Matrix Arithmetic

Applied Linear Algebra MATH 5112/6012

(日) (同) (三) (三)

Suppose A is the $m \times n$ matrix A =

a ₁₁	a ₁₂		a_{1j}		a _{1n}
a ₂₁	a ₂₂		a _{2j}		a _{2n}
÷	÷	÷	÷	÷	÷
a _{i1}	a _{i2}		a _{ij}		a _{in}
÷	÷	÷	÷	÷	÷
a_{m1}	a _{m2}		a _{mj}		a _{mn}

(日) (同) (三) (三)

Suppose A is the
$$m \times n$$
 matrix $A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2j} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mj} & \dots & a_{mn} \end{bmatrix}$

We can express this by writing $A = [a_{ij}]$; here $1 \le i \le m$ and $1 \le j \le n$.

3

Suppose *A* is the *m* × *n* matrix *A* =
$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2j} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mj} & \dots & a_{mn} \end{bmatrix}$$

We can express this by writing $A = [a_{ij}]$; here $1 \le i \le m$ and $1 \le j \le n$.

Alternatively, we write $[A]_{ij} = a_{ij}$ to indicate that a_{ij} is the entry of A in the *i*th row and *j*th column;

Suppose *A* is the *m* × *n* matrix *A* =
$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2j} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mj} & \dots & a_{mn} \end{bmatrix}$$

We can express this by writing $A = [a_{ij}]$; here $1 \le i \le m$ and $1 \le j \le n$.

Alternatively, we write $[A]_{ij} = a_{ij}$ to indicate that a_{ij} is the entry of A in the *i*th row and *j*th column; more briefly, a_{ij} is the *i*, *j* entry of A.

A matrix A can be multiplied by any scalar s to get a new matrix sA.

글 🖌 🖌 글 🕨

< □ > < /□ > <</p>

A matrix A can be multiplied by any scalar s to get a new matrix sA. Here sA is obtained by multiplying every entry of A by s.

ヨト イヨト

< □ > < /□ > <</p>

A matrix A can be multiplied by any scalar s to get a new matrix sA. Here sA is obtained by multiplying every entry of A by s.

Thus if $A = [a_{ij}]$, then $sA = [s a_{ij}]$.

< □ > < /□ > <</p>

A matrix A can be multiplied by any scalar s to get a new matrix sA. Here sA is obtained by multiplying every entry of A by s.

Thus if $A = [a_{ij}]$, then $sA = [s a_{ij}]$.

Alternatively, $[sA]_{ij} = s[A]_{ij}$.

(日) (同) (日) (日) (日)

Any two matrices of the same dimensions can be added, entry by entry.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Any two matrices of the same dimensions can be added, entry by entry. Let A and B both be $m \times n$ matices. Then A + B is the $m \times n$ matix with

Image: A matrix and a matrix

Any two matrices of the same dimensions can be added, entry by entry.

Let A and B both be $m \times n$ matices. Then A + B is the $m \times n$ matix with $[A + B]_{ij} = [A]_{ij} + [B]_{ij}$.

(日)

Any two matrices of the same dimensions can be added, entry by entry.

Let A and B both be $m \times n$ matices. Then A + B is the $m \times n$ matix with $[A + B]_{ij} = [A]_{ij} + [B]_{ij}$.

That is, if $A = [a_{ij}]$ and $B = [b_{ij}]$, then $A + B = [a_{ij} + b_{ij}]$.

