Bases and Coordinates

Linear Algebra MATH 5112/6012

Let \mathbb{V} be a vector subspace of \mathbb{R}^n .

Definition

A bunch of vectors $\mathcal{B} = \{ \vec{v}_1, \dots, \vec{v}_p \}$ is called a *basis* for \mathbb{V} if and only if

Let \mathbb{V} be a vector subspace of \mathbb{R}^n .

Definition

A bunch of vectors $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_p\}$ is called a *basis* for \mathbb{V} if and only if

ullet is linearly independent, and

Let \mathbb{V} be a vector subspace of \mathbb{R}^n .

Definition

A bunch of vectors $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_p\}$ is called a *basis* for \mathbb{V} if and only if

- ullet is linearly independent, and
- \mathcal{B} spans \mathbb{V} (i.e., $\mathbb{V} = \mathcal{S}pan(\mathcal{B})$).

Let \mathbb{V} be a vector subspace of \mathbb{R}^n .

Definition

A bunch of vectors $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_p\}$ is called a *basis* for \mathbb{V} if and only if

- ullet is linearly independent, and
- ullet spans $\mathbb {V}$ (i.e., $\mathbb {V}=\mathcal {S}\mathit{pan}(\mathcal {B})$).

So, what are bases useful for? Why do we care about these?

Let \mathbb{V} be a vector subspace of \mathbb{R}^n .

Definition

A bunch of vectors $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_p\}$ is called a *basis* for \mathbb{V} if and only if

- ullet is linearly independent, and
- ullet spans $\mathbb V$ (i.e., $\mathbb V=\mathcal S\mathit{pan}(\mathcal B)$).

So, what are bases useful for? Why do we care about these?

First, since $\mathbb{V} = \mathcal{S}pan(\mathcal{B})$, each vector \vec{x} in \mathbb{V} can be written as a LC of basis vectors.

Let \mathbb{V} be a vector subspace of \mathbb{R}^n .

Definition

A bunch of vectors $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_p\}$ is called a *basis* for \mathbb{V} if and only if

- ullet is linearly independent, and
- ullet spans $\mathbb V$ (i.e., $\mathbb V=\mathcal Span(\mathcal B)$).

So, what are bases useful for? Why do we care about these?

First, since $\mathbb{V} = \mathcal{S}pan(\mathcal{B})$, each vector \vec{x} in \mathbb{V} can be written as a LC of basis vectors. That is, there are scalars scalars c_1, c_2, \ldots, c_p such that

$$\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_p \vec{v}_p$$
 (more compactly, $\vec{x} = \sum_{i=1}^p c_i \vec{v}_i$).

Let \mathbb{V} be a vector subspace of \mathbb{R}^n .

Definition

A bunch of vectors $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_p\}$ is called a *basis* for \mathbb{V} if and only if

- ullet is linearly independent, and
- ullet spans $\mathbb V$ (i.e., $\mathbb V=\mathcal Span(\mathcal B)$).

So, what are bases useful for? Why do we care about these?

First, since $\mathbb{V} = \mathcal{S}pan(\mathcal{B})$, each vector \vec{x} in \mathbb{V} can be written as a LC of basis vectors. That is, there are scalars scalars c_1, c_2, \ldots, c_p such that

$$ec{x} = c_1 ec{v}_1 + c_2 ec{v}_2 + \dots + c_p ec{v}_p \quad \Big(ext{more compactly} \,, \; ec{x} = \sum_{i=1}^p c_i ec{v}_i \Big).$$

Next, \mathcal{B} linearly independent says this is the **only** way \vec{x} can be so written.

Why is $\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_p \vec{v}_p = \sum_{i=1}^p c_i \vec{v}_i$ the **only** way that \vec{x} can be written as a LC of vectors in the basis $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_p\}$?

Why is $\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_p \vec{v}_p = \sum_{i=1}^p c_i \vec{v}_i$ the **only** way that \vec{x} can be written as a LC of vectors in the basis $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_p\}$?

To see this, suppose we also have $\vec{x} = \sum_{i=1}^{p} d_i \vec{v}_i$ for some scalars d_i .

Why is $\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_p \vec{v}_p = \sum_{i=1}^p c_i \vec{v}_i$ the **only** way that \vec{x} can be written as a LC of vectors in the basis $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_p\}$?

