Subspaces of Euclidean Space \mathbb{R}^n

Applied Linear Algebra MATH 5112/6012

Let $\mathbb V$ be a collection of vectors in $\mathbb R^n$. (For example, $\mathbb V$ could be a solution set to some equation, or it could be all the vectors that have third coordinate -7.)

Let $\mathbb V$ be a collection of vectors in $\mathbb R^n$. (For example, $\mathbb V$ could be a solution set to some equation, or it could be all the vectors that have third coordinate -7.)

We say that \mathbb{V} closed with respect to scalar multiplication if and only if whenever \vec{v} is in \mathbb{V} and s is any scalar, then $s\vec{v}$ is also in \mathbb{V} .

Let $\mathbb V$ be a collection of vectors in $\mathbb R^n$. (For example, $\mathbb V$ could be a solution set to some equation, or it could be all the vectors that have third coordinate -7.)

We say that $\mathbb V$ closed with respect to scalar multiplication if and only if whenever $\vec v$ is in $\mathbb V$ and s is any scalar, then $s\vec v$ is also in $\mathbb V$. For example, if $\mathbb V = \mathcal Span\{\vec v\}$ (for some $\vec v$ in $\mathbb R^n$), then $\mathbb V$ is closed with respect to scalar multiplication.

Let $\mathbb V$ be a collection of vectors in $\mathbb R^n$. (For example, $\mathbb V$ could be a solution set to some equation, or it could be all the vectors that have third coordinate -7.)

We say that $\mathbb V$ closed with respect to scalar multiplication if and only if whenever $\vec v$ is in $\mathbb V$ and s is any scalar, then $s\vec v$ is also in $\mathbb V$. For example, if $\mathbb V = \mathcal Span\{\vec v\}$ (for some $\vec v$ in $\mathbb R^n$), then $\mathbb V$ is closed with respect to scalar multiplication. In fact, if $\mathbb V = \mathcal Span\{\vec v_1,\vec v_2,\ldots,\vec v_p\}$ (for any $\vec v_1,\vec v_2,\ldots,\vec v_p$ in $\mathbb R^n$), then $\mathbb V$ is closed with respect to scalar multiplication.

Let $\mathbb V$ be a collection of vectors in $\mathbb R^n$. (For example, $\mathbb V$ could be a solution set to some equation, or it could be all the vectors that have third coordinate -7.)

We say that $\mathbb V$ closed with respect to scalar multiplication if and only if whenever $\vec v$ is in $\mathbb V$ and s is any scalar, then $s\vec v$ is also in $\mathbb V$. For example, if $\mathbb V = \mathcal Span\{\vec v\}$ (for some $\vec v$ in $\mathbb R^n$), then $\mathbb V$ is closed with respect to scalar multiplication. In fact, if $\mathbb V = \mathcal Span\{\vec v_1,\vec v_2,\ldots,\vec v_p\}$ (for any $\vec v_1,\vec v_2,\ldots,\vec v_p$ in $\mathbb R^n$), then $\mathbb V$ is closed with respect to scalar multiplication.

We say that \mathbb{V} closed with respect to vector addition if and only if whenever \vec{u} and \vec{v} are in \mathbb{V} , then $\vec{u} + \vec{v}$ is also in \mathbb{V} .

Let $\mathbb V$ be a collection of vectors in $\mathbb R^n$. (For example, $\mathbb V$ could be a solution set to some equation, or it could be all the vectors that have third coordinate -7.)

We say that $\mathbb V$ closed with respect to scalar multiplication if and only if whenever $\vec v$ is in $\mathbb V$ and s is any scalar, then $s\vec v$ is also in $\mathbb V$. For example, if $\mathbb V = \mathcal Span\{\vec v\}$ (for some $\vec v$ in $\mathbb R^n$), then $\mathbb V$ is closed with respect to scalar multiplication. In fact, if $\mathbb V = \mathcal Span\{\vec v_1,\vec v_2,\ldots,\vec v_p\}$ (for any $\vec v_1,\vec v_2,\ldots,\vec v_p$ in $\mathbb R^n$), then $\mathbb V$ is closed with respect to scalar multiplication.

We say that $\mathbb V$ closed with respect to vector addition if and only if whenever $\vec u$ and $\vec v$ are in $\mathbb V$, then $\vec u + \vec v$ is also in $\mathbb V$. For example, if $\mathbb V = \mathcal Span\{\vec v\}$ (for some $\vec v$ in $\mathbb R^n$), then $\mathbb V$ is closed with respect to vector addition.

Let $\mathbb V$ be a collection of vectors in $\mathbb R^n$. (For example, $\mathbb V$ could be a solution set to some equation, or it could be all the vectors that have third coordinate -7.)

We say that $\mathbb V$ closed with respect to scalar multiplication if and only if whenever $\vec v$ is in $\mathbb V$ and s is any scalar, then $s\vec v$ is also in $\mathbb V$. For example, if $\mathbb V = \mathcal Span\{\vec v\}$ (for some $\vec v$ in $\mathbb R^n$), then $\mathbb V$ is closed with respect to scalar multiplication. In fact, if $\mathbb V = \mathcal Span\{\vec v_1,\vec v_2,\ldots,\vec v_p\}$ (for any $\vec v_1,\vec v_2,\ldots,\vec v_p$ in $\mathbb R^n$), then $\mathbb V$ is closed with respect to scalar multiplication.

We say that $\mathbb V$ closed with respect to vector addition if and only if whenever $\vec u$ and $\vec v$ are in $\mathbb V$, then $\vec u+\vec v$ is also in $\mathbb V$. For example, if $\mathbb V=\mathcal Span\{\vec v\}$ (for some $\vec v$ in $\mathbb R^n$), then $\mathbb V$ is closed with respect to vector addition. In fact, if $\mathbb V=\mathcal Span\{\vec v_1,\vec v_2,\ldots,\vec v_p\}$ (for any $\vec v_1,\vec v_2,\ldots,\vec v_p$ in $\mathbb R^n$), then $\mathbb V$ is closed with respect to vector addition.