< ロ > < 同 > < 三 > < 三 > < 三 > <

$$2\begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 1 \end{bmatrix} - \begin{bmatrix} 2 & 5 & 5 \\ -3 & 0 & 2 \end{bmatrix}$$

臣

$$2\begin{bmatrix}1 & 2 & 3\\0 & -1 & 1\end{bmatrix} - \begin{bmatrix}2 & 5 & 5\\-3 & 0 & 2\end{bmatrix} = \begin{bmatrix}2 & 4 & 6\\0 & -2 & 2\end{bmatrix} + \begin{bmatrix}-2 & -5 & -5\\3 & 0 & -2\end{bmatrix}$$

臣

$$2\begin{bmatrix}1 & 2 & 3\\0 & -1 & 1\end{bmatrix} - \begin{bmatrix}2 & 5 & 5\\-3 & 0 & 2\end{bmatrix} = \begin{bmatrix}2 & 4 & 6\\0 & -2 & 2\end{bmatrix} + \begin{bmatrix}-2 & -5 & -5\\3 & 0 & -2\end{bmatrix}$$
$$= \begin{bmatrix}2-2 & 4-5 & 6-5\\0+3 & -2 & 2-2\end{bmatrix}$$

臣

$$2\begin{bmatrix}1 & 2 & 3\\0 & -1 & 1\end{bmatrix} - \begin{bmatrix}2 & 5 & 5\\-3 & 0 & 2\end{bmatrix} = \begin{bmatrix}2 & 4 & 6\\0 & -2 & 2\end{bmatrix} + \begin{bmatrix}-2 & -5 & -5\\3 & 0 & -2\end{bmatrix}$$
$$= \begin{bmatrix}2-2 & 4-5 & 6-5\\0+3 & -2 & 2-2\end{bmatrix} = \begin{bmatrix}0 & -1 & 1\\3 & -2 & 0\end{bmatrix}.$$

臣

The *transpose* A^{T} of a matrix A is given by "reflecting A across its main diagonal".

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The transpose A^{T} of a matrix A is given by "reflecting A across its main diagonal". The rows (columns) of A become the columns (rows) of A^{T} .

The transpose A^{T} of a matrix A is given by "reflecting A across its main diagonal". The rows (columns) of A become the columns (rows) of A^{T} .

More precisely, $[A^T]_{ij} = [A]_{ji}$;

The transpose A^{T} of a matrix A is given by "reflecting A across its main diagonal". The rows (columns) of A become the columns (rows) of A^{T} .

More precisely, $[A^{\mathsf{T}}]_{ij} = [A]_{ji}$; equivalently, if $A = [a_{ij}]$, then

The transpose A^{T} of a matrix A is given by "reflecting A across its main diagonal". The rows (columns) of A become the columns (rows) of A^{T} .

More precisely, $[A^{\mathsf{T}}]_{ij} = [A]_{ji}$; equivalently, if $A = [a_{ij}]$, then $A^{\mathsf{T}} = [a_{ji}]$.

The transpose A^{T} of a matrix A is given by "reflecting A across its main diagonal". The rows (columns) of A become the columns (rows) of A^{T} .

More precisely, $[A^{\mathsf{T}}]_{ij} = [A]_{ji}$; equivalently, if $A = [a_{ij}]$, then $A^{\mathsf{T}} = [a_{ji}]$. For example,

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}'$$

The transpose A^{T} of a matrix A is given by "reflecting A across its main diagonal". The rows (columns) of A become the columns (rows) of A^{T} .

More precisely, $[A^{\mathsf{T}}]_{ij} = [A]_{ji}$; equivalently, if $A = [a_{ij}]$, then $A^{\mathsf{T}} = [a_{ji}]$. For example,

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}^{T} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

The transpose A^{T} of a matrix A is given by "reflecting A across its main diagonal". The rows (columns) of A become the columns (rows) of A^{T} .

More precisely, $[A^{\mathsf{T}}]_{ij} = [A]_{ji}$; equivalently, if $A = [a_{ij}]$, then $A^{\mathsf{T}} = [a_{ji}]$. For example,

$$egin{bmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \end{bmatrix}^{T} = egin{bmatrix} 1 & 4 \ 2 & 5 \ 3 & 6 \end{bmatrix}$$

If
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
, then $\vec{x}^{\mathsf{T}} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}$.

The transpose A^{T} of a matrix A is given by "reflecting A across its main diagonal". The rows (columns) of A become the columns (rows) of A^{T} .