To see this, suppose we also have $\vec{x} = \sum_{i=1}^{p} d_i \vec{v_i}$ for some scalars d_i . Then by subtracting $\vec{x} = \sum_{i=1}^{p} d_i \vec{v_i}$ from $\vec{x} = \sum_{i=1}^{p} c_i \vec{v_i}$ we get

$$\sum_{i=1}^{p} (c_i - d_i) \vec{v}_i = \sum_{i=1}^{p} c_i \vec{v}_i - \sum_{i=1}^{p} d_i \vec{v}_i = \vec{x} - \vec{x} = \vec{0}.$$

Why is $\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_p \vec{v}_p = \sum_{i=1}^p c_i \vec{v}_i$ the **only** way that \vec{x} can be written as a LC of vectors in the basis $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_p\}$?

To see this, suppose we also have $\vec{x} = \sum_{i=1}^{p} d_i \vec{v_i}$ for some scalars d_i . Then by subtracting $\vec{x} = \sum_{i=1}^{p} d_i \vec{v_i}$ from $\vec{x} = \sum_{i=1}^{p} c_i \vec{v_i}$ we get

$$\sum_{i=1}^{p} (c_i - d_i) \vec{v}_i = \sum_{i=1}^{p} c_i \vec{v}_i - \sum_{i=1}^{p} d_i \vec{v}_i = \vec{x} - \vec{x} = \vec{0}.$$

But since \mathcal{B} is LI, this implies that $c_i = d_i$ for all i.

Why is $\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_p \vec{v}_p = \sum_{i=1}^p c_i \vec{v}_i$ the **only** way that \vec{x} can be written as a LC of vectors in the basis $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_p\}$?

To see this, suppose we also have $\vec{x} = \sum_{i=1}^{p} d_i \vec{v_i}$ for some scalars d_i . Then by subtracting $\vec{x} = \sum_{i=1}^{p} d_i \vec{v_i}$ from $\vec{x} = \sum_{i=1}^{p} c_i \vec{v_i}$ we get

$$\sum_{i=1}^{p} (c_i - d_i) \vec{v}_i = \sum_{i=1}^{p} c_i \vec{v}_i - \sum_{i=1}^{p} d_i \vec{v}_i = \vec{x} - \vec{x} = \vec{0}.$$

But since \mathcal{B} is LI, this implies that $c_i = d_i$ for all i. Right?

Let $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_p\}$ be a basis for a vector subspace \mathbb{V} .

Let $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_p\}$ be a basis for a vector subspace \mathbb{V} . Then for each vector \vec{x} in \mathbb{V} , there are *unique* scalars c_1, c_2, \dots, c_p such that

Let $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_p\}$ be a basis for a vector subspace \mathbb{V} . Then for each vector \vec{x} in \mathbb{V} , there are *unique* scalars c_1, c_2, \dots, c_p such that

$$\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_p \vec{v}_p$$
 (more compactly, $\vec{x} = \sum_{i=1}^p c_i \vec{v}_i$).

Let $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_p\}$ be a basis for a vector subspace \mathbb{V} . Then for each vector \vec{x} in \mathbb{V} , there are *unique* scalars c_1, c_2, \dots, c_p such that

$$ec{x} = c_1 ec{v}_1 + c_2 ec{v}_2 + \dots + c_p ec{v}_p \quad \Big(ext{more compactly} \,, \; ec{x} = \sum_{i=1}^p c_i ec{v}_i \Big).$$

Definition

We call c_1, c_2, \ldots, c_p the *coordinates of* \vec{x} *relative to* \mathcal{B} .

Let $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_p\}$ be a basis for a vector subspace \mathbb{V} . Then for each vector \vec{x} in \mathbb{V} , there are *unique* scalars c_1, c_2, \dots, c_p such that

$$ec{x} = c_1 ec{v}_1 + c_2 ec{v}_2 + \dots + c_p ec{v}_p \quad \Big(ext{more compactly} \,, \; ec{x} = \sum_{i=1}^p c_i ec{v}_i \Big).$$

Definition

We call c_1, c_2, \ldots, c_p the coordinates of \vec{x} relative to \mathcal{B} .

We also call c_1, c_2, \ldots, c_p the \mathcal{B} -coordinates of \vec{x}

Let $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_p\}$ be a basis for a vector subspace \mathbb{V} . Then for each vector \vec{x} in \mathbb{V} , there are *unique* scalars c_1, c_2, \dots, c_p such that

$$ec{x} = c_1 ec{v}_1 + c_2 ec{v}_2 + \dots + c_p ec{v}_p \quad \Big(ext{more compactly} \,, \; ec{x} = \sum_{i=1}^p c_i ec{v}_i \Big).$$

Definition

We call c_1, c_2, \ldots, c_p the coordinates of \vec{x} relative to \mathcal{B} .

