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Matrix Notation

Suppose A is the m × n matrix A =



a11 a12 . . . a1j . . . a1n
a21 a22 . . . a2j . . . a2n

...
...

...
...

...
...

ai1 ai2 . . . aij . . . ain
...

...
...

...
...

...
am1 am2 . . . amj . . . amn


.

We can express this by writing A = [aij ]; here 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Alternatively, we write [A]ij = aij to indicate that aij is the entry of A in
the i th row and j th column; more briefly, aij is the i , j entry of A.

Applied Linear Algebra Matrix Ops Chapter 3, section 1 2 / 15



Matrix Notation

Suppose A is the m × n matrix A =



a11 a12 . . . a1j . . . a1n
a21 a22 . . . a2j . . . a2n

...
...

...
...

...
...

ai1 ai2 . . . aij . . . ain
...

...
...

...
...

...
am1 am2 . . . amj . . . amn


.

We can express this by writing A = [aij ]; here 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Alternatively, we write [A]ij = aij to indicate that aij is the entry of A in
the i th row and j th column; more briefly, aij is the i , j entry of A.

Applied Linear Algebra Matrix Ops Chapter 3, section 1 2 / 15



Matrix Notation

Suppose A is the m × n matrix A =



a11 a12 . . . a1j . . . a1n
a21 a22 . . . a2j . . . a2n

...
...

...
...

...
...

ai1 ai2 . . . aij . . . ain
...

...
...

...
...

...
am1 am2 . . . amj . . . amn


.

We can express this by writing A = [aij ]; here 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Alternatively, we write [A]ij = aij to indicate that aij is the entry of A in
the i th row and j th column;

more briefly, aij is the i , j entry of A.

Applied Linear Algebra Matrix Ops Chapter 3, section 1 2 / 15



Matrix Notation

Suppose A is the m × n matrix A =



a11 a12 . . . a1j . . . a1n
a21 a22 . . . a2j . . . a2n

...
...

...
...

...
...

ai1 ai2 . . . aij . . . ain
...

...
...

...
...

...
am1 am2 . . . amj . . . amn


.

We can express this by writing A = [aij ]; here 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Alternatively, we write [A]ij = aij to indicate that aij is the entry of A in
the i th row and j th column; more briefly, aij is the i , j entry of A.

Applied Linear Algebra Matrix Ops Chapter 3, section 1 2 / 15



Scalar Multiplication

A matrix A can be multiplied by any scalar s to get a new matrix sA.

Here
sA is obtained by multiplying every entry of A by s.

Thus if A = [aij ], then sA = [s aij ].

Alternatively, [sA]ij = s[A]ij .
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Matrix Addition

Any two matrices of the same dimensions can be added, entry by entry.

Let A and B both be m× n matices. Then A + B is the m× n matix with
[A + B]ij = [A]ij + [B]ij .

That is, if A = [aij ] and B = [bij ], then A + B = [aij + bij ].
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Example

Calculate

2

[
1 2 3
0 −1 1

]
−
[

2 5 5
−3 0 2

]

=

[
2 4 6
0 −2 2

]
+

[
−2 −5 −5

3 0 −2

]
=

[
2− 2 4− 5 6− 5
0 + 3 −2 2− 2

]
=

[
0 −1 1
3 −2 0

]
.
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The Transpose of a Matrix

The transpose AT of a matrix A is given by “reflecting A across its main
diagonal”.

The rows (columns) of A become the columns (rows) of AT .

More precisely, [AT]ij = [A]ji ; equivalently, if A = [aij ], then

AT = [aji ].

For example, [
1 2 3
4 5 6

]T

=

1 4
2 5
3 6

 .

If ~x =


x1
x2
...
xn

, then ~xT =
[
x1 x2 · · · xn

]
.

If A is square and AT = A, then A is called a symmetric matrix.
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Matrix Multiplication

Recall that when A is an m × n matrix and ~x a vector in Rn,

A~x = x1~a1 + x2~a2 + · · ·+ xn~an.

where ~aj is the j th column of A.

Note that the number of columns in A, n,
must equal the number of rows (coordinates) in ~x .

Now we describe the general matrix product A · B.

Caution: AB is not defined for all pairs of two matrices.

The matrix product AB is only defined when

the # of columns of A equals the # of rows of B.
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Row Vector Times a Column Vector

Suppose a is the row vector (i.e., a 1× n matrix)

a =
[
a1 a2 . . . an

]

and ~b is the column vector (i.e., an n × 1 matrix) ~b =


b1
b2
...
bn

.

The product a ~b is defined by

a ~b =
[
a1 a2 . . . an

]

b1
b2
...
bn

 = a1b1 + a2b2 + · · ·+ anbn =
n∑

k=1

akbk .