Let $\mathbb V$ be a collection of vectors in $\mathbb R^n$. (For example, $\mathbb V$ could be a solution set to some equation, or it could be all the vectors that have third coordinate -7.)

We say that $\mathbb V$ closed with respect to scalar multiplication if and only if whenever $\vec v$ is in $\mathbb V$ and s is any scalar, then $s\vec v$ is also in $\mathbb V$. For example, if $\mathbb V = \mathcal Span\{\vec v\}$ (for some $\vec v$ in $\mathbb R^n$), then $\mathbb V$ is closed with respect to scalar multiplication. In fact, if $\mathbb V = \mathcal Span\{\vec v_1,\vec v_2,\ldots,\vec v_p\}$ (for any $\vec v_1,\vec v_2,\ldots,\vec v_p$ in $\mathbb R^n$), then $\mathbb V$ is closed with respect to scalar multiplication.

We say that \mathbb{V} closed with respect to vector addition if and only if whenever \vec{u} and \vec{v} are in \mathbb{V} , then $\vec{u} + \vec{v}$ is also in \mathbb{V} . For example, if $\mathbb{V} = \mathcal{S}pan\{\vec{v}\}$ (for some \vec{v} in \mathbb{R}^n), then \mathbb{V} is closed with respect to vector addition. In fact, if $\mathbb{V} = \mathcal{S}pan\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ (for any $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$ in \mathbb{R}^n), then \mathbb{V} is closed with respect to vector addition.

We call $\mathbb V$ a *vector subspace* of $\mathbb R^n$ if and only if $\mathbb R^n$ if and only if

Let \mathbb{V} be a collection of vectors in \mathbb{R}^n .

Let $\mathbb V$ be a collection of vectors in $\mathbb R^n$. We call $\mathbb V$ a *vector subspace* of $\mathbb R^n$ if and only if

Let $\mathbb V$ be a collection of vectors in $\mathbb R^n$. We call $\mathbb V$ a *vector subspace* of $\mathbb R^n$ if and only if

• $\vec{0}$ is in \mathbb{V} ,

Let $\mathbb V$ be a collection of vectors in $\mathbb R^n$. We call $\mathbb V$ a *vector subspace* of $\mathbb R^n$ if and only if

- $\vec{0}$ is in \mathbb{V} ,
- V closed with respect to vector addition, and

Let $\mathbb V$ be a collection of vectors in $\mathbb R^n$. We call $\mathbb V$ a *vector subspace* of $\mathbb R^n$ if and only if

- $\vec{0}$ is in \mathbb{V} ,
- V closed with respect to vector addition, and
- \mathbb{V} closed with respect to scalar multiplication.

Let \mathbb{V} be a collection of vectors in \mathbb{R}^n .

- We call \mathbb{V} a *vector subspace* of \mathbb{R}^n if and only if
 - \mathbb{V} closed with respect to vector addition, and
 - V closed with respect to scalar multiplication.

Some simple examples:

 \bullet $\vec{0}$ is in \mathbb{V} ,

Let \mathbb{V} be a collection of vectors in \mathbb{R}^n .

We call \mathbb{V} a *vector subspace* of \mathbb{R}^n if and only if

- $\vec{0}$ is in \mathbb{V} ,
- V closed with respect to vector addition, and
- V closed with respect to scalar multiplication.

Some simple examples:

• $\mathbb{V} = \{\vec{0}\}$ is the *trivial* vector subspace

Let \mathbb{V} be a collection of vectors in \mathbb{R}^n .

We call \mathbb{V} a *vector subspace* of \mathbb{R}^n if and only if

- $\vec{0}$ is in \mathbb{V} ,
- V closed with respect to vector addition, and
- ullet ${\mathbb V}$ closed with respect to scalar multiplication.

Some simple examples:

- ullet $\mathbb{V}=\{ec{0}\}$ is the $\emph{trivial}$ vector subspace
- $ullet \mathbb{V} = \mathbb{R}^n$ is a vector subspace of itself (also kinda *trivial*)

Let \mathbb{V} be a collection of vectors in \mathbb{R}^n .

We call \mathbb{V} a *vector subspace* of \mathbb{R}^n if and only if

- $\vec{0}$ is in \mathbb{V} ,
- V closed with respect to vector addition, and
- ullet ${\mathbb V}$ closed with respect to scalar multiplication.

Some simple examples:

- ullet $\mathbb{V}=\{ec{0}\}$ is the $\emph{trivial}$ vector subspace
- $ullet \mathbb{V} = \mathbb{R}^n$ is a vector subspace of itself (also kinda *trivial*)
- $\mathbb{V} = \mathcal{S}pan\{\vec{v}\}$ (for any \vec{v} in \mathbb{R}^n)

Let \mathbb{V} be a collection of vectors in \mathbb{R}^n .

We call \mathbb{V} a *vector subspace* of \mathbb{R}^n if and only if

- $\vec{0}$ is in \mathbb{V} ,
- V closed with respect to vector addition, and
- V closed with respect to scalar multiplication.

Some simple examples:

- ullet $\mathbb{V}=\{ec{0}\}$ is the $\emph{trivial}$ vector subspace
- ullet $\mathbb{V}=\mathbb{R}^n$ is a vector subspace of itself (also kinda *trivial*)
- $\mathbb{V} = \mathcal{S}pan\{\vec{v}\}$ (for any \vec{v} in \mathbb{R}^n)
- ullet $\mathbb{V}=\mathcal{S}\mathit{pan}\{ec{v}_1,ec{v}_2,\ldots,ec{v}_p\}$ (for any $ec{v}_1,ec{v}_2,\ldots,ec{v}_p$ in \mathbb{R}^n)

Let \mathbb{V} be a collection of vectors in \mathbb{R}^n .