We also call c_1, c_2, \ldots, c_p the \mathcal{B} -coordinates of \vec{x} and $\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_p \end{bmatrix}$ is the \mathcal{B} -coordinate vector for \vec{x} .

Let $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_p\}$ be a basis for a vector subspace \mathbb{V} . Then for each vector \vec{x} in \mathbb{V} , there are unique scalars c_1, c_2, \ldots, c_p such that

$$ec{x} = c_1 ec{v}_1 + c_2 ec{v}_2 + \dots + c_p ec{v}_p \quad \Big(ext{more compactly} \,, \; ec{x} = \sum_{i=1}^p c_i ec{v}_i \Big).$$

Definition

We call c_1, c_2, \ldots, c_p the coordinates of \vec{x} relative to \mathcal{B} .

We also call c_1, c_2, \ldots, c_p the \mathcal{B} -coordinates of \vec{x} and $\begin{bmatrix} \vec{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \end{bmatrix}$ Note that $\begin{bmatrix} \vec{z} \end{bmatrix}$:

Note that $[\vec{x}]_{R}$ is a vector in \mathbb{R}^{p} .

Let's find a basis for the plane \mathbb{W} in \mathbb{R}^3 given by x + 2y + 3z = 0.

Let's find a basis for the plane \mathbb{W} in \mathbb{R}^3 given by x+2y+3z=0. One way to do this is to recognize that $\mathbb{W}=\mathcal{NS}\big([1\ 2\ 3]\big)$ and proceed "as usual".

Let's find a basis for the plane \mathbb{W} in \mathbb{R}^3 given by x+2y+3z=0. One way to do this is to recognize that $\mathbb{W}=\mathcal{NS}\big([1\ 2\ 3]\big)$ and proceed "as usual". However, it is pretty darn easy to find two LI vectors that span \mathbb{W} ; these two vectors will form a basis for \mathbb{W} .

Let's find a basis for the plane \mathbb{W} in \mathbb{R}^3 given by x+2y+3z=0. One way to do this is to recognize that $\mathbb{W}=\mathcal{NS}\big([1\ 2\ 3]\big)$ and proceed "as usual". However, it is pretty darn easy to find two LI vectors that span \mathbb{W} ; these two vectors will form a basis for \mathbb{W} .

How can we find *one non-zero* vector in \mathbb{W} ; i.e., one *non-zero* solution to x + 2y + 3z = 0? (We did this sort of thing on the first day of class!)

Let's find a basis for the plane \mathbb{W} in \mathbb{R}^3 given by x+2y+3z=0. One way to do this is to recognize that $\mathbb{W}=\mathcal{NS}\big([1\ 2\ 3]\big)$ and proceed "as usual". However, it is pretty darn easy to find two LI vectors that span \mathbb{W} ; these two vectors will form a basis for \mathbb{W} .

How can we find *one non-zero* vector in \mathbb{W} ; i.e., one *non-zero* solution to x + 2y + 3z = 0? (We did this sort of thing on the first day of class!) Just set one variable equal to 0, one variable equal to 1, and solve for the third variable; right?

Let's find a basis for the plane \mathbb{W} in \mathbb{R}^3 given by x+2y+3z=0. One way to do this is to recognize that $\mathbb{W}=\mathcal{NS}\big([1\ 2\ 3]\big)$ and proceed "as usual". However, it is pretty darn easy to find two LI vectors that span \mathbb{W} ; these two vectors will form a basis for \mathbb{W} .

How can we find *one non-zero* vector in \mathbb{W} ; i.e., one *non-zero* solution to x + 2y + 3z = 0? (We did this sort of thing on the first day of class!) Just set one variable equal to 0, one variable equal to 1, and solve for the third variable; right?

With z = 0, y = 1 we get x = -2; and with y = 0, z = 1 we get x = -3.

Let's find a basis for the plane \mathbb{W} in \mathbb{R}^3 given by x+2y+3z=0. One way to do this is to recognize that $\mathbb{W}=\mathcal{NS}\big([1\ 2\ 3]\big)$ and proceed "as usual". However, it is pretty darn easy to find two LI vectors that span \mathbb{W} ; these two vectors will form a basis for \mathbb{W} .

