Subspaces of Euclidean Space \mathbb{R}^n

Applied Linear Algebra MATH 5112/6012

[Subspaces of](#page-103-0) \mathbb{R}^n

 \leftarrow

 $2Q$

Let $\mathbb {V}$ be a collection of vectors in $\mathbb {R}^n$. (For example, $\mathbb {V}$ could be a solution set to some equation, or it could be all the vectors that have third coordinate -7.)

 QQQ

Let $\mathbb {V}$ be a collection of vectors in $\mathbb {R}^n$. (For example, $\mathbb {V}$ could be a solution set to some equation, or it could be all the vectors that have third coordinate -7.)

We say that V closed with respect to scalar multiplication if and only if whenever \vec{v} is in $\mathbb {V}$ and s is any scalar, then $s\vec{v}$ is also in $\mathbb {V}$.

Let $\mathbb {V}$ be a collection of vectors in $\mathbb {R}^n$. (For example, $\mathbb {V}$ could be a solution set to some equation, or it could be all the vectors that have third coordinate -7.)

We say that V closed with respect to scalar multiplication if and only if whenever \vec{v} is in $\mathbb {V}$ and s is any scalar, then $s\vec{v}$ is also in $\mathbb {V}$. For example, if $\mathbb{V} = \mathcal{S}$ pan $\{\vec{v}\}$ (for some \vec{v} in \mathbb{R}^n), then $\mathbb {V}$ is closed with respect to scalar multiplication.

Let $\mathbb {V}$ be a collection of vectors in $\mathbb {R}^n$. (For example, $\mathbb {V}$ could be a solution set to some equation, or it could be all the vectors that have third coordinate -7.)

We say that V closed with respect to scalar multiplication if and only if whenever \vec{v} is in $\mathbb {V}$ and s is any scalar, then $s\vec{v}$ is also in $\mathbb {V}$. For example, if $\mathbb{V} = \mathcal{S}$ pan $\{\vec{v}\}$ (for some \vec{v} in \mathbb{R}^n), then $\mathbb {V}$ is closed with respect to scalar multiplication. In fact, if $\mathbb{V} = \mathcal{S}$ pan $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ (for any $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ in \mathbb{R}^n), then $\mathbb {V}$ is closed with respect to scalar multiplication.

 OQ

Let $\mathbb {V}$ be a collection of vectors in $\mathbb {R}^n$. (For example, $\mathbb {V}$ could be a solution set to some equation, or it could be all the vectors that have third coordinate -7.)

We say that V closed with respect to scalar multiplication if and only if whenever \vec{v} is in $\mathbb {V}$ and s is any scalar, then $s\vec{v}$ is also in $\mathbb {V}$. For example, if $\mathbb{V} = \mathcal{S}$ pan $\{\vec{v}\}$ (for some \vec{v} in \mathbb{R}^n), then $\mathbb {V}$ is closed with respect to scalar multiplication. In fact, if $\mathbb{V} = \mathcal{S}$ pan $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ (for any $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ in \mathbb{R}^n), then $\mathbb {V}$ is closed with respect to scalar multiplication.

We say that V closed with respect to vector addition if and only if whenever \vec{u} and \vec{v} are in \mathbb{V} , then $\vec{u} + \vec{v}$ is also in \mathbb{V} .

 QQQ

 \rightarrow 4 d \rightarrow 4 d \rightarrow 4 d \rightarrow \rightarrow

Let $\mathbb {V}$ be a collection of vectors in $\mathbb {R}^n$. (For example, $\mathbb {V}$ could be a solution set to some equation, or it could be all the vectors that have third coordinate -7.)

We say that V closed with respect to scalar multiplication if and only if whenever \vec{v} is in $\mathbb {V}$ and s is any scalar, then $s\vec{v}$ is also in $\mathbb {V}$. For example, if $\mathbb{V} = \mathcal{S}$ pan $\{\vec{v}\}$ (for some \vec{v} in \mathbb{R}^n), then $\mathbb {V}$ is closed with respect to scalar multiplication. In fact, if $\mathbb{V} = \mathcal{S}$ pan $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ (for any $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ in \mathbb{R}^n), then $\mathbb {V}$ is closed with respect to scalar multiplication.

We say that V closed with respect to vector addition if and only if whenever \vec{u} and \vec{v} are in \mathbb{V} , then $\vec{u} + \vec{v}$ is also in \mathbb{V} . For example, if $\mathbb{V} = \mathcal{S}$ pan $\{\vec{v}\}$ (for some \vec{v} in \mathbb{R}^n), then $\mathbb {V}$ is closed with respect to vector addition.

 QQQ

4 ロ > 4 何 > 4 ミ > 4 ミ > ニョ

Let $\mathbb {V}$ be a collection of vectors in $\mathbb {R}^n$. (For example, $\mathbb {V}$ could be a solution set to some equation, or it could be all the vectors that have third coordinate -7.)

We say that V closed with respect to scalar multiplication if and only if whenever \vec{v} is in $\mathbb {V}$ and s is any scalar, then $s\vec{v}$ is also in $\mathbb {V}$. For example, if $\mathbb{V} = \mathcal{S}$ pan $\{\vec{v}\}$ (for some \vec{v} in \mathbb{R}^n), then $\mathbb {V}$ is closed with respect to scalar multiplication. In fact, if $\mathbb{V} = \mathcal{S}$ pan $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ (for any $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ in \mathbb{R}^n), then $\mathbb {V}$ is closed with respect to scalar multiplication.

We say that V closed with respect to vector addition if and only if whenever \vec{u} and \vec{v} are in \mathbb{V} , then $\vec{u} + \vec{v}$ is also in \mathbb{V} . For example, if $\mathbb{V} = \mathcal{S}$ pan $\{\vec{v}\}$ (for some \vec{v} in \mathbb{R}^n), then $\mathbb {V}$ is closed with respect to vector addition. In fact, if $\mathbb{V} = \mathcal{S}$ pan $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p\}$ (for any $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ in \mathbb{R}^n), then $\mathbb {V}$ is closed with respect to vector addition.