This agrees with our definition of A~x , right?
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Rows and Columns of a Matrix

Let A be an m × n matrix, say A =


a11 . . . a1j . . . a1n

...
...

...
ai1 . . . aij . . . ain
...

...
...

am1 amj . . . amn

.

The j th column of A is the vector

Colj(A) =


a1j
a2j
...

amj

 ; here 1 ≤ j ≤ n.

The i th row of A is the row vector

Rowi (A) =
[
ai1 ai2 . . . ain

]
; here 1 ≤ i ≤ m.
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The Matrix Product AB

Caution: AB is not defined for all pairs of two matrices.

The matrix product AB is only defined when

the # of columns of A equals the # of rows of B.

Let A be an m × n matrix, and B be an n × p matrix.

The i , j entry of AB is simply [AB]ij = Rowi (A) Colj(B) . Here

1 ≤ i ≤ m and 1 ≤ j ≤ p, so AB is an m × p matrix.

Note that if A = [aij ] and B = [bij ] (careful!), then

[AB]ij = Rowi (A) Colj(B) =
[
ai1 ai2 . . . ain

]

b1j
b2j
...
bnj

 =
n∑

k=1

aikbkj .
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Some Useful Formulas

Notice that

AB =
[
A Col1(B) A Col2(B) . . .A Coln(B)

]
.

That is, Colj
(
AB
)

= A Colj(B) .

We also have Rowi

(
AB
)

= Rowi (A)B .

In addition, Colj(A) = A~ej and Rowi (A) = ~eTi A .

Checking that these formulas are valid is a good exercise to see how well
you understand matrix products!

Applied Linear Algebra Matrix Ops Chapter 3, section 1 11 / 15



Some Useful Formulas

Notice that

AB =
[
A Col1(B) A Col2(B) . . .A Coln(B)

]
.

That is, Colj
(
AB
)

= A Colj(B) .

We also have Rowi

(
AB
)

= Rowi (A)B .

In addition, Colj(A) = A~ej and Rowi (A) = ~eTi A .

Checking that these formulas are valid is a good exercise to see how well
you understand matrix products!

Applied Linear Algebra Matrix Ops Chapter 3, section 1 11 / 15



Some Useful Formulas

Notice that

AB =
[
A Col1(B) A Col2(B) . . .A Coln(B)

]
.

That is, Colj
(
AB
)

= A Colj(B) .

We also have Rowi

(
AB
)

= Rowi (A)B .

In addition, Colj(A) = A~ej and Rowi (A) = ~eTi A .

Checking that these formulas are valid is a good exercise to see how well
you understand matrix products!
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Examples

Calculate [
1 2 3
0 −1 1

] 1 0
2 1
−1 1



=

[
2 5
−3 0

]

(1)

[
1 2 3
0 −1 1

] 1 0 −1
2 1 0
−1 1 2



=

[
2 5 5
−3 0 2

]

(2)

AB =

[
1 1
1 1

] [
1 −1
2 −2

]

=

[
3 −3
3 −3

]

(3)

BA =

[
1 −1
2 −2

] [
1 1
1 1

]

=

[
0 0
0 0

]

(4)
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Matrix Multiplication Anomalies

Think about

AB =

[
1 1
1 1

] [
1 −1
2 −2

]
=

[
3 −3
3 −3

]
versus

BA =

[
1 −1
2 −2

] [
1 1
1 1

]
=

[
0 0
0 0

]
.

We see that sometimes AB 6= BA.
Matrix multiplication is not commutative; order matters.

Also, AB = 0 does not mean that one of A or B is 0.

What is the 0 matrix anyway?
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Special Matrices

Any matrix all of whose entries are the number 0 is called a zero matrix.

We write 0 for a zero matrix; these can be of any size.

Clearly, for any scalar s and any zero matrix 0, s0 = 0. Also, for any
matrix A, A + 0 = A (provided A and 0 are of the same dimensions!).
Thus 0 is the additive identity for matrix arithmetic.

Is there a multiplicative identity for matrix arithmetic?

A square matrix is one that has the same number of rows and columns.
Note that AB and BA are both defined if and only if A and B are both
square matrices with exactly the same size.

Applied Linear Algebra Matrix Ops Chapter 3, section 1 14 / 15



Special Matrices

Any matrix all of whose entries are the number 0 is called a zero matrix.
We write 0 for a zero matrix; these can be of any size.

Clearly, for any scalar s and any zero matrix 0, s0 = 0. Also, for any
matrix A, A + 0 = A (provided A and 0 are of the same dimensions!).
Thus 0 is the additive identity for matrix arithmetic.

Is there a multiplicative identity for matrix arithmetic?