We call \mathbb{V} a *vector subspace* of \mathbb{R}^n if and only if

- $\vec{0}$ is in \mathbb{V} ,
- V closed with respect to vector addition, and
- \mathbb{V} closed with respect to scalar multiplication.

Some simple examples:

- ullet $\mathbb{V}=\{ec{0}\}$ is the $\emph{trivial}$ vector subspace
- ullet $\mathbb{V}=\mathbb{R}^n$ is a vector subspace of itself (also kinda *trivial*)
- $\mathbb{V} = \mathcal{S}pan\{\vec{v}\}$ (for any \vec{v} in \mathbb{R}^n)
- $\mathbb{V} = \mathcal{S} pan\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ (for any $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$ in \mathbb{R}^n)

A simple non-example:

Let \mathbb{V} be a collection of vectors in \mathbb{R}^n .

We call \mathbb{V} a *vector subspace* of \mathbb{R}^n if and only if

- $\vec{0}$ is in \mathbb{V} ,
- ullet ${\mathbb V}$ closed with respect to vector addition, and
- ullet $\mathbb V$ closed with respect to scalar multiplication.

Some simple examples:

- ullet $\mathbb{V}=\{ec{0}\}$ is the $\emph{trivial}$ vector subspace
- $ullet \mathbb{V} = \mathbb{R}^n$ is a vector subspace of itself (also kinda *trivial*)
- $\mathbb{V} = \mathcal{S}pan\{\vec{v}\}$ (for any \vec{v} in \mathbb{R}^n)
- $\mathbb{V} = \mathcal{S}pan\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ (for any $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$ in \mathbb{R}^n)

A simple non-example:

ullet $\mathbb{V}=\left\{ \mathsf{all}\ ec{v}\ \mathsf{in}\ \mathbb{R}^4\ \mathsf{with}\ \mathsf{third}\ \mathsf{coordinate}\ \mathsf{-7}
ight\}$ is not a subspace

Chapter 3, Section 5

For each \mathbb{V} , decide whether or not \mathbb{V} is closed with respect to scalar multiplication and/or closed with respect to vector addition.

For each \mathbb{V} , decide whether or not \mathbb{V} is closed with respect to scalar multiplication and/or closed with respect to vector addition.

$$\mathbb{V} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \mid x + y = 1 \right\}$$

For each $\mathbb V$, decide whether or not $\mathbb V$ is closed with respect to scalar multiplication and/or closed with respect to vector addition.

$$\mathbb{V} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \mid x + y = 1 \right\}$$

Figure: x + y = 1

For each \mathbb{V} , decide whether or not \mathbb{V} is closed with respect to scalar multiplication and/or closed with respect to vector addition.

$$\mathbb{V} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \mid x + y = 1 \right\}$$
 $\vec{0}$ not in \mathbb{V} , so not VSS

Figure: x + y = 1

For each $\mathbb V$, decide whether or not $\mathbb V$ is closed with respect to scalar multiplication and/or closed with respect to vector addition.

$$\mathbb{V} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \mid x + y = 1 \right\}$$

 $\vec{0}$ not in \mathbb{V} , so not VSS

$$\mathbb{V} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \mid xy \ge 0 \right\}$$

For each \mathbb{V} , decide whether or not \mathbb{V} is closed with respect to scalar multiplication and/or closed with respect to vector addition.

$$\mathbb{V} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \mid x + y = 1 \right\}$$
 $\vec{0}$ not in \mathbb{V} , so not VSS

$$\mathbb{V} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \mid xy \ge 0 \right\}$$

Figure: $xy \ge 0$

For each \mathbb{V} , decide whether or not \mathbb{V} is closed with respect to scalar multiplication and/or closed with respect to vector addition.

$$\mathbb{V} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \mid x + y = 1 \right\}$$
 $\vec{0}$ not in \mathbb{V} , so not VSS

$$\mathbb{V} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \mid xy \ge 0 \right\}$$

V not closed wrt vector add

Figure: $xy \ge 0$

For each \mathbb{V} , decide whether or not \mathbb{V} is closed with respect to scalar multiplication and/or closed with respect to vector addition.

$$\mathbb{V} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \mid x + y = 1 \right\}$$

 $\vec{0}$ not in $\mathbb{V},$ so not VSS

$$\mathbb{V} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \mid xy \ge 0 \right\}$$

 $\ensuremath{\mathbb{V}}$ not closed wrt vector add

$$\mathbb{V} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \mid x \ge 0 \text{ and } y \ge 0 \right\}$$

For each \mathbb{V} , decide whether or not \mathbb{V} is closed with respect to scalar multiplication and/or closed with respect to vector addition.

$$\mathbb{V} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \mid x + y = 1 \right\}$$
 $\vec{0}$ not in \mathbb{V} , so not VSS

$$\mathbb{V} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \mid xy \ge 0 \right\}$$

V not closed wrt vector add

$$\mathbb{V} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \mid x \ge 0 \text{ and } y \ge 0 \right\}$$

Figure: $x \ge 0$ and $y \ge 0$

For each \mathbb{V} , decide whether or not \mathbb{V} is closed with respect to scalar multiplication and/or closed with respect to vector addition.

$$\mathbb{V} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \mid x + y = 1 \right\}$$
 $\vec{0}$ not in \mathbb{V} , so not VSS

$$\mathbb{V} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \mid xy \ge 0 \right\}$$