 QQQ

 $A \cup B \rightarrow A \oplus B \rightarrow A \oplus B \rightarrow A \oplus B$

Let $\mathbb {V}$ be a collection of vectors in $\mathbb {R}^n$. (For example, $\mathbb {V}$ could be a solution set to some equation, or it could be all the vectors that have third coordinate -7.)

We say that V closed with respect to scalar multiplication if and only if whenever \vec{v} is in $\mathbb {V}$ and s is any scalar, then $s\vec{v}$ is also in $\mathbb {V}$. For example, if $\mathbb{V} = \mathcal{S}$ pan $\{\vec{v}\}$ (for some \vec{v} in \mathbb{R}^n), then $\mathbb {V}$ is closed with respect to scalar multiplication. In fact, if $\mathbb{V} = \mathcal{S}$ pan $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ (for any $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ in \mathbb{R}^n), then $\mathbb {V}$ is closed with respect to scalar multiplication.

We say that V closed with respect to vector addition if and only if whenever \vec{u} and \vec{v} are in \mathbb{V} , then $\vec{u} + \vec{v}$ is also in \mathbb{V} . For example, if $\mathbb{V} = \mathcal{S}$ pan $\{\vec{v}\}$ (for some \vec{v} in \mathbb{R}^n), then $\mathbb {V}$ is closed with respect to vector addition. In fact, if $\mathbb{V} = \mathcal{S}$ pan $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p\}$ (for any $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ in \mathbb{R}^n), then $\mathbb {V}$ is closed with respect to vector addition.

We call $\mathbb {V}$ a *vector subspace* of $\mathbb {R}^n$ if and only if \cdot [.](#page-7-0)

 QQQ

Let $\mathbb {V}$ be a collection of vectors in $\mathbb {R}^n$.

 $\mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n \xrightarrow{\sim}$

4 ロ ▶ (母

Let $\mathbb {V}$ be a collection of vectors in $\mathbb {R}^n$. We call $\mathbb {V}$ a *vector subspace* of $\mathbb {R}^n$ if and only if

 \leftarrow $\,$ \sim

Let $\mathbb {V}$ be a collection of vectors in $\mathbb {R}^n$. We call $\mathbb {V}$ a *vector subspace* of $\mathbb {R}^n$ if and only if

 \bullet $\vec{0}$ is in V ,

 \leftarrow

 $2Q$

Let $\mathbb {V}$ be a collection of vectors in $\mathbb {R}^n$. We call $\mathbb {V}$ a *vector subspace* of $\mathbb {R}^n$ if and only if

- \bullet $\vec{0}$ is in V ,
- $\bullet \nabla$ closed with respect to vector addition, and

 \leftarrow

 QQQ

Let $\mathbb {V}$ be a collection of vectors in $\mathbb {R}^n$. We call $\mathbb {V}$ a *vector subspace* of $\mathbb {R}^n$ if and only if

- \bullet $\vec{0}$ is in \mathbb{V} ,
- \bullet V closed with respect to vector addition, and
- \bullet ∇ closed with respect to scalar multiplication.

Let $\mathbb {V}$ be a collection of vectors in $\mathbb {R}^n$. We call $\mathbb {V}$ a *vector subspace* of $\mathbb {R}^n$ if and only if

- \bullet $\vec{0}$ is in \mathbb{V} ,
- \bullet V closed with respect to vector addition, and
- \bullet ∇ closed with respect to scalar multiplication.

Some simple examples:

Let $\mathbb {V}$ be a collection of vectors in $\mathbb {R}^n$. We call $\mathbb {V}$ a *vector subspace* of $\mathbb {R}^n$ if and only if

 \bullet $\vec{0}$ is in \mathbb{V} ,

 \bullet V closed with respect to vector addition, and

 \bullet ∇ closed with respect to scalar multiplication. Some simple examples:

•
$$
\mathbb{V} = \{ \vec{0} \}
$$
 is the *trivial* vector subspace

Let $\mathbb {V}$ be a collection of vectors in $\mathbb {R}^n$. We call $\mathbb {V}$ a *vector subspace* of $\mathbb {R}^n$ if and only if

 \bullet $\vec{0}$ is in \mathbb{V} .

 \bullet V closed with respect to vector addition, and

• V closed with respect to scalar multiplication. Some simple examples:

- $\bullet \mathbb{V} = {\{\vec{0}\}}$ is the *trivial* vector subspace
- $\mathbb{V} = \mathbb{R}^n$ is a vector subspace of itself (also kinda trivial)

 OQ

Let $\mathbb {V}$ be a collection of vectors in $\mathbb {R}^n$. We call $\mathbb {V}$ a *vector subspace* of $\mathbb {R}^n$ if and only if

 \bullet $\vec{0}$ is in \mathbb{V} .

 \bullet V closed with respect to vector addition, and

• V closed with respect to scalar multiplication. Some simple examples:

- $\bullet \mathbb{V} = {\{\vec{0}\}}$ is the *trivial* vector subspace
- $\mathbb{V} = \mathbb{R}^n$ is a vector subspace of itself (also kinda trivial)

•
$$
\mathbb{V} = \text{Span}\{\vec{v}\} \text{ (for any } \vec{v} \text{ in } \mathbb{R}^n\text{)}
$$

 OQ

Let $\mathbb {V}$ be a collection of vectors in $\mathbb {R}^n$. We call $\mathbb {V}$ a *vector subspace* of $\mathbb {R}^n$ if and only if

 \bullet $\vec{0}$ is in \mathbb{V} .

 \bullet V closed with respect to vector addition, and

 \bullet ∇ closed with respect to scalar multiplication. Some simple examples:

$$
\bullet \ \mathbb{V} = \{\vec{0}\} \text{ is the } trivial \text{ vector subspace}
$$

$$
\bullet \ \mathbb{V} = \mathbb{R}^n \text{ is a vector subspace of itself (also kind a trivial)}
$$

•
$$
\mathbb{V} = \text{Span}\{\vec{v}\} \text{ (for any } \vec{v} \text{ in } \mathbb{R}^n\text{)}
$$

•
$$
\mathbb{V} = \text{Span}\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}
$$
 (for any $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$ in \mathbb{R}^n)

 Ω

Let $\mathbb {V}$ be a collection of vectors in $\mathbb {R}^n$. We call $\mathbb {V}$ a *vector subspace* of $\mathbb {R}^n$ if and only if

 \bullet $\vec{0}$ is in \mathbb{V} .

