
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Example—Null Space and Column Space

NS(A), a 2-plane in R5, has basis B = {~v1, ~v2} where

~v1 =


−1
−1
1
0
0

 , ~v2 =


−1
2
0
−2
1

.
If ~x in NS(A) is given by ~x = s~v1 + t~v2,

then
[
~x
]
B =

[
s
t

]
which is a vector in R2.

We can identify NS(A) with the st-plane!
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