More precisely, $[A^{\mathsf{T}}]_{ij} = [A]_{ji}$; equivalently, if $A = [a_{ij}]$, then $A^{\mathsf{T}} = [a_{ji}]$. For example,

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}^{T} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$

If
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
, then $\vec{x}^{\mathsf{T}} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}$.

If A is square and $A^{T} = A$, then A is called a symmetric matrix.

Recall that when A is an $m \times n$ matrix and \vec{x} a vector in \mathbb{R}^n ,

$$A\vec{x} = x_1\vec{a}_1 + x_2\vec{a}_2 + \cdots + x_n\vec{a}_n.$$

where \vec{a}_j is the j^{th} column of A.

Image: Image:

Recall that when A is an $m \times n$ matrix and \vec{x} a vector in \mathbb{R}^n ,

$$A\vec{x} = x_1\vec{a}_1 + x_2\vec{a}_2 + \cdots + x_n\vec{a}_n.$$

where \vec{a}_j is the j^{th} column of A. Note that the number of columns in A, n, must equal the number of rows (coordinates) in \vec{x} .

Recall that when A is an $m \times n$ matrix and \vec{x} a vector in \mathbb{R}^n ,

$$A\vec{x} = x_1\vec{a}_1 + x_2\vec{a}_2 + \cdots + x_n\vec{a}_n.$$

where \vec{a}_j is the j^{th} column of A. Note that the number of columns in A, n, must equal the number of rows (coordinates) in \vec{x} .

Now we describe the general matrix product $A \cdot B$.

Recall that when A is an $m \times n$ matrix and \vec{x} a vector in \mathbb{R}^n ,

$$A\vec{x} = x_1\vec{a}_1 + x_2\vec{a}_2 + \cdots + x_n\vec{a}_n.$$

where \vec{a}_j is the j^{th} column of A. Note that the number of columns in A, n, must equal the number of rows (coordinates) in \vec{x} .

Now we describe the general matrix product $A \cdot B$.

Caution: AB is not defined for all pairs of two matrices.

Recall that when A is an $m \times n$ matrix and \vec{x} a vector in \mathbb{R}^n ,

$$A\vec{x} = x_1\vec{a}_1 + x_2\vec{a}_2 + \cdots + x_n\vec{a}_n.$$

where \vec{a}_j is the j^{th} column of A. Note that the number of columns in A, n, must equal the number of rows (coordinates) in \vec{x} .

Now we describe the general matrix product $A \cdot B$.

Caution: AB is not defined for all pairs of two matrices.

The matrix product AB is only defined when

the # of columns of *A* equals the # of rows of *B*.

Suppose **a** is the row vector (i.e., a $1 \times n$ matrix)

$$\mathbf{a} = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix}$$

 \vec{b} is the column vector (i.e., an $n \times 1$ matrix) $\vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$.

and

Image: A matrix and a matrix

Suppose **a** is the row vector (i.e., a $1 \times n$ matrix)

$$\mathbf{a} = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix}$$

and \vec{b} is the column vector (i.e., an $n \times 1$ matrix) $\vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ \vdots \end{bmatrix}$.

The product $\mathbf{a} \vec{b}$ is defined by

Suppose **a** is the row vector (i.e., a $1 \times n$ matrix)

$$\mathbf{a} = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix}$$

and \vec{b} is the column vector (i.e., an $n \times 1$ matrix) $\vec{b} = \begin{vmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{vmatrix}$.

The product $\mathbf{a} \vec{b}$ is defined by

$$\mathbf{a} \, \vec{b} = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} = a_1 b_1 + a_2 b_2 + \dots + a_n b_n = \sum_{k=1}^n a_k b_k.$$

Suppose **a** is the row vector (i.e., a $1 \times n$ matrix)

$$\mathbf{a} = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix}$$

and \vec{b} is the column vector (i.e., an $n \times 1$ matrix) $\vec{b} = \begin{vmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{vmatrix}$.