 \bullet V closed with respect to vector addition, and

• V closed with respect to scalar multiplication. Some simple examples:

$$
\bullet \ \mathbb{V} = \{\vec{0}\} \text{ is the } trivial \text{ vector subspace}
$$

$$
\bullet \ \mathbb{V} = \mathbb{R}^n \text{ is a vector subspace of itself (also kind a trivial)}
$$

•
$$
\mathbb{V} = \text{Span}\{\vec{v}\} \text{ (for any } \vec{v} \text{ in } \mathbb{R}^n\text{)}
$$

 $\mathbb{V} = \mathcal{S}$ pan $\{\vec{v_1}, \vec{v_2}, \dots, \vec{v_p}\}$ (for any $\vec{v_1}, \vec{v_2}, \dots, \vec{v_p}$ in \mathbb{R}^n)

A simple non-example:

 PQQ

Let $\mathbb {V}$ be a collection of vectors in $\mathbb {R}^n$. We call $\mathbb {V}$ a *vector subspace* of $\mathbb {R}^n$ if and only if

 \bullet $\vec{0}$ is in \mathbb{V} .

 \bullet V closed with respect to vector addition, and

 \bullet ∇ closed with respect to scalar multiplication. Some simple examples:

$$
\bullet \ \mathbb{V} = \{\vec{0}\} \text{ is the } trivial \text{ vector subspace}
$$

$$
\bullet \ \mathbb{V} = \mathbb{R}^n \text{ is a vector subspace of itself (also kind a trivial)}
$$

•
$$
\mathbb{V} = \text{Span}\{\vec{v}\} \text{ (for any } \vec{v} \text{ in } \mathbb{R}^n\text{)}
$$

•
$$
\mathbb{V} = \text{Span}\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}
$$
 (for any $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$ in \mathbb{R}^n)

A simple non-example:

 $\mathbb{V} = \big\{$ all \vec{v} in \mathbb{R}^4 with third coordinate -7 $\big\}$ is not a subspace

 OQ

 \leftarrow

For each V , decide whether or not V is closed with respect to scalar multiplication and/or closed with respect to vector addition.

For each V , decide whether or not V is closed with respect to scalar multiplication and/or closed with respect to vector addition.

$$
\mathbb{V} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \; \middle| \; x + y = 1 \right\}
$$

For each V , decide whether or not V is closed with respect to scalar multiplication and/or closed with respect to vector addition.

Figure: $x + y = 1$

 Ω

For each V , decide whether or not V is closed with respect to scalar multiplication and/or closed with respect to vector addition.

$$
\mathbb{V} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \middle| x + y = 1 \right\}
$$

$$
\vec{0} \text{ not in } \mathbb{V}, \text{ so not VSS}
$$

Figure: $x + y = 1$

For each V , decide whether or not V is closed with respect to scalar multiplication and/or closed with respect to vector addition.

$$
\mathbb{V} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \middle| \ x + y = 1 \right\}
$$

$$
\vec{0} \text{ not in } \mathbb{V}, \text{ so not VSS}
$$

$$
\mathbb{V}=\big\{\begin{bmatrix}x\\y\end{bmatrix}\;\Big|\; xy\geq 0\big\}
$$

For each V , decide whether or not V is closed with respect to scalar multiplication and/or closed with respect to vector addition.

$$
\mathbb{V} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \middle| x + y = 1 \right\}
$$

 $\vec{0}$ not in \mathbb{V} , so not VSS

$$
\mathbb{V} = \big\{ \begin{bmatrix} x \\ y \end{bmatrix} \ \bigg| \ xy \geq 0 \big\}
$$

Figure: $xy > 0$

For each V , decide whether or not V is closed with respect to scalar multiplication and/or closed with respect to vector addition.

$$
\mathbb{V} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \middle| \begin{array}{c} x + y = 1 \end{array} \right\}
$$

$$
\vec{0} \text{ not in } \mathbb{V}, \text{ so not VSS}
$$

$$
\mathbb{V} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \middle| xy \ge 0 \right\}
$$

W not closed wrt vector add

Figure: $xy > 0$

 PQQ

For each V , decide whether or not V is closed with respect to scalar multiplication and/or closed with respect to vector addition.

$$
\mathbb{V} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \middle| \ x + y = 1 \right\}
$$

$$
\vec{0} \text{ not in } \mathbb{V}, \text{ so not VSS}
$$

$$
\mathbb{V} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \middle| xy \ge 0 \right\}
$$

W not closed wrt vector add

$$
\mathbb{V} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \; \middle| \; x \ge 0 \text{ and } y \ge 0 \right\}
$$

For each V , decide whether or not V is closed with respect to scalar multiplication and/or closed with respect to vector addition.

$$
\mathbb{V} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \middle| x + y = 1 \right\}
$$

 $\vec{0}$ not in \mathbb{V} , so not VSS

$$
\mathbb{V} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \middle| xy \ge 0 \right\}
$$

W not closed wrt vector add

$$
\mathbb{V} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \; \middle| \; x \ge 0 \text{ and } y \ge 0 \right\}
$$

Figure: $x > 0$ and $y > 0$

 PQQ

For each V , decide whether or not V is closed with respect to scalar multiplication and/or closed with respect to vector addition.

$$
\mathbb{V} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \middle| x + y = 1 \right\}
$$

 $\vec{0}$ not in \mathbb{V} , so not VSS

$$
\mathbb{V} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \middle| xy \ge 0 \right\}
$$

W not closed wrt vector add

$$
\mathbb{V} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \middle| \ x \ge 0 \text{ and } y \ge 0 \right\}
$$

$$
\mathbb{V} \text{ not closed wrt scalar mult}
$$

Figure: $x > 0$ and $y > 0$

 PQQ

Recall that a collection $\mathbb {V}$ of vectors (in $\mathbb {R}^n)$ is a *vector subspace* (of $\mathbb {R}^n)$ if and only if

 \leftarrow

Recall that a collection $\mathbb {V}$ of vectors (in $\mathbb {R}^n)$ is a *vector subspace* (of $\mathbb {R}^n)$ if and only if

 \bullet $\vec{0}$ is in V .