 $\ensuremath{\mathbb{V}}$ not closed wrt vector add

$$\mathbb{V} = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \mid x \ge 0 \text{ and } y \ge 0 \right\}$$

V not closed wrt scalar mult

Figure: $x \ge 0$ and $y \ge 0$

Recall that a collection \mathbb{V} of vectors (in \mathbb{R}^n) is a *vector subspace* (of \mathbb{R}^n) if and only if

Recall that a collection $\mathbb V$ of vectors (in $\mathbb R^n$) is a *vector subspace* (of $\mathbb R^n$) if and only if

• $\vec{0}$ is in \mathbb{V} ,

Recall that a collection $\mathbb V$ of vectors (in $\mathbb R^n$) is a *vector subspace* (of $\mathbb R^n$) if and only if

- \bullet $\vec{0}$ is in \mathbb{V} .
- V closed with respect to vector addition

Recall that a collection $\mathbb V$ of vectors (in $\mathbb R^n$) is a *vector subspace* (of $\mathbb R^n$) if and only if

- \bullet $\vec{0}$ is in \mathbb{V} .
- $\mathbb V$ closed with respect to vector addition $(\vec u, \vec v \text{ in } \mathbb V \implies \vec u + \vec v \text{ in } \mathbb V)$

Recall that a collection $\mathbb V$ of vectors (in $\mathbb R^n$) is a *vector subspace* (of $\mathbb R^n$) if and only if

- \bullet $\vec{0}$ is in \mathbb{V} .
- ullet $\mathbb V$ closed with respect to vector addition $(\vec u, \vec v \text{ in } \mathbb V \implies \vec u + \vec v \text{ in } \mathbb V)$
- V closed with respect to scalar mult

Recall that a collection $\mathbb V$ of vectors (in $\mathbb R^n$) is a *vector subspace* (of $\mathbb R^n$) if and only if

- \bullet $\vec{0}$ is in \mathbb{V} .
- $\mathbb V$ closed with respect to vector addition $(\vec u, \vec v \text{ in } \mathbb V \implies \vec u + \vec v \text{ in } \mathbb V)$
- \mathbb{V} closed with respect to scalar mult (s scalar, \vec{v} in $\mathbb{V} \implies s\vec{v}$ in \mathbb{V})

Recall that a collection $\mathbb V$ of vectors (in $\mathbb R^n$) is a *vector subspace* (of $\mathbb R^n$) if and only if

- $\vec{0}$ is in \mathbb{V} ,
- ullet $\mathbb V$ closed with respect to vector addition (ec u,ec v in $\mathbb V \implies ec u+ec v$ in $\mathbb V)$
- \mathbb{V} closed with respect to scalar mult (s scalar, \vec{v} in $\mathbb{V} \implies s\vec{v}$ in \mathbb{V}) Let $\mathbb{V} = \mathcal{S}pan\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$. Let's show that \mathbb{V} is closed wrt vector addition.

Recall that a collection $\mathbb V$ of vectors (in $\mathbb R^n$) is a *vector subspace* (of $\mathbb R^n$) if and only if

- $\vec{0}$ is in \mathbb{V} ,
- ullet $\mathbb V$ closed with respect to vector addition (ec u, ec v in $\mathbb V \implies ec u + ec v$ in $\mathbb V)$
- ullet $\mathbb V$ closed with respect to scalar mult (s scalar, ec v in $\mathbb V$ \Longrightarrow sec v in $\mathbb V$)

Let $\mathbb{V} = \mathcal{S}pan\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$. Let's show that \mathbb{V} is closed wrt vector addition. Let \vec{u}, \vec{v} be vectors in \mathbb{V} . This means

Recall that a collection $\mathbb V$ of vectors (in $\mathbb R^n$) is a *vector subspace* (of $\mathbb R^n$) if and only if

- $\vec{0}$ is in \mathbb{V} ,
- ullet $\mathbb V$ closed with respect to vector addition $(ec u, ec v \ {\sf in} \ \mathbb V \implies ec u + ec v \ {\sf in} \ \mathbb V)$
- \mathbb{V} closed with respect to scalar mult (s scalar, \vec{v} in $\mathbb{V} \implies s\vec{v}$ in \mathbb{V}) Let $\mathbb{V} = \mathcal{S}pan\{\vec{v_1}, \vec{v_2}, \dots, \vec{v_p}\}$. Let's show that \mathbb{V} is closed wrt vector

Let $\mathbb{V} = \mathcal{S}pan\{v_1, v_2, \dots, v_p\}$. Let s show that \mathbb{V} is closed wrt vect addition. Let \vec{u}, \vec{v} be vectors in \mathbb{V} . This means there are scalars s_1, s_2, \dots, s_p and t_1, t_2, \dots, t_p with

$$\vec{u} = s_1 \vec{v}_1 + \dots + s_p \vec{v}_p$$
 and $\vec{v} = t_1 \vec{v}_1 + \dots + t_p \vec{v}_p$

Recall that a collection $\mathbb V$ of vectors (in $\mathbb R^n$) is a *vector subspace* (of $\mathbb R^n$) if and only if

- $\vec{0}$ is in \mathbb{V} ,
- ullet $\mathbb V$ closed with respect to vector addition (ec u, ec v in $\mathbb V \implies ec u + ec v$ in $\mathbb V)$
- $\mathbb V$ closed with respect to scalar mult (s scalar, $\vec v$ in $\mathbb V$ \Longrightarrow $s\vec v$ in $\mathbb V$)

Let $\mathbb{V} = \mathcal{S}pan\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$. Let's show that \mathbb{V} is closed wrt vector addition. Let \vec{u}, \vec{v} be vectors in \mathbb{V} . This means there are scalars s_1, s_2, \dots, s_p and t_1, t_2, \dots, t_p with

$$\vec{u} = s_1 \vec{v}_1 + \dots + s_p \vec{v}_p$$
 and $\vec{v} = t_1 \vec{v}_1 + \dots + t_p \vec{v}_p$