The product $\mathbf{a} \vec{b}$ is defined by

$$\mathbf{a}\,\vec{b} = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} = a_1b_1 + a_2b_2 + \dots + a_nb_n = \sum_{k=1}^n a_kb_k.$$

This agrees with our definition of $A\vec{x}$, right?

Applied Linear Algebra

Rows and Columns of a Matrix

Let A be an $m \times n$ matrix, say $A = \begin{bmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{i1} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{m1} & & a_{mj} & \dots & a_{mn} \end{bmatrix}$.
Rows and Columns of a Matrix

Let A be an $m \times n$ matrix, say $A = \begin{bmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{i1} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{m1} & & a_{mj} & \dots & a_{mn} \end{bmatrix}$.

The j^{th} column of A is the vector

$$\mathsf{Col}_j(A) = egin{bmatrix} a_{1j} \ a_{2j} \ dots \ a_{mj} \end{bmatrix}; \quad \mathsf{here} \ 1 \leq j \leq n.$$

Rows and Columns of a Matrix

Let A be an $m \times n$ matrix, say $A = \begin{bmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{i1} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{m1} & & a_{mj} & \dots & a_{mn} \end{bmatrix}$.

The j^{th} column of A is the vector

$$\operatorname{Col}_{j}(A) = egin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix}; \quad ext{here } 1 \leq j \leq n.$$

The i^{th} row of A is the row vector

$$\operatorname{Row}_i(A) = \begin{bmatrix} a_{i1} & a_{i2} & \dots & a_{in} \end{bmatrix}$$
; here $1 \le i \le m$.

Caution: AB is not defined for all pairs of two matrices.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Caution: AB is not defined for all pairs of two matrices.

The matrix product AB is only defined when

the # of columns of *A* equals the # of rows of *B*.

Caution: AB is not defined for all pairs of two matrices.

The matrix product AB is only defined when

the # of columns of *A* equals the # of rows of *B*.

Let A be an $m \times n$ matrix, and B be an $n \times p$ matrix.

Caution: AB is not defined for all pairs of two matrices.

The matrix product *AB* is only defined when

the # of columns of *A* equals the # of rows of *B*.

Let A be an $m \times n$ matrix, and B be an $n \times p$ matrix.

The *i*, *j* entry of *AB* is simply $|[AB]_{ij} = \operatorname{Row}_i(A) \operatorname{Col}_j(B)|$.

Caution: AB is not defined for all pairs of two matrices.

The matrix product AB is only defined when

the # of columns of *A* equals the # of rows of *B*.

Let A be an $m \times n$ matrix, and B be an $n \times p$ matrix.

The *i*, *j* entry of *AB* is simply $[AB]_{ij} = \operatorname{Row}_i(A) \operatorname{Col}_j(B)$. Here $1 \le i \le m$ and $1 \le j \le p$, so

Caution: AB is not defined for all pairs of two matrices.

The matrix product AB is only defined when

the # of columns of *A* equals the # of rows of *B*.

Let A be an $m \times n$ matrix, and B be an $n \times p$ matrix.

The *i*, *j* entry of *AB* is simply $[AB]_{ij} = \operatorname{Row}_i(A) \operatorname{Col}_j(B)$. Here $1 \le i \le m$ and $1 \le j \le p$, so *AB* is an $m \times p$ matrix.

Caution: AB is not defined for all pairs of two matrices.

The matrix product AB is only defined when

the # of columns of *A* equals the # of rows of *B*.

Let A be an $m \times n$ matrix, and B be an $n \times p$ matrix.

The *i*, *j* entry of *AB* is simply $[AB]_{ij} = \operatorname{Row}_i(A) \operatorname{Col}_j(B)$. Here $1 \le i \le m$ and $1 \le j \le p$, so *AB* is an $m \times p$ matrix.