 \leftarrow

 QQQ

Recall that a collection $\mathbb {V}$ of vectors (in $\mathbb {R}^n)$ is a *vector subspace* (of $\mathbb {R}^n)$ if and only if

- \bullet $\vec{0}$ is in V .
- V closed with respect to vector addition

Recall that a collection $\mathbb {V}$ of vectors (in $\mathbb {R}^n)$ is a *vector subspace* (of $\mathbb {R}^n)$ if and only if

- \bullet $\vec{0}$ is in V .
- V closed with respect to vector addition $(\vec{u}, \vec{v} \text{ in } \mathbb{V} \implies \vec{u} + \vec{v} \text{ in } \mathbb{V})$
Recall that a collection $\mathbb {V}$ of vectors (in $\mathbb {R}^n)$ is a *vector subspace* (of $\mathbb {R}^n)$ if and only if

- \bullet $\vec{0}$ is in V .
- V closed with respect to vector addition $(\vec{u}, \vec{v} \text{ in } \mathbb{V} \implies \vec{u} + \vec{v} \text{ in } \mathbb{V})$
- \bullet V closed with respect to scalar mult

Recall that a collection $\mathbb {V}$ of vectors (in $\mathbb {R}^n)$ is a *vector subspace* (of $\mathbb {R}^n)$ if and only if

- \bullet $\vec{0}$ is in V .
- V closed with respect to vector addition (\vec{u}, \vec{v} in $\mathbb{V} \implies \vec{u} + \vec{v}$ in \mathbb{V})
- V closed with respect to scalar mult (s scalar, \vec{v} in $\mathbb{V} \implies s\vec{v}$ in \mathbb{V})

Recall that a collection $\mathbb {V}$ of vectors (in $\mathbb {R}^n)$ is a *vector subspace* (of $\mathbb {R}^n)$ if and only if

- \bullet $\vec{0}$ is in V .
- V closed with respect to vector addition (\vec{u}, \vec{v} in $\mathbb{V} \implies \vec{u} + \vec{v}$ in \mathbb{V})

• V closed with respect to scalar mult (s scalar, \vec{v} in $\mathbb{V} \implies s\vec{v}$ in \mathbb{V}) Let $\mathbb{V} = \mathcal{S}$ pan $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$. Let's show that \mathbb{V} is closed wrt vector addition.

Recall that a collection $\mathbb {V}$ of vectors (in $\mathbb {R}^n)$ is a *vector subspace* (of $\mathbb {R}^n)$ if and only if

- \bullet $\vec{0}$ is in V .
- V closed with respect to vector addition $(\vec{u}, \vec{v} \text{ in } \mathbb{V} \implies \vec{u} + \vec{v} \text{ in } \mathbb{V})$

• V closed with respect to scalar mult (s scalar, \vec{v} in $\mathbb{V} \implies s\vec{v}$ in \mathbb{V}) Let $\mathbb{V} = \mathcal{S}$ pan $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$. Let's show that \mathbb{V} is closed wrt vector addition. Let \vec{u}, \vec{v} be vectors in V . This means

Recall that a collection $\mathbb {V}$ of vectors (in $\mathbb {R}^n)$ is a *vector subspace* (of $\mathbb {R}^n)$ if and only if

- \bullet $\vec{0}$ is in V .
- V closed with respect to vector addition $(\vec{u}, \vec{v} \text{ in } \mathbb{V} \implies \vec{u} + \vec{v} \text{ in } \mathbb{V})$

• V closed with respect to scalar mult (s scalar, \vec{v} in $\mathbb{V} \implies s\vec{v}$ in \mathbb{V}) Let $\mathbb{V} = \mathcal{S}$ pan $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$. Let's show that \mathbb{V} is closed wrt vector addition. Let \vec{u}, \vec{v} be vectors in V . This means there are scalars s_1, s_2, \ldots, s_p and t_1, t_2, \ldots, t_p with

$$
\vec{u} = s_1 \vec{v}_1 + \dots + s_p \vec{v}_p \quad \text{and} \quad \vec{v} = t_1 \vec{v}_1 + \dots + t_p \vec{v}_p
$$

Recall that a collection $\mathbb {V}$ of vectors (in $\mathbb {R}^n)$ is a *vector subspace* (of $\mathbb {R}^n)$ if and only if

- \bullet $\vec{0}$ is in V .
- V closed with respect to vector addition $(\vec{u}, \vec{v} \text{ in } \mathbb{V} \implies \vec{u} + \vec{v} \text{ in } \mathbb{V})$

• V closed with respect to scalar mult (s scalar, \vec{v} in $\mathbb{V} \implies s\vec{v}$ in \mathbb{V}) Let $\mathbb{V} = \mathcal{S}$ pan $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$. Let's show that \mathbb{V} is closed wrt vector addition. Let \vec{u}, \vec{v} be vectors in V . This means there are scalars s_1, s_2, \ldots, s_p and t_1, t_2, \ldots, t_p with

$$
\vec{u} = s_1 \vec{v}_1 + \dots + s_p \vec{v}_p \quad \text{and} \quad \vec{v} = t_1 \vec{v}_1 + \dots + t_p \vec{v}_p
$$

so

$$
\vec{u} + \vec{v} = (s_1 + t_1)\vec{v}_1 + (s_2 + t_2)\vec{v}_2 + \cdots + (s_p + t_p)\vec{v}_p
$$

Recall that a collection $\mathbb {V}$ of vectors (in $\mathbb {R}^n)$ is a *vector subspace* (of $\mathbb {R}^n)$ if and only if

- \bullet $\vec{0}$ is in V .
- V closed with respect to vector addition $(\vec{u}, \vec{v} \text{ in } \mathbb{V} \implies \vec{u} + \vec{v} \text{ in } \mathbb{V})$

• V closed with respect to scalar mult (s scalar, \vec{v} in $\mathbb{V} \implies s\vec{v}$ in \mathbb{V}) Let $\mathbb{V} = \mathcal{S}$ pan $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$. Let's show that \mathbb{V} is closed wrt vector addition. Let \vec{u}, \vec{v} be vectors in V . This means there are scalars s_1, s_2, \ldots, s_p and t_1, t_2, \ldots, t_p with

$$
\vec{u} = s_1 \vec{v}_1 + \dots + s_p \vec{v}_p \quad \text{and} \quad \vec{v} = t_1 \vec{v}_1 + \dots + t_p \vec{v}_p
$$

so

$$
\vec{u} + \vec{v} = (s_1 + t_1)\vec{v}_1 + (s_2 + t_2)\vec{v}_2 + \cdots + (s_p + t_p)\vec{v}_p
$$

which is a vector in V.