SO

$$\vec{u} + \vec{v} = (s_1 + t_1)\vec{v}_1 + (s_2 + t_2)\vec{v}_2 + \cdots + (s_p + t_p)\vec{v}_p$$

Recall that a collection $\mathbb V$ of vectors (in $\mathbb R^n$) is a *vector subspace* (of $\mathbb R^n$) if and only if

- $\vec{0}$ is in \mathbb{V} ,
- $\mathbb V$ closed with respect to vector addition $(\vec u, \vec v \text{ in } \mathbb V \implies \vec u + \vec v \text{ in } \mathbb V)$
- \mathbb{V} closed with respect to scalar mult (s scalar, \vec{v} in $\mathbb{V} \implies s\vec{v}$ in \mathbb{V}) Let $\mathbb{V} = \mathcal{S}pan\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$. Let's show that \mathbb{V} is closed wrt vector

addition. Let \vec{u}, \vec{v} be vectors in \mathbb{V} . This means there are scalars s_1, s_2, \ldots, s_p and t_1, t_2, \ldots, t_p with

$$\vec{u} = s_1 \vec{v}_1 + \dots + s_p \vec{v}_p$$
 and $\vec{v} = t_1 \vec{v}_1 + \dots + t_p \vec{v}_p$

SO

$$\vec{u} + \vec{v} = (s_1 + t_1)\vec{v}_1 + (s_2 + t_2)\vec{v}_2 + \dots + (s_p + t_p)\vec{v}_p$$

which is a vector in \mathbb{V} .

Recall that a collection $\mathbb V$ of vectors (in $\mathbb R^n$) is a *vector subspace* (of $\mathbb R^n$) if and only if

- $\vec{0}$ is in \mathbb{V} ,
- $\mathbb V$ closed with respect to vector addition $(\vec u, \vec v \text{ in } \mathbb V \implies \vec u + \vec v \text{ in } \mathbb V)$
- \mathbb{V} closed with respect to scalar mult (s scalar, \vec{v} in $\mathbb{V} \implies s\vec{v}$ in \mathbb{V})
 Let $\mathbb{V} = S$ and \vec{v}_s \vec{v}_s \vec{v}_s Let's show that \mathbb{V} is closed with vector.

Let $\mathbb{V} = \mathcal{S}pan\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$. Let's show that \mathbb{V} is closed wrt vector addition. Let \vec{u}, \vec{v} be vectors in \mathbb{V} . This means there are scalars s_1, s_2, \dots, s_p and t_1, t_2, \dots, t_p with

$$\vec{u} = s_1 \vec{v}_1 + \dots + s_p \vec{v}_p$$
 and $\vec{v} = t_1 \vec{v}_1 + \dots + t_p \vec{v}_p$

SO

$$\vec{u} + \vec{v} = (s_1 + t_1)\vec{v}_1 + (s_2 + t_2)\vec{v}_2 + \dots + (s_p + t_p)\vec{v}_p$$

which is a vector in \mathbb{V} .

Homework: Show that V is closed wrt scalar multiplication.

Just saw that any $\mathbb{V} = \mathcal{S}pan\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ is both closed wrt vector addition and closed wrt scalar multiplication.

Just saw that any $\mathbb{V} = \mathcal{S}pan\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ is both closed wrt vector addition and closed wrt scalar multiplication.

Example (Basic Vector SubSpace)

For any $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$ in \mathbb{R}^n , $Span\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ is a vector subspace.

Just saw that any $\mathbb{V} = Span\{\vec{v_1}, \vec{v_2}, \dots, \vec{v_p}\}$ is both closed wrt vector addition and closed wrt scalar multiplication.

Example (Basic Vector SubSpace)

For any $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$ in \mathbb{R}^n , $\mathcal{S}pan\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ is a vector subspace.

In fact, every vector subspace can be expressed this way!

Just saw that any $\mathbb{V} = \mathcal{S}pan\{\vec{v_1}, \vec{v_2}, \dots, \vec{v_p}\}$ is both closed wrt vector addition and closed wrt scalar multiplication.

Example (Basic Vector SubSpace)

For any $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$ in \mathbb{R}^n , $Span\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ is a vector subspace.

In fact, every vector subspace can be expressed this way!

Example (Column Space of a Matrix)

The column space CS(A) of a matrix A is the span of the columns of A.

Just saw that any $\mathbb{V} = Span\{\vec{v_1}, \vec{v_2}, \dots, \vec{v_p}\}$ is both closed wrt vector addition and closed wrt scalar multiplication.

Example (Basic Vector SubSpace)

For any $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$ in \mathbb{R}^n , $Span\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ is a vector subspace.

In fact, every vector subspace can be expressed this way!

Example (Column Space of a Matrix)

The column space CS(A) of a matrix A is the span of the columns of A. Thus is A is an $m \times n$ matrix, then CS(A) is a VSS of

Just saw that any $\mathbb{V} = Span\{\vec{v_1}, \vec{v_2}, \dots, \vec{v_p}\}$ is both closed wrt vector addition and closed wrt scalar multiplication.

Example (Basic Vector SubSpace)

For any $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$ in \mathbb{R}^n , $\mathcal{S}pan\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ is a vector subspace.

In fact, every vector subspace can be expressed this way!

Example (Column Space of a Matrix)

The column space CS(A) of a matrix A is the span of the columns of A. Thus is A is an $m \times n$ matrix, then CS(A) is a VSS of \mathbb{R}^m .

Just saw that any $\mathbb{V} = Span\{\vec{v_1}, \vec{v_2}, \dots, \vec{v_p}\}$ is both closed wrt vector addition and closed wrt scalar multiplication.