Note that if $A = [a_{ij}]$ and $B = [b_{ij}]$ (careful!), then

$$[AB]_{ij} = \operatorname{Row}_i(A) \operatorname{Col}_j(B) = \begin{bmatrix} a_{i1} & a_{i2} & \dots & a_{in} \end{bmatrix} \begin{bmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{nj} \end{bmatrix} = \sum_{k=1}^n a_{ik} b_{kj}.$$

10 / 15

Notice that

$$AB = [A \operatorname{Col}_1(B) A \operatorname{Col}_2(B) \dots A \operatorname{Col}_n(B)].$$

Applied	Linear A	Algebra
---------	----------	---------

э

Notice that

$$AB = [A \operatorname{Col}_1(B) A \operatorname{Col}_2(B) \dots A \operatorname{Col}_n(B)].$$

That is, $\operatorname{Col}_j(AB) = A \operatorname{Col}_j(B)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Notice that

$$AB = [A \operatorname{Col}_1(B) A \operatorname{Col}_2(B) \dots A \operatorname{Col}_n(B)].$$

That is, $\operatorname{Col}_j(AB) = A \operatorname{Col}_j(B)$.

We also have
$$\operatorname{Row}_i(AB) = \operatorname{Row}_i(A) B$$
.

3

(日) (同) (三) (三)

Notice that

$$AB = [A \operatorname{Col}_1(B) A \operatorname{Col}_2(B) \dots A \operatorname{Col}_n(B)].$$

That is, $\operatorname{Col}_j(AB) = A \operatorname{Col}_j(B)$.

We also have
$$\mathsf{Row}_i(AB) = \mathsf{Row}_i(A) B$$
.

In addition,
$$Col_j(A) = A\vec{e_j}$$
 and $Row_i(A) = \vec{e_i}^T A$.

3

(日) (四) (日) (日) (日)

Notice that

$$AB = [A \operatorname{Col}_1(B) A \operatorname{Col}_2(B) \dots A \operatorname{Col}_n(B)].$$

That is, $\operatorname{Col}_j(AB) = A \operatorname{Col}_j(B)$.

We also have
$$\operatorname{Row}_i(AB) = \operatorname{Row}_i(A) B$$
.

In addition,
$$Col_j(A) = A\vec{e_j}$$
 and $Row_i(A) = \vec{e_i}^T A$.

Checking that these formulas are valid is a good exercise to see how well you understand matrix products!

(人間) くまり くまり

Calculate

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ -1 & 1 \end{bmatrix}$$
(1)

(2)

(3)

(4)

ļ	\pp	lied	Linear	A	ge	ora
					0	

臣

Calculate

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 5 \\ -3 & 0 \end{bmatrix}$$

(2)

(1)

(3)

(4)

臣

Calculate

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 5 \\ -3 & 0 \end{bmatrix}$$
(1)
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & 0 \\ -1 & 1 & 2 \end{bmatrix}$$
(2)

(3)

(4)

臣

Calculate

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 5 \\ -3 & 0 \end{bmatrix}$$
(1)
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & 0 \\ -1 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 5 & 5 \\ -3 & 0 & 2 \end{bmatrix}$$
(2)

(3)

(4)

臣

Calculate

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 5 \\ -3 & 0 \end{bmatrix}$$
(1)
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & 0 \\ -1 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 5 & 5 \\ -3 & 0 & 2 \end{bmatrix}$$
(2)
$$AB = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & -2 \end{bmatrix}$$
(3)

(4)

臣

Calculate

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 5 \\ -3 & 0 \end{bmatrix}$$
(1)
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & 0 \\ -1 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 5 & 5 \\ -3 & 0 & 2 \end{bmatrix}$$
(2)
$$AB = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & -2 \end{bmatrix} = \begin{bmatrix} 3 & -3 \\ 3 & -3 \end{bmatrix}$$
(3)

(4)

臣

Calculate

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 5 \\ -3 & 0 \end{bmatrix}$$
(1)
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & 0 \\ -1 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 5 & 5 \\ -3 & 0 & 2 \end{bmatrix}$$
(2)
$$AB = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & -2 \end{bmatrix} = \begin{bmatrix} 3 & -3 \\ 3 & -3 \end{bmatrix}$$
(3)
$$BA = \begin{bmatrix} 1 & -1 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
(4)