Recall that a collection $\mathbb {V}$ of vectors (in $\mathbb {R}^n)$ is a *vector subspace* (of $\mathbb {R}^n)$ if and only if

- \bullet $\vec{0}$ is in V .
- V closed with respect to vector addition $(\vec{u}, \vec{v} \text{ in } \mathbb{V} \implies \vec{u} + \vec{v} \text{ in } \mathbb{V})$

• V closed with respect to scalar mult (s scalar, \vec{v} in $\mathbb{V} \implies s\vec{v}$ in \mathbb{V}) Let $\mathbb{V} = \mathcal{S}$ pan $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$. Let's show that \mathbb{V} is closed wrt vector addition. Let \vec{u}, \vec{v} be vectors in V . This means there are scalars s_1, s_2, \ldots, s_p and t_1, t_2, \ldots, t_p with

$$
\vec{u} = s_1 \vec{v}_1 + \dots + s_p \vec{v}_p \quad \text{and} \quad \vec{v} = t_1 \vec{v}_1 + \dots + t_p \vec{v}_p
$$

so

$$
\vec{u} + \vec{v} = (s_1 + t_1)\vec{v}_1 + (s_2 + t_2)\vec{v}_2 + \cdots + (s_p + t_p)\vec{v}_p
$$

which is a vector in V.

Homework: Show th[a](#page-32-0)t V is closed wrt scalar m[ult](#page-42-0)i[pli](#page-44-0)[c](#page-31-0)a[ti](#page-43-0)[o](#page-44-0)[n.](#page-0-0)

Applied Linear Algebra \blacksquare [Subspaces of](#page-0-0) \mathbb{R}^n

Just saw that any $\mathbb{V} = \mathcal{S}$ pan $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ is both closed wrt vector addition and closed wrt scalar multiplication.

 \leftarrow

 QQQ

Just saw that any $\mathbb{V} = \mathcal{S}$ pan $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ is both closed wrt vector addition and closed wrt scalar multiplication.

Example (Basic Vector SubSpace)

For any $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ in \mathbb{R}^n , \mathcal{S} pan $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p\}$ is a vector subspace.

Grade

 QQ

Just saw that any $\mathbb{V} = \mathcal{S}$ pan $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ is both closed wrt vector addition and closed wrt scalar multiplication.

Example (Basic Vector SubSpace)

For any $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ in \mathbb{R}^n , \mathcal{S} pan $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p\}$ is a vector subspace.

In fact, every vector subspace can be expressed this way!

Just saw that any $\mathbb{V} = \mathcal{S}$ pan $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ is both closed wrt vector addition and closed wrt scalar multiplication.

Example (Basic Vector SubSpace)

For any $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ in \mathbb{R}^n , \mathcal{S} pan $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p\}$ is a vector subspace.

In fact, every vector subspace can be expressed this way!

Example (Column Space of a Matrix)

The *column space* $CS(A)$ of a matrix A is the span of the columns of A.

 OQ

Just saw that any $\mathbb{V} = \mathcal{S}$ pan $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ is both closed wrt vector addition and closed wrt scalar multiplication.

Example (Basic Vector SubSpace)

For any $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ in \mathbb{R}^n , \mathcal{S} pan $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p\}$ is a vector subspace.

In fact, every vector subspace can be expressed this way!

Example (Column Space of a Matrix)

The column space $CS(A)$ of a matrix A is the span of the columns of A. Thus is A is an $m \times n$ matrix, then $CS(A)$ is a VSS of

 OQ

Just saw that any $\mathbb{V} = \mathcal{S}$ pan $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ is both closed wrt vector addition and closed wrt scalar multiplication.

Example (Basic Vector SubSpace)

For any $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ in \mathbb{R}^n , \mathcal{S} pan $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p\}$ is a vector subspace.

In fact, every vector subspace can be expressed this way!

Example (Column Space of a Matrix)

The *column space* $CS(A)$ of a matrix A is the span of the columns of A. Thus is A is an $m \times n$ matrix, then $\mathcal{CS}(A)$ is a VSS of \mathbb{R}^m .

 OQ

Just saw that any $\mathbb{V} = \mathcal{S}$ pan $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ is both closed wrt vector addition and closed wrt scalar multiplication.

Example (Basic Vector SubSpace)

For any $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ in \mathbb{R}^n , \mathcal{S} pan $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p\}$ is a vector subspace.

In fact, every vector subspace can be expressed this way!

Example (Column Space of a Matrix)

The *column space* $CS(A)$ of a matrix A is the span of the columns of A. Thus is A is an $m \times n$ matrix, then $\mathcal{CS}(A)$ is a VSS of \mathbb{R}^m .

If
$$
A = [\vec{a}_1 \ \vec{a}_2 \ \dots \ \vec{a}_n]
$$
, then $CS(A) = Span{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n}$.

 OQ

Let $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \dots & \vec{a}_n \end{bmatrix}$ be an $m \times n$ matrix; so,

 \leftarrow \rightarrow ミドイミド

 $2QQ$

Let $A=\begin{bmatrix} \vec a_1 & \vec a_2 & \dots & \vec a_n \end{bmatrix}$ be an $m\times n$ matrix; so, each $\vec a_j$ is in

 \leftarrow

 $2Q$

Let $A=\begin{bmatrix}\vec a_1 & \vec a_2 & \dots & \vec a_n\end{bmatrix}$ be an $m\times n$ matrix; so, each $\vec a_j$ is in \mathbb{R}^m .

 \leftarrow

 $2Q$

Let $A=\begin{bmatrix}\vec a_1 & \vec a_2 & \dots & \vec a_n\end{bmatrix}$ be an $m\times n$ matrix; so, each $\vec a_j$ is in \mathbb{R}^m .