Example (Basic Vector SubSpace)

For any $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$ in \mathbb{R}^n , $Span\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ is a vector subspace.

In fact, every vector subspace can be expressed this way!

Example (Column Space of a Matrix)

The column space CS(A) of a matrix A is the span of the columns of A. Thus is A is an $m \times n$ matrix, then CS(A) is a VSS of \mathbb{R}^m .

If
$$A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \dots & \vec{a}_n \end{bmatrix}$$
, then $CS(A) = Span\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$.

Let $A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \dots \ \vec{a}_n \end{bmatrix}$ be an $m \times n$ matrix; so,

Let $A = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \dots & \vec{a}_n \end{bmatrix}$ be an $m \times n$ matrix; so, each \vec{a}_j is in

Let $A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \dots \ \vec{a}_n \end{bmatrix}$ be an $m \times n$ matrix; so, each \vec{a}_j is in \mathbb{R}^m .

Let $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \dots & \vec{a_n} \end{bmatrix}$ be an $m \times n$ matrix; so, each $\vec{a_j}$ is in \mathbb{R}^m .

The column space CS(A) of A is the span of the columns of A, i.e.,

Let $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \dots & \vec{a_n} \end{bmatrix}$ be an $m \times n$ matrix; so, each $\vec{a_j}$ is in \mathbb{R}^m .

The column space CS(A) of A is the span of the columns of A, i.e., $CS(A) = Span\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}.$

Let $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \dots & \vec{a_n} \end{bmatrix}$ be an $m \times n$ matrix; so, each $\vec{a_j}$ is in \mathbb{R}^m .

The column space CS(A) of A is the span of the columns of A, i.e., $CS(A) = Span\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}.$

Three Ways to View CS(A)

Let $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \dots & \vec{a_n} \end{bmatrix}$ be an $m \times n$ matrix; so, each $\vec{a_j}$ is in \mathbb{R}^m .

The column space CS(A) of A is the span of the columns of A, i.e., $CS(A) = Span\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}.$

Three Ways to View CS(A)

•
$$CS(A) = Span\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$$

Let $A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \dots \ \vec{a}_n \end{bmatrix}$ be an $m \times n$ matrix; so, each \vec{a}_j is in \mathbb{R}^m .

The column space CS(A) of A is the span of the columns of A, i.e., $CS(A) = Span\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}.$

Three Ways to View CS(A)

- $\mathcal{CS}(A) = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$
- $\mathcal{CS}(A) = \{\vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution}\}$

Let $A = \begin{bmatrix} \vec{a_1} & \vec{a_2} & \dots & \vec{a_n} \end{bmatrix}$ be an $m \times n$ matrix; so, each $\vec{a_j}$ is in \mathbb{R}^m .

The column space CS(A) of A is the span of the columns of A, i.e., $CS(A) = Span\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$.

Three Ways to View $\mathcal{CS}(A)$

- $\mathcal{CS}(A) = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$
- $\mathcal{CS}(A) = \{\vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution}\}$
- CS(A) = Rng(T) where $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$

- $\mathcal{CS}(A) = \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$
- $\mathcal{CS}(A) = \{\vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution}\}$
- CS(A) = Rng(T) where $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$

- $CS(A) = Span\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$
- $\mathcal{CS}(A) = \{\vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution}\}$
- CS(A) = Rng(T) where $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$

- $CS(A) = Span\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$
- $\mathcal{CS}(A) = \{\vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution}\}$
- CS(A) = Rng(T) where $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$

- $CS(A) = Span\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$
- $\mathcal{CS}(A) = \{\vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution}\}$
- CS(A) = Rng(T) where $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$

- $CS(A) = Span\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$
- $\mathcal{CS}(A) = \{\vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution}\}$
- $\mathcal{CS}(A) = \mathcal{R}ng(T)$ where $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$

- $CS(A) = Span\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$
- $\mathcal{CS}(A) = \{\vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution}\}$
- $\mathcal{CS}(A) = \mathcal{R}ng(T)$ where $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$

- $CS(A) = Span\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$
- $\mathcal{CS}(A) = \{\vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution}\}$
- $\mathcal{CS}(A) = \mathcal{R}ng(T)$ where $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$

Again, let A be an $m \times n$ matrix.

Again, let A be an $m \times n$ matrix. The null space $\mathcal{NS}(A)$ of A is

Again, let A be an $m \times n$ matrix. The null space $\mathcal{NS}(A)$ of A is

$$\mathcal{NS}(A) = \{\vec{x} \mid A\vec{x} = \vec{0}\};$$

Again, let A be an $m \times n$ matrix. The null space $\mathcal{NS}(A)$ of A is

$$\mathcal{NS}(A) = \{\vec{x} \mid A\vec{x} = \vec{0}\};$$

just the solution set for the homogeneous equation $A\vec{x} = \vec{0}$.