臣

Calculate

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 5 \\ -3 & 0 \end{bmatrix}$$
(1)
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & 0 \\ -1 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 5 & 5 \\ -3 & 0 & 2 \end{bmatrix}$$
(2)
$$AB = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & -2 \end{bmatrix} = \begin{bmatrix} 3 & -3 \\ 3 & -3 \end{bmatrix}$$
(3)
$$BA = \begin{bmatrix} 1 & -1 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
(4)

イロト イヨト イヨト イヨト

2 / 15

臣

Think about

$$AB = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & -2 \end{bmatrix} = \begin{bmatrix} 3 & -3 \\ 3 & -3 \end{bmatrix}$$

versus

$$BA = \begin{bmatrix} 1 & -1 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

<ロト < 回 > < 回 > 、 < 回 >

э

Think about

$$AB = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & -2 \end{bmatrix} = \begin{bmatrix} 3 & -3 \\ 3 & -3 \end{bmatrix}$$

versus

$$BA = \begin{bmatrix} 1 & -1 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

We see that sometimes $AB \neq BA$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Think about

$$AB = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & -2 \end{bmatrix} = \begin{bmatrix} 3 & -3 \\ 3 & -3 \end{bmatrix}$$

versus

$$BA = \begin{bmatrix} 1 & -1 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

We see that sometimes $AB \neq BA$. Matrix multiplication is **not** commutative; order matters.

< □ > < /□ > <</p>

Think about

$$AB = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & -2 \end{bmatrix} = \begin{bmatrix} 3 & -3 \\ 3 & -3 \end{bmatrix}$$

versus

$$BA = \begin{bmatrix} 1 & -1 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

We see that sometimes $AB \neq BA$. Matrix multiplication is **not** commutative; order matters.

Also, $AB = \mathbf{0}$ does **not** mean that one of A or B is $\mathbf{0}$.

Think about

$$AB = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & -2 \end{bmatrix} = \begin{bmatrix} 3 & -3 \\ 3 & -3 \end{bmatrix}$$

versus

$$BA = \begin{bmatrix} 1 & -1 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

We see that sometimes $AB \neq BA$. Matrix multiplication is **not** commutative; order matters.

Also, $AB = \mathbf{0}$ does **not** mean that one of A or B is $\mathbf{0}$.

What is the **0** matrix anyway?

Applied	Linear .	Algebra
---------	----------	---------

Special Matrices

Any matrix all of whose entries are the number 0 is called a zero matrix.

App	ied	Linear	A	ge	bra
				0	

ヨト イヨト

< □ > < /□ > <</p>

Image: Image:

Clearly, for any scalar s and any zero matrix $\mathbf{0}$, $s\mathbf{0} = \mathbf{0}$.

Clearly, for any scalar s and any zero matrix $\mathbf{0}$, $s\mathbf{0} = \mathbf{0}$. Also, for any matrix A,

Clearly, for any scalar *s* and any zero matrix $\mathbf{0}$, $s\mathbf{0} = \mathbf{0}$. Also, for any matrix *A*, $A + \mathbf{0} = A$ (provided *A* and **0** are of the same dimensions!).

Clearly, for any scalar *s* and any zero matrix $\mathbf{0}$, $s\mathbf{0} = \mathbf{0}$. Also, for any matrix *A*, $A + \mathbf{0} = A$ (provided *A* and **0** are of the same dimensions!). Thus **0** is the *additive identity* for matrix arithmetic.

Clearly, for any scalar *s* and any zero matrix $\mathbf{0}$, $s\mathbf{0} = \mathbf{0}$. Also, for any matrix *A*, $A + \mathbf{0} = A$ (provided *A* and **0** are of the same dimensions!). Thus **0** is the *additive identity* for matrix arithmetic.

Is there a *multiplicative identity* for matrix arithmetic?

Clearly, for any scalar *s* and any zero matrix $\mathbf{0}$, $s\mathbf{0} = \mathbf{0}$. Also, for any matrix *A*, $A + \mathbf{0} = A$ (provided *A* and **0** are of the same dimensions!). Thus **0** is the *additive identity* for matrix arithmetic.