The column space $CS(A)$ of A is the span of the columns of A, i.e.,

 QQ

Let $A=\begin{bmatrix}\vec a_1 & \vec a_2 & \dots & \vec a_n\end{bmatrix}$ be an $m\times n$ matrix; so, each $\vec a_j$ is in \mathbb{R}^m .

The column space $CS(A)$ of A is the span of the columns of A, i.e., $CS(A) = Span{\{\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_n\}}.$

 QQ

Let $A=\begin{bmatrix}\vec a_1 & \vec a_2 & \dots & \vec a_n\end{bmatrix}$ be an $m\times n$ matrix; so, each $\vec a_j$ is in \mathbb{R}^m .

The column space $CS(A)$ of A is the span of the columns of A, i.e., $CS(A) = Span{\{\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_n\}}$.

Three Ways to View $\mathcal{CS}(A)$

The column space $\mathcal{CS}(A)$ of $A=\left[\vec a_1 \; \vec a_2 \; \ldots \; \vec a_n \right]$ is:

Let $A=\begin{bmatrix}\vec a_1 & \vec a_2 & \dots & \vec a_n\end{bmatrix}$ be an $m\times n$ matrix; so, each $\vec a_j$ is in \mathbb{R}^m .

The column space $CS(A)$ of A is the span of the columns of A, i.e., $CS(A) = Span{\{\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_n\}}$.

Three Ways to View $\mathcal{CS}(A)$

The column space $\mathcal{CS}(A)$ of $A=\left[\vec a_1 \; \vec a_2 \; \ldots \; \vec a_n \right]$ is:

$$
\bullet \ \mathcal{CS}(A) = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_n\}
$$

Let $A=\begin{bmatrix}\vec a_1 & \vec a_2 & \dots & \vec a_n\end{bmatrix}$ be an $m\times n$ matrix; so, each $\vec a_j$ is in \mathbb{R}^m .

The column space $CS(A)$ of A is the span of the columns of A, i.e., $CS(A) = Span{\{\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_n\}}.$

Three Ways to View $\mathcal{CS}(A)$

The column space
$$
\mathcal{CS}(A)
$$
 of $A = [\vec{a}_1 \ \vec{a}_2 \ \dots \ \vec{a}_n]$ is:

$$
\bullet \ \mathcal{CS}(A) = \mathcal{S} \text{pan}\{\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_n\}
$$

•
$$
\mathcal{CS}(A) = \{ \vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution} \}
$$

 OQ

Let $A=\begin{bmatrix}\vec a_1 & \vec a_2 & \dots & \vec a_n\end{bmatrix}$ be an $m\times n$ matrix; so, each $\vec a_j$ is in \mathbb{R}^m .

The column space $CS(A)$ of A is the span of the columns of A, i.e., $CS(A) = Span{\{\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_n\}}.$

Three Ways to View $\mathcal{CS}(A)$

The column space
$$
\mathcal{CS}(A)
$$
 of $A = [\vec{a}_1 \ \vec{a}_2 \ \dots \ \vec{a}_n]$ is:

$$
\bullet \ \mathcal{CS}(A) = \mathcal{S} \text{pan}\{\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_n\}
$$

•
$$
\mathcal{CS}(A) = \{ \vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution} \}
$$

•
$$
CS(A) = \mathcal{R}ng(T)
$$
 where $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$

 299

The column space $\mathcal{CS}(A)$ of $A=\left[\begin{matrix}\vec a_1 & \vec a_2 & \dots & \vec a_n\end{matrix}\right]$ is:

$$
\bullet \ \mathcal{CS}(A) = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_n\}
$$

•
$$
\mathcal{CS}(A) = \{ \vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution} \}
$$

 $\mathcal{CS}(\mathcal{A})=\mathcal{R} n \mathcal{g}(\mathcal{T})$ where $\mathbb{R}^n \stackrel{\mathcal{T}}{\rightarrow} \mathbb{R}^m$ is $\mathcal{T}(\vec{x})=A \vec{x}$

イロト イ御 トイモト イ君 トー 君 一 のなの

The column space $\mathcal{CS}(A)$ of $A=\left[\begin{matrix}\vec a_1 & \vec a_2 & \dots & \vec a_n\end{matrix}\right]$ is:

$$
\bullet \ \mathcal{CS}(A) = \mathcal{S} \text{pan}\{\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_n\}
$$

•
$$
\mathcal{CS}(A) = \{ \vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution} \}
$$

The column space $\mathcal{CS}(A)$ of $A=\left[\begin{matrix}\vec a_1 & \vec a_2 & \dots & \vec a_n\end{matrix}\right]$ is:

$$
\bullet \ \mathcal{CS}(A) = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_n\}
$$

•
$$
\mathcal{CS}(A) = \{ \vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution} \}
$$

The column space $\mathcal{CS}(A)$ of $A=\left[\begin{matrix}\vec a_1 & \vec a_2 & \dots & \vec a_n\end{matrix}\right]$ is:

$$
\bullet \ \mathcal{CS}(A) = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_n\}
$$

•
$$
\mathcal{CS}(A) = \{ \vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution} \}
$$

The column space $\mathcal{CS}(A)$ of $A=\left[\begin{matrix}\vec a_1 & \vec a_2 & \dots & \vec a_n\end{matrix}\right]$ is:

$$
\bullet \ \mathcal{CS}(A) = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_n\}
$$

•
$$
\mathcal{CS}(A) = \{ \vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution} \}
$$

The column space $\mathcal{CS}(A)$ of $A=\left[\begin{matrix}\vec a_1 & \vec a_2 & \dots & \vec a_n\end{matrix}\right]$ is:

$$
\bullet \ \mathcal{CS}(A) = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_n\}
$$

•
$$
\mathcal{CS}(A) = \{ \vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution} \}
$$

The column space $\mathcal{CS}(A)$ of $A=\left[\begin{matrix}\vec a_1 & \vec a_2 & \dots & \vec a_n\end{matrix}\right]$ is:

$$
\bullet \ \mathcal{CS}(A) = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_n\}
$$

•
$$
\mathcal{CS}(A) = \{ \vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution} \}
$$

Again, let A be an $m \times n$ matrix.