Again, let A be an $m \times n$ matrix. The null space $\mathcal{NS}(A)$ of A is

$$\mathcal{NS}(A) = \{\vec{x} \mid A\vec{x} = \vec{0}\};$$

just the solution set for the homogeneous equation $A\vec{x} = \vec{0}$. This is a vector subspace of

Again, let A be an $m \times n$ matrix. The null space $\mathcal{NS}(A)$ of A is

$$\mathcal{NS}(A) = \{\vec{x} \mid A\vec{x} = \vec{0}\};$$

Again, let A be an $m \times n$ matrix. The null space $\mathcal{NS}(A)$ of A is

$$\mathcal{NS}(A) = \{\vec{x} \mid A\vec{x} = \vec{0}\};$$

Again, let A be an $m \times n$ matrix. The null space $\mathcal{NS}(A)$ of A is

$$\mathcal{NS}(A) = \{\vec{x} \mid A\vec{x} = \vec{0}\};$$

Again, let A be an $m \times n$ matrix. The null space $\mathcal{NS}(A)$ of A is

$$\mathcal{NS}(A) = \{\vec{x} \mid A\vec{x} = \vec{0}\};$$

Again, let A be an $m \times n$ matrix. The null space $\mathcal{NS}(A)$ of A is

$$\mathcal{NS}(A) = \{\vec{x} \mid A\vec{x} = \vec{0}\};$$

$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \dots \ \vec{a}_n \end{bmatrix}$$
 an $m \times n$ matrix and $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$

$$\mathcal{NS}(A) = \{\vec{x} \mid A\vec{x} = \vec{0}\}$$
 and

$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \dots \ \vec{a}_n \end{bmatrix}$$
 an $m \times n$ matrix and $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$

 $\mathcal{NS}(A) = \{\vec{x} \mid A\vec{x} = \vec{0}\}$ and

$$\vec{y} = T(\vec{x})$$

$$\vec{y} = A\vec{x}$$

$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \dots \ \vec{a}_n \end{bmatrix}$$
 an $m \times n$ matrix and $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$
$$\mathcal{NS}(A) = \{ \vec{x} \mid A\vec{x} = \vec{0} \} \quad \text{and}$$

$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \dots \ \vec{a}_n \end{bmatrix}$$
 an $m \times n$ matrix and $\mathbb{R}^n \xrightarrow{\mathcal{T}} \mathbb{R}^m$ is $\mathcal{T}(\vec{x}) = A\vec{x}$
$$\mathcal{NS}(A) = \{ \vec{x} \mid A\vec{x} = \vec{0} \} \quad \text{and}$$

$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \dots \ \vec{a}_n \end{bmatrix}$$
 an $m \times n$ matrix and $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$

$$\begin{split} \mathcal{NS}(A) &= \{\vec{x} \mid A\vec{x} = \vec{0}\} \quad \text{and} \\ \mathcal{CS}(A) &= \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\} \\ &= \{\vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution}\} \\ &= \mathcal{CS}(A) = \mathcal{R}ng(T) \end{split}$$

$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \dots \ \vec{a}_n \end{bmatrix}$$
 an $m \times n$ matrix and $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$

$$\begin{split} \mathcal{NS}(A) &= \{\vec{x} \mid A\vec{x} = \vec{0}\} \quad \text{and} \\ \mathcal{CS}(A) &= \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\} \\ &= \{\vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution}\} \\ &= \mathcal{CS}(A) = \mathcal{R}ng(T) \end{split}$$

$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \dots \ \vec{a}_n \end{bmatrix}$$
 an $m \times n$ matrix and $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$

$$\begin{split} \mathcal{NS}(A) &= \{\vec{x} \mid A\vec{x} = \vec{0}\} \quad \text{and} \\ \mathcal{CS}(A) &= \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\} \\ &= \{\vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution}\} \\ &= \mathcal{CS}(A) = \mathcal{R}ng(T) \end{split}$$

$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \dots \ \vec{a}_n \end{bmatrix}$$
 an $m \times n$ matrix and $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$

$$\begin{split} \mathcal{NS}(A) &= \{\vec{x} \mid A\vec{x} = \vec{0}\} \quad \text{and} \\ \mathcal{CS}(A) &= \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\} \\ &= \{\vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution}\} \\ &= \mathcal{CS}(A) = \mathcal{R}ng(T) \end{split}$$

$$A = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \dots \ \vec{a}_n \end{bmatrix}$$
 an $m \times n$ matrix and $\mathbb{R}^n \xrightarrow{T} \mathbb{R}^m$ is $T(\vec{x}) = A\vec{x}$

$$\begin{split} \mathcal{NS}(A) &= \{\vec{x} \mid A\vec{x} = \vec{0}\} \quad \text{and} \\ \mathcal{CS}(A) &= \mathcal{S}pan\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\} \\ &= \{\vec{b} \text{ in } \mathbb{R}^m \mid A\vec{x} = \vec{b} \text{ has a solution}\} \\ &= \mathcal{CS}(A) = \mathcal{R}ng(T) \end{split}$$

$$A = \begin{bmatrix} 1 & -1 & 1 & 2 \\ 1 & 0 & 1 & 1 \\ 1 & 2 & 1 & -1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -1 & 1 & 2 \\ 1 & 0 & 1 & 1 \\ 1 & 2 & 1 & -1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -1 & 1 & 2 \\ 1 & 0 & 1 & 1 \\ 1 & 2 & 1 & -1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -1 & 1 & 2 \\ 1 & 0 & 1 & 1 \\ 1 & 2 & 1 & -1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -1 & 1 & 2 \\ 1 & 0 & 1 & 1 \\ 1 & 2 & 1 & -1 \end{bmatrix}$$

Find the null space and column space of

$$A = \begin{bmatrix} 1 & -1 & 1 & 2 \\ 1 & 0 & 1 & 1 \\ 1 & 2 & 1 & -1 \end{bmatrix}$$

What should we do now?

Find the null space and column space of

$$A = \begin{bmatrix} 1 & -1 & 1 & 2 \\ 1 & 0 & 1 & 1 \\ 1 & 2 & 1 & -1 \end{bmatrix}$$

What should we do now? How about row reducing A?