Is there a *multiplicative identity* for matrix arithmetic?

A square matrix is one that has the same number of rows and columns.

Clearly, for any scalar *s* and any zero matrix $\mathbf{0}$, $s\mathbf{0} = \mathbf{0}$. Also, for any matrix *A*, $A + \mathbf{0} = A$ (provided *A* and **0** are of the same dimensions!). Thus **0** is the *additive identity* for matrix arithmetic.

Is there a *multiplicative identity* for matrix arithmetic?

A square matrix is one that has the same number of rows and columns. Note that AB and BA are both defined if and only if A and B are both square matrices with exactly the same size.

14 / 15

- 4 同 ト 4 国 ト 4 国 ト
The diagonal entries of an $n \times n$ matrix $A = [a_{ij}]$ are $a_{11}, a_{22}, \ldots, a_{nn}$.

3

The diagonal entries of an $n \times n$ matrix $A = [a_{ij}]$ are $a_{11}, a_{22}, \ldots, a_{nn}$. We call A a diagonal matrix if its non-diagonal entries are all zeroes.

Image: A matrix

The diagonal entries of an $n \times n$ matrix $A = [a_{ij}]$ are $a_{11}, a_{22}, \ldots, a_{nn}$. We call A a diagonal matrix if its non-diagonal entries are all zeroes.

The $n \times n$ diagonal matrix whose diagonal entries are all ones is called the $n \times n$ *identity matrix*;

The diagonal entries of an $n \times n$ matrix $A = [a_{ij}]$ are $a_{11}, a_{22}, \ldots, a_{nn}$. We call A a diagonal matrix if its non-diagonal entries are all zeroes.

The $n \times n$ diagonal matrix whose diagonal entries are all ones is called the $n \times n$ *identity matrix*; we write

$$I = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

The diagonal entries of an $n \times n$ matrix $A = [a_{ij}]$ are $a_{11}, a_{22}, \ldots, a_{nn}$. We call A a diagonal matrix if its non-diagonal entries are all zeroes.

The $n \times n$ diagonal matrix whose diagonal entries are all ones is called the $n \times n$ *identity matrix*; we write

$$I = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

You should check that for any square matrix A, we have both

$$AI = A$$

The diagonal entries of an $n \times n$ matrix $A = [a_{ij}]$ are $a_{11}, a_{22}, \ldots, a_{nn}$. We call A a diagonal matrix if its non-diagonal entries are all zeroes.

The $n \times n$ diagonal matrix whose diagonal entries are all ones is called the $n \times n$ *identity matrix*; we write

$$I = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

You should check that for any square matrix A, we have both

$$AI = A$$
 and $IA = A$.

The diagonal entries of an $n \times n$ matrix $A = [a_{ij}]$ are $a_{11}, a_{22}, \ldots, a_{nn}$. We call A a diagonal matrix if its non-diagonal entries are all zeroes.

The $n \times n$ diagonal matrix whose diagonal entries are all ones is called the $n \times n$ *identity matrix*; we write

$$I = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

You should check that for any square matrix A, we have both

$$AI = A$$
 and $IA = A$.

Chapter 3, section 1

15 / 15

These I's are the *multiplicative identities* for matrix arithmetic.

Applied Linear Algebra	Matrix Op

The diagonal entries of an $n \times n$ matrix $A = [a_{ij}]$ are $a_{11}, a_{22}, \ldots, a_{nn}$. We call A a diagonal matrix if its non-diagonal entries are all zeroes.

The $n \times n$ diagonal matrix whose diagonal entries are all ones is called the $n \times n$ *identity matrix*; we write

$$I = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

You should check that for any square matrix A, we have both

$$AI = A$$
 and $IA = A$.

These *I*'s are the *multiplicative identities* for matrix arithmetic. If *A* is any square matrix, can we find another square matrix *C*, so that $AC = I_{a}^{2}$

15 / 15