How can we find *one non-zero* vector in \mathbb{W} ; i.e., one *non-zero* solution to x+2y+3z=0? (We did this sort of thing on the first day of class!) Just set one variable equal to 0, one variable equal to 1, and solve for the third variable; right?

With z = 0, y = 1 we get x = -2; and with y = 0, z = 1 we get x = -3. It now follows that a basis for \mathbb{W} is given by

$$\mathcal{B} = \{\vec{w_1}, \vec{w_2}\}$$
 where $\vec{w_1} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \ \vec{w_2} = \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}.$

So, a basis for the plane \mathbb{W} (i.e. the soln set to x+2y+3z=0) is given by

$$\mathcal{B} = \{ \vec{w_1}, \vec{w_2} \}$$
 where $\vec{w_1} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \ \vec{w_2} = \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}.$

So, a basis for the plane \mathbb{W} (i.e. the soln set to x+2y+3z=0) is given by

$$\mathcal{B} = \{ \vec{w_1}, \vec{w_2} \}$$
 where $\vec{w_1} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \ \vec{w_2} = \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}.$

Thus every vector \vec{w} in \mathbb{W} can be written in a unique way as $\vec{w} = c_1 \vec{w}_1 + c_2 \vec{w}_2$ where c_1, c_2 are the \mathcal{B} -coordinates of \vec{w} , and then

$$\begin{bmatrix} \vec{w} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$
 is the \mathcal{B} -coordinate vector for \vec{w} .

So, a basis for the plane \mathbb{W} (i.e. the soln set to x+2y+3z=0) is given by

$$\mathcal{B} = \{ \vec{w_1}, \vec{w_2} \}$$
 where $\vec{w_1} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \ \vec{w_2} = \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}.$

Thus every vector \vec{w} in \mathbb{W} can be written in a unique way as $\vec{w} = c_1 \vec{w}_1 + c_2 \vec{w}_2$ where c_1, c_2 are the \mathcal{B} -coordinates of \vec{w} , and then

$$\begin{bmatrix} \vec{w} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$
 is the \mathcal{B} -coordinate vector for \vec{w} .

For example,

$$\vec{w} = \begin{bmatrix} -1 \\ -4 \\ 3 \end{bmatrix} = 4\vec{w}_1 - 3\vec{w}_2$$
 is in \mathbb{W} and $\begin{bmatrix} \vec{w} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 4 \\ -3 \end{bmatrix}$.

So, a basis for the plane \mathbb{W} (i.e. the soln set to x+2y+3z=0) is given by

$$\mathcal{B} = \{ \vec{w_1}, \vec{w_2} \}$$
 where $\vec{w_1} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}, \ \vec{w_2} = \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}.$

Thus every vector \vec{w} in \mathbb{W} can be written in a unique way as $\vec{w} = c_1 \vec{w}_1 + c_2 \vec{w}_2$ where c_1, c_2 are the \mathcal{B} -coordinates of \vec{w} , and then

$$\begin{bmatrix} \vec{w} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$
 is the \mathcal{B} -coordinate vector for \vec{w} .

For example,

$$\vec{w} = \begin{bmatrix} -1 \\ -4 \\ 3 \end{bmatrix} = 4\vec{w}_1 - 3\vec{w}_2$$
 is in \mathbb{W} and $\begin{bmatrix} \vec{w} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 4 \\ -3 \end{bmatrix}$.

Note that while \vec{w} is in \mathbb{R}^3 , $[\vec{w}]_{\mathcal{B}}$ is in \mathbb{R}^2 .

Find bases for the null space and column space of

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 3 & 6 & 9 & 2 & -5 \\ 2 & 4 & 6 & 1 & -4 \end{bmatrix}$$

Find bases for the null space and column space of

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 3 & 6 & 9 & 2 & -5 \\ 2 & 4 & 6 & 1 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Using elem row ops, we find the indicated REF

Find bases for the null space and column space of

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 3 & 6 & 9 & 2 & -5 \\ 2 & 4 & 6 & 1 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & -2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Using elem row ops, we find the indicated REF and RREF for A.