 \leftarrow

 \sim

 $2QQ$

Again, let A be an $m \times n$ matrix. The *null space* $\mathcal{N} \mathcal{S}(A)$ of A is

 \leftarrow

 $2Q$

Again, let A be an $m \times n$ matrix. The *null space* $NS(A)$ of A is $\mathcal{NS}(A) = \{\vec{x} \mid A\vec{x} = \vec{0}\};$

 \leftarrow

 $2Q$

Again, let A be an $m \times n$ matrix. The *null space* $NS(A)$ of A is $\mathcal{NS}(A) = \{\vec{x} \mid A\vec{x} = \vec{0}\};$

just the solution set for the homogeneous equation $A\vec{x} = \vec{0}$.

 QQ

Again, let A be an $m \times n$ matrix. The *null space* $NS(A)$ of A is

$$
\mathcal{NS}(A) = \{\vec{x} \mid A\vec{x} = \vec{0}\};
$$

just the solution set for the homogeneous equation $A\vec{x} = \vec{0}$. This is a vector subspace of

 QQ
Again, let A be an $m \times n$ matrix. The *null space* $NS(A)$ of A is

$$
\mathcal{NS}(A) = \{\vec{x} \mid A\vec{x} = \vec{0}\};
$$

just the solution set for the homogeneous equation $A\vec{x} = \vec{0}$. This is a vector subspace of \mathbb{R}^n .

 QQ

Again, let A be an $m \times n$ matrix. The *null space* $NS(A)$ of A is

$$
\mathcal{NS}(A) = \{\vec{x} \mid A\vec{x} = \vec{0}\};
$$

Again, let A be an $m \times n$ matrix. The *null space* $NS(A)$ of A is

$$
\mathcal{NS}(A) = \{\vec{x} \mid A\vec{x} = \vec{0}\};
$$

Again, let A be an $m \times n$ matrix. The *null space* $NS(A)$ of A is

$$
\mathcal{NS}(A) = \{\vec{x} \mid A\vec{x} = \vec{0}\};
$$

Again, let A be an $m \times n$ matrix. The *null space* $NS(A)$ of A is

$$
\mathcal{NS}(A) = \{\vec{x} \mid A\vec{x} = \vec{0}\};
$$

 $A=\left[\vec a_1\,\,\vec a_2\,\,\ldots\,\,\vec a_n\right]$ an $m\times n$ matrix and $\mathbb R^n\stackrel{\mathcal{T}}{\to}\mathbb R^m$ is $\mathcal{T}(\vec x)=A\vec x$ $\mathcal{NS}(A) = \{\vec{x} \mid A\vec{x} = \vec{0}\}$ and

 $A=\left[\vec a_1\,\,\vec a_2\,\,\ldots\,\,\vec a_n\right]$ an $m\times n$ matrix and $\mathbb R^n\stackrel{\mathcal{T}}{\to}\mathbb R^m$ is $\mathcal{T}(\vec x)=A\vec x$ $\mathcal{NS}(A) = \{\vec{x} \mid A\vec{x} = \vec{0}\}$ and

K ロ ▶ K (日) → K (日) → K (日) → X (日) → K (日) → K (日) → K (日) → K (日) → 【日 】 → 【日 】

K ロ ▶ K (日) → K (日) → K (日) → X (日) → K (日) → K (日) → K (日) → K (日) → 【日 】 → 【日 】

$$
\mathcal{NS}(A) = \{ \vec{x} \mid A\vec{x} = \vec{0} \} \text{ and}
$$

\n
$$
\mathcal{CS}(A) = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}
$$

\n
$$
= \{ \vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution} \}
$$

\n
$$
= \mathcal{CS}(A) = \mathcal{R}ng(T)
$$

$$
\mathcal{NS}(A) = \{ \vec{x} \mid A\vec{x} = \vec{0} \} \text{ and}
$$

\n
$$
\mathcal{CS}(A) = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}
$$

\n
$$
= \{ \vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution} \}
$$

\n
$$
= \mathcal{CS}(A) = \mathcal{R}ng(T)
$$

$$
\mathcal{NS}(A) = \{ \vec{x} \mid A\vec{x} = \vec{0} \} \text{ and}
$$

\n
$$
\mathcal{CS}(A) = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n \}
$$

\n
$$
= \{ \vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution} \}
$$

\n
$$
= \mathcal{CS}(A) = \mathcal{R}ng(T)
$$

$$
\mathcal{NS}(A) = \{ \vec{x} \mid A\vec{x} = \vec{0} \} \text{ and}
$$

\n
$$
\mathcal{CS}(A) = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n \}
$$

\n
$$
= \{ \vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution} \}
$$

\n
$$
= \mathcal{CS}(A) = \mathcal{R}ng(T)
$$

K ロ ▶ K d @ ▶ K d B → K 로 → C 로 → S Q Q Q

$$
\mathcal{NS}(A) = \{\vec{x} \mid A\vec{x} = \vec{0}\} \text{ and}
$$

\n
$$
\mathcal{CS}(A) = \mathcal{S}\text{pan}\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}
$$

\n
$$
= \{\vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution}\}
$$

\n
$$
= \mathcal{CS}(A) = \mathcal{R}\text{ng}(T)
$$

Find the null space and column space of

$$
A = \begin{bmatrix} 1 & -1 & 1 & 2 \\ 1 & 0 & 1 & 1 \\ 1 & 2 & 1 & -1 \end{bmatrix}
$$

 \leftarrow

 $2Q$

Find the null space and column space of

What should we do now?

Applied Linear Algebra \blacksquare [Subspaces of](#page-0-0) \mathbb{R}^n

Find the null space and column space of

What should we do now? How about row reduc[ing](#page-91-0) A [?](#page-85-0)

Applied Linear Algebra \blacksquare [Subspaces of](#page-0-0) \mathbb{R}^n

 Ω

Recall that a collection $\mathbb {V}$ of vectors (in $\mathbb {R}^n)$ is a *vector subspace* (of $\mathbb {R}^n)$ if and only if

 \leftarrow

British

 $2Q$

Recall that a collection $\mathbb {V}$ of vectors (in $\mathbb {R}^n)$ is a *vector subspace* (of $\mathbb {R}^n)$ if and only if

 \bullet $\vec{0}$ is in \mathbb{V} .