Recall that a collection $\mathbb V$ of vectors (in $\mathbb R^n$) is a *vector subspace* (of $\mathbb R^n$) if and only if

• $\vec{0}$ is in \mathbb{V} ,

- $\vec{0}$ is in \mathbb{V} ,
- V closed with respect to vector addition

- $\vec{0}$ is in \mathbb{V} ,
- \mathbb{V} closed with respect to vector addition $(\vec{u}, \vec{v} \text{ in } \mathbb{V} \implies \vec{u} + \vec{v} \text{ in } \mathbb{V})$

- $\vec{0}$ is in \mathbb{V} ,
- $\mathbb V$ closed with respect to vector addition $(\vec u, \vec v \text{ in } \mathbb V \implies \vec u + \vec v \text{ in } \mathbb V)$
- V closed with respect to scalar mult

- $\vec{0}$ is in \mathbb{V} .
- \mathbb{V} closed with respect to vector addition $(\vec{u}, \vec{v} \text{ in } \mathbb{V} \implies \vec{u} + \vec{v} \text{ in } \mathbb{V})$
- ullet ${\mathbb V}$ closed with respect to scalar mult (s scalar, ec v in ${\mathbb V}$ \Longrightarrow sec v in ${\mathbb V}$)

- $\vec{0}$ is in \mathbb{V} ,
- $\mathbb V$ closed with respect to vector addition $(\vec u, \vec v \text{ in } \mathbb V \implies \vec u + \vec v \text{ in } \mathbb V)$
- ullet ${\mathbb V}$ closed with respect to scalar mult (s scalar, ec v in ${\mathbb V}$ \Longrightarrow sec v in ${\mathbb V}$)
- If $\mathbb V$ is a vector subspace; $\vec{v_1},\vec{v_2},\dots,\vec{v_p}$ in $\mathbb V$; s_1,s_2,\dots,s_p are scalars: then

Recall that a collection $\mathbb V$ of vectors (in $\mathbb R^n$) is a *vector subspace* (of $\mathbb R^n$) if and only if

- $\vec{0}$ is in \mathbb{V} ,
- ullet $\mathbb V$ closed with respect to vector addition (ec u,ec v in $\mathbb V \implies ec u+ec v$ in $\mathbb V)$
- ullet ${\mathbb V}$ closed with respect to scalar mult (s scalar, ec v in ${\mathbb V}$ \Longrightarrow sec v in ${\mathbb V}$)

If $\mathbb V$ is a vector subspace; $\vec{v_1},\vec{v_2},\ldots,\vec{v_p}$ in $\mathbb V$; s_1,s_2,\ldots,s_p are scalars: then $s_1\vec{v_1},s_2\vec{v_2},\ldots,s_p\vec{v_p}$ all in $\mathbb V$, so

Recall that a collection $\mathbb V$ of vectors (in $\mathbb R^n$) is a *vector subspace* (of $\mathbb R^n$) if and only if

- $\vec{0}$ is in \mathbb{V} ,
- ullet $\mathbb V$ closed with respect to vector addition (ec u,ec v in $\mathbb V \implies ec u+ec v$ in $\mathbb V)$
- ullet ${\mathbb V}$ closed with respect to scalar mult (s scalar, ec v in ${\mathbb V}$ \Longrightarrow sec v in ${\mathbb V}$)

If $\mathbb V$ is a vector subspace; $\vec{v_1},\vec{v_2},\ldots,\vec{v_p}$ in $\mathbb V$; s_1,s_2,\ldots,s_p are scalars: then $s_1\vec{v_1},s_2\vec{v_2},\ldots,s_p\vec{v_p}$ all in $\mathbb V$, so $s_1\vec{v_1}+s_2\vec{v_2}+\cdots+s_p\vec{v_p}$ is in $\mathbb V$.

Recall that a collection $\mathbb V$ of vectors (in $\mathbb R^n$) is a *vector subspace* (of $\mathbb R^n$) if and only if

- $\vec{0}$ is in \mathbb{V} ,
- ullet $\mathbb V$ closed with respect to vector addition (ec u,ec v in $\mathbb V \implies ec u+ec v$ in $\mathbb V)$
- ullet ${\mathbb V}$ closed with respect to scalar mult (s scalar, ec v in ${\mathbb V}$ \Longrightarrow sec v in ${\mathbb V}$)

If $\mathbb V$ is a vector subspace; $\vec{v_1},\vec{v_2},\ldots,\vec{v_p}$ in $\mathbb V$; s_1,s_2,\ldots,s_p are scalars: then $s_1\vec{v_1},s_2\vec{v_2},\ldots,s_p\vec{v_p}$ all in $\mathbb V$, so $s_1\vec{v_1}+s_2\vec{v_2}+\cdots+s_p\vec{v_p}$ is in $\mathbb V$.

Any LC of vectors in a VSS V is a vector in V!

Recall that a collection $\mathbb V$ of vectors (in $\mathbb R^n$) is a *vector subspace* (of $\mathbb R^n$) if and only if

- $\vec{0}$ is in \mathbb{V} .
- $\mathbb V$ closed with respect to vector addition $(\vec u, \vec v \text{ in } \mathbb V \implies \vec u + \vec v \text{ in } \mathbb V)$
- ullet ${\mathbb V}$ closed with respect to scalar mult (s scalar, ec v in ${\mathbb V}$ \Longrightarrow sec v in ${\mathbb V}$)

If $\mathbb V$ is a vector subspace; $\vec{v_1},\vec{v_2},\ldots,\vec{v_p}$ in $\mathbb V$; s_1,s_2,\ldots,s_p are scalars: then $s_1\vec{v_1},s_2\vec{v_2},\ldots,s_p\vec{v_p}$ all in $\mathbb V$, so $s_1\vec{v_1}+s_2\vec{v_2}+\cdots+s_p\vec{v_p}$ is in $\mathbb V$.

Any LC of vectors in a VSS V is a vector in V!

Basic Fact about Vector SubSpaces

Let \mathbb{V} be a vector subspace. Suppose $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$ are in \mathbb{V} . Then $Span\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p\}$ lies in \mathbb{V} .