Find bases for the null space and column space of

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 3 & 6 & 9 & 2 & -5 \\ 2 & 4 & 6 & 1 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & -2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Using elem row ops, we find the indicated REF and RREF for A. Thus columns 1,2,4 are pivot columns for A,

Find bases for the null space and column space of

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 3 & 6 & 9 & 2 & -5 \\ 2 & 4 & 6 & 1 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & -2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Using elem row ops, we find the indicated REF and RREF for A. Thus columns 1,2,4 are pivot columns for A, so a basis for $\mathcal{CS}(A)$ is given

by
$$\left\{ \begin{bmatrix} 1\\0\\3\\2 \end{bmatrix}, \begin{bmatrix} 2\\1\\6\\4 \end{bmatrix}, \begin{bmatrix} 4\\1\\2\\1 \end{bmatrix} \right\}$$

Find bases for the null space and column space of

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 3 & 6 & 9 & 2 & -5 \\ 2 & 4 & 6 & 1 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & -2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Using elem row ops, we find the indicated REF and RREF for A. Thus columns 1,2,4 are pivot columns for A, so a basis for $\mathcal{CS}(A)$ is given

by
$$\left\{ \begin{bmatrix} 1\\0\\3\\2 \end{bmatrix}, \begin{bmatrix} 2\\1\\6\\4 \end{bmatrix}, \begin{bmatrix} 4\\1\\2\\1 \end{bmatrix} \right\}$$
 and we see that $\mathcal{CS}(A)$ is a 3-plane in \mathbb{R}^4 .

Find bases for the null space and column space of

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 3 & 6 & 9 & 2 & -5 \\ 2 & 4 & 6 & 1 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & -2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Using elem row ops, we find the indicated REF and RREF for A. Thus columns 1,2,4 are pivot columns for A, so a basis for $\mathcal{CS}(A)$ is given

by
$$\left\{ \begin{bmatrix} 1\\0\\3\\2 \end{bmatrix}, \begin{bmatrix} 2\\1\\6\\4 \end{bmatrix}, \begin{bmatrix} 4\\1\\2\\1 \end{bmatrix} \right\}$$
 and we see that $\mathcal{CS}(A)$ is a 3-plane in \mathbb{R}^4 .

Let's focus on $\mathcal{NS}(A)$.

Find bases for the null space and column space of

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 3 & 6 & 9 & 2 & -5 \\ 2 & 4 & 6 & 1 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & -2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Using elem row ops, we find the indicated REF and RREF for A. Thus columns 1,2,4 are pivot columns for A, so a basis for $\mathcal{CS}(A)$ is given

by
$$\left\{ \begin{bmatrix} 1\\0\\3\\2 \end{bmatrix}, \begin{bmatrix} 2\\1\\6\\4 \end{bmatrix}, \begin{bmatrix} 4\\1\\2\\1 \end{bmatrix} \right\}$$
 and we see that $\mathcal{CS}(A)$ is a 3-plane in \mathbb{R}^4 .

Let's focus on $\mathcal{NS}(A)$. So, we need to "solve" $A\vec{x} = \vec{0}$.

Find bases for the null space and column space of

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 3 & 6 & 9 & 2 & -5 \\ 2 & 4 & 6 & 1 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & -2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Using elem row ops, we find the indicated REF and RREF for A. Thus columns 1,2,4 are pivot columns for A, so a basis for $\mathcal{CS}(A)$ is given

by
$$\left\{ \begin{bmatrix} 1\\0\\3\\2 \end{bmatrix}, \begin{bmatrix} 2\\1\\6\\4 \end{bmatrix}, \begin{bmatrix} 4\\1\\2\\1 \end{bmatrix} \right\}$$
 and we see that $\mathcal{CS}(A)$ is a 3-plane in \mathbb{R}^4 .

Let's focus on $\mathcal{NS}(A)$. So, we need to "solve" $A\vec{x} = \vec{0}$. The free variables are $x_3 = s$, $x_5 = t$;

Find bases for the null space and column space of

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 3 & 6 & 9 & 2 & -5 \\ 2 & 4 & 6 & 1 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & -2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Using elem row ops, we find the indicated REF and RREF for A. Thus columns 1,2,4 are pivot columns for A, so a basis for $\mathcal{CS}(A)$ is given

by
$$\left\{ \begin{bmatrix} 1\\0\\3\\2 \end{bmatrix}, \begin{bmatrix} 2\\1\\6\\4 \end{bmatrix}, \begin{bmatrix} 4\\1\\2\\1 \end{bmatrix} \right\}$$
 and we see that $\mathcal{CS}(A)$ is a 3-plane in \mathbb{R}^4 .