 \leftarrow

 QQQ

Recall that a collection $\mathbb {V}$ of vectors (in $\mathbb {R}^n)$ is a *vector subspace* (of $\mathbb {R}^n)$ if and only if

- \bullet $\vec{0}$ is in \mathbb{V} .
- V closed with respect to vector addition

 QQ

Recall that a collection $\mathbb {V}$ of vectors (in $\mathbb {R}^n)$ is a *vector subspace* (of $\mathbb {R}^n)$ if and only if

- \bullet $\vec{0}$ is in \mathbb{V} .
- V closed with respect to vector addition $(\vec{u}, \vec{v} \text{ in } \mathbb{V} \implies \vec{u} + \vec{v} \text{ in } \mathbb{V})$

 QQ

Recall that a collection $\mathbb {V}$ of vectors (in $\mathbb {R}^n)$ is a *vector subspace* (of $\mathbb {R}^n)$ if and only if

- \bullet $\vec{0}$ is in \mathbb{V} .
- V closed with respect to vector addition (\vec{u}, \vec{v} in $\mathbb{V} \implies \vec{u} + \vec{v}$ in \mathbb{V})
- \bullet V closed with respect to scalar mult

Recall that a collection $\mathbb {V}$ of vectors (in $\mathbb {R}^n)$ is a *vector subspace* (of $\mathbb {R}^n)$ if and only if

- \bullet $\vec{0}$ is in \mathbb{V} .
- V closed with respect to vector addition (\vec{u}, \vec{v} in $\mathbb{V} \implies \vec{u} + \vec{v}$ in \mathbb{V})
- V closed with respect to scalar mult (s scalar, \vec{v} in $\mathbb{V} \implies s\vec{v}$ in \mathbb{V})

Recall that a collection $\mathbb {V}$ of vectors (in $\mathbb {R}^n)$ is a *vector subspace* (of $\mathbb {R}^n)$ if and only if

- \bullet $\vec{0}$ is in \mathbb{V} .
- V closed with respect to vector addition $(\vec{u}, \vec{v} \text{ in } \mathbb{V} \implies \vec{u} + \vec{v} \text{ in } \mathbb{V})$

• V closed with respect to scalar mult (s scalar, \vec{v} in $\mathbb{V} \implies s\vec{v}$ in \mathbb{V}) If V is a vector subspace; $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ in V; s_1, s_2, \ldots, s_p are scalars: then

Recall that a collection $\mathbb {V}$ of vectors (in $\mathbb {R}^n)$ is a *vector subspace* (of $\mathbb {R}^n)$ if and only if

- \bullet $\vec{0}$ is in \mathbb{V} .
- V closed with respect to vector addition $(\vec{u}, \vec{v} \text{ in } \mathbb{V} \implies \vec{u} + \vec{v} \text{ in } \mathbb{V})$

• V closed with respect to scalar mult (s scalar, \vec{v} in $\mathbb{V} \implies s\vec{v}$ in \mathbb{V}) If V is a vector subspace; $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_p}$ in \mathbb{V} ; s_1, s_2, \ldots, s_p are scalars: then $s_1\vec{v}_1,s_2\vec{v}_2,\ldots,s_p\vec{v}_p$ all in $\mathbb {V}$, so

Recall that a collection $\mathbb {V}$ of vectors (in $\mathbb {R}^n)$ is a *vector subspace* (of $\mathbb {R}^n)$ if and only if

- \bullet $\vec{0}$ is in \mathbb{V} .
- V closed with respect to vector addition $(\vec{u}, \vec{v} \text{ in } \mathbb{V} \implies \vec{u} + \vec{v} \text{ in } \mathbb{V})$

• V closed with respect to scalar mult (s scalar, \vec{v} in $\mathbb{V} \implies s\vec{v}$ in \mathbb{V}) If V is a vector subspace; $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ in V; s_1, s_2, \ldots, s_p are scalars: then $s_1\vec{v}_1,s_2\vec{v}_2,\ldots,s_p\vec{v}_p$ all in \mathbb{V} , so $s_1\vec{v}_1 + s_2\vec{v}_2 + \cdots + s_n\vec{v}_p$ is in \mathbb{V} .

Recall that a collection $\mathbb {V}$ of vectors (in $\mathbb {R}^n)$ is a *vector subspace* (of $\mathbb {R}^n)$ if and only if

- \bullet $\vec{0}$ is in \mathbb{V} .
- V closed with respect to vector addition (\vec{u}, \vec{v} in $\mathbb{V} \implies \vec{u} + \vec{v}$ in \mathbb{V})

• V closed with respect to scalar mult (s scalar, \vec{v} in $\mathbb{V} \implies s\vec{v}$ in \mathbb{V}) If V is a vector subspace; $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ in V; s_1, s_2, \ldots, s_p are scalars: then $s_1\vec{v}_1, s_2\vec{v}_2, \ldots, s_p\vec{v}_p$ all in V, so $s_1\vec{v}_1 + s_2\vec{v}_2 + \cdots + s_p\vec{v}_p$ is in V.

Any LC of vectors in a VSS V is a vector in $V!$

Recall that a collection $\mathbb {V}$ of vectors (in $\mathbb {R}^n)$ is a *vector subspace* (of $\mathbb {R}^n)$ if and only if

- \bullet $\vec{0}$ is in \mathbb{V} .
- V closed with respect to vector addition (\vec{u}, \vec{v} in $\mathbb{V} \implies \vec{u} + \vec{v}$ in \mathbb{V})

• V closed with respect to scalar mult (s scalar, \vec{v} in $\mathbb{V} \implies s\vec{v}$ in \mathbb{V}) If V is a vector subspace; $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ in V; s_1, s_2, \ldots, s_p are scalars: then $s_1\vec{v}_1, s_2\vec{v}_2, \ldots, s_p\vec{v}_p$ all in V, so $s_1\vec{v}_1 + s_2\vec{v}_2 + \cdots + s_p\vec{v}_p$ is in V.

Any LC of vectors in a VSS V is a vector in $V!$