Let's focus on $\mathcal{NS}(A)$. So, we need to "solve" $A\vec{x} = \vec{0}$. The free variables are $x_3 = s$, $x_5 = t$; then $x_4 = -2t$, $x_2 = -s + 2t$, $x_1 = -s - t$.

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 3 & 6 & 9 & 2 & -5 \\ 2 & 4 & 6 & 1 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & -2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

 $\mathcal{NS}(A)$ is a vector subspace of

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 3 & 6 & 9 & 2 & -5 \\ 2 & 4 & 6 & 1 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & -2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

 $\mathcal{NS}(A)$ is a vector subspace of \mathbb{R}^5 . To "find" $\mathcal{NS}(A)$, we solve $A\vec{x} = \vec{0}$. Free vrbls are $x_3 = s$, $x_5 = t$; then $x_4 = -2t$, $x_2 = -s + 2t$, $x_1 = -s - t$.

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 3 & 6 & 9 & 2 & -5 \\ 2 & 4 & 6 & 1 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & -2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

 $\mathcal{NS}(A)$ is a vector subspace of \mathbb{R}^5 . To "find" $\mathcal{NS}(A)$, we solve $A\vec{x} = \vec{0}$. Free vrbls are $x_3 = s$, $x_5 = t$; then $x_4 = -2t$, $x_2 = -s + 2t$, $x_1 = -s - t$.

Thus
$$A\vec{x} = \vec{0}$$
 iff $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -s+t \\ -s+2t \\ s \\ -2t \\ t \end{bmatrix} = s \begin{bmatrix} -1 \\ -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ 2 \\ 0 \\ -2 \\ 1 \end{bmatrix}.$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 3 & 6 & 9 & 2 & -5 \\ 2 & 4 & 6 & 1 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & -2 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

 $\mathcal{NS}(A)$ is a vector subspace of \mathbb{R}^5 . To "find" $\mathcal{NS}(A)$, we solve $A\vec{x} = \vec{0}$. Free vrbls are $x_3 = s$, $x_5 = t$; then $x_4 = -2t$, $x_2 = -s + 2t$, $x_1 = -s - t$.

Thus
$$A\vec{x} = \vec{0}$$
 iff $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -s+t \\ -s+2t \\ s \\ -2t \\ t \end{bmatrix} = s \begin{bmatrix} -1 \\ -1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -1 \\ 2 \\ 0 \\ -2 \\ 1 \end{bmatrix}.$

So, $\mathcal{NS}(A)$ is a 2-plane in \mathbb{R}^5 and the above two vectors form a basis.

$$\mathcal{NS}(A)$$
, a 2-plane in \mathbb{R}^5 , has basis $\mathcal{B}=\{\vec{v_1},\vec{v_2}\}$ where $egin{bmatrix} -1 \\ -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $\vec{v_2}=egin{bmatrix} -1 \\ 2 \\ 0 \\ -2 \\ 1 \end{bmatrix}$.

$$\mathcal{NS}(A) \text{, a 2-plane in } \mathbb{R}^5 \text{, has basis } \mathcal{B} = \{\vec{v_1}, \vec{v_2}\} \text{ where } \begin{bmatrix} -1 \\ -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \vec{v_2} = \begin{bmatrix} -1 \\ 2 \\ 0 \\ -2 \\ 1 \end{bmatrix}.$$
 then $[\vec{x}]_{\mathcal{B}} = \begin{bmatrix} s \\ t \end{bmatrix}$ which is a vector in \mathbb{R}^2 .

$$\mathcal{NS}(A)\text{, a 2-plane in }\mathbb{R}^5\text{, has basis }\mathcal{B}=\{\vec{v_1},\vec{v_2}\}\text{ where }\begin{bmatrix}-1\\-1\\1\\0\\0\end{bmatrix},\vec{v_2}=\begin{bmatrix}-1\\2\\0\\-2\\1\end{bmatrix}.$$
 If \vec{x} in $\mathcal{NS}(A)$ is given by $\vec{x}=s\vec{v_1}+t\vec{v_2}$, $\vec{v_1}=\begin{bmatrix}-1\\1\\0\\0\end{bmatrix}$, $\vec{v_2}=\begin{bmatrix}-1\\2\\0\\-2\\1\end{bmatrix}$. then $[\vec{x}]_{\mathcal{B}}=\begin{bmatrix}s\\t\end{bmatrix}$ which is a vector in \mathbb{R}^2 .

We can identify NS(A) with the st-plane!