A square matrix is one that has the same number of rows and columns.
Note that AB and BA are both defined if and only if A and B are both
square matrices with exactly the same size.

Applied Linear Algebra Matrix Ops Chapter 3, section 1 14 / 15



Special Matrices

Any matrix all of whose entries are the number 0 is called a zero matrix.
We write 0 for a zero matrix; these can be of any size.

Clearly, for any scalar s and any zero matrix 0, s0 = 0.

Also, for any
matrix A, A + 0 = A (provided A and 0 are of the same dimensions!).
Thus 0 is the additive identity for matrix arithmetic.

Is there a multiplicative identity for matrix arithmetic?

A square matrix is one that has the same number of rows and columns.
Note that AB and BA are both defined if and only if A and B are both
square matrices with exactly the same size.

Applied Linear Algebra Matrix Ops Chapter 3, section 1 14 / 15



Special Matrices

Any matrix all of whose entries are the number 0 is called a zero matrix.
We write 0 for a zero matrix; these can be of any size.

Clearly, for any scalar s and any zero matrix 0, s0 = 0. Also, for any
matrix A,

A + 0 = A (provided A and 0 are of the same dimensions!).
Thus 0 is the additive identity for matrix arithmetic.

Is there a multiplicative identity for matrix arithmetic?

A square matrix is one that has the same number of rows and columns.
Note that AB and BA are both defined if and only if A and B are both
square matrices with exactly the same size.

Applied Linear Algebra Matrix Ops Chapter 3, section 1 14 / 15



Special Matrices

Any matrix all of whose entries are the number 0 is called a zero matrix.
We write 0 for a zero matrix; these can be of any size.

Clearly, for any scalar s and any zero matrix 0, s0 = 0. Also, for any
matrix A, A + 0 = A (provided A and 0 are of the same dimensions!).

Thus 0 is the additive identity for matrix arithmetic.

Is there a multiplicative identity for matrix arithmetic?

A square matrix is one that has the same number of rows and columns.
Note that AB and BA are both defined if and only if A and B are both
square matrices with exactly the same size.

Applied Linear Algebra Matrix Ops Chapter 3, section 1 14 / 15



Special Matrices

Any matrix all of whose entries are the number 0 is called a zero matrix.
We write 0 for a zero matrix; these can be of any size.

Clearly, for any scalar s and any zero matrix 0, s0 = 0. Also, for any
matrix A, A + 0 = A (provided A and 0 are of the same dimensions!).
Thus 0 is the additive identity for matrix arithmetic.

Is there a multiplicative identity for matrix arithmetic?

A square matrix is one that has the same number of rows and columns.
Note that AB and BA are both defined if and only if A and B are both
square matrices with exactly the same size.

Applied Linear Algebra Matrix Ops Chapter 3, section 1 14 / 15



Special Matrices

Any matrix all of whose entries are the number 0 is called a zero matrix.
We write 0 for a zero matrix; these can be of any size.

Clearly, for any scalar s and any zero matrix 0, s0 = 0. Also, for any
matrix A, A + 0 = A (provided A and 0 are of the same dimensions!).
Thus 0 is the additive identity for matrix arithmetic.

Is there a multiplicative identity for matrix arithmetic?

A square matrix is one that has the same number of rows and columns.
Note that AB and BA are both defined if and only if A and B are both
square matrices with exactly the same size.

Applied Linear Algebra Matrix Ops Chapter 3, section 1 14 / 15



Special Matrices

Any matrix all of whose entries are the number 0 is called a zero matrix.
We write 0 for a zero matrix; these can be of any size.

Clearly, for any scalar s and any zero matrix 0, s0 = 0. Also, for any
matrix A, A + 0 = A (provided A and 0 are of the same dimensions!).
Thus 0 is the additive identity for matrix arithmetic.

Is there a multiplicative identity for matrix arithmetic?

A square matrix is one that has the same number of rows and columns.

Note that AB and BA are both defined if and only if A and B are both
square matrices with exactly the same size.

Applied Linear Algebra Matrix Ops Chapter 3, section 1 14 / 15



Special Matrices

Any matrix all of whose entries are the number 0 is called a zero matrix.
We write 0 for a zero matrix; these can be of any size.

Clearly, for any scalar s and any zero matrix 0, s0 = 0. Also, for any
matrix A, A + 0 = A (provided A and 0 are of the same dimensions!).
Thus 0 is the additive identity for matrix arithmetic.

Is there a multiplicative identity for matrix arithmetic?

A square matrix is one that has the same number of rows and columns.
Note that AB and BA are both defined if and only if A and B are both
square matrices with exactly the same size.

Applied Linear Algebra Matrix Ops Chapter 3, section 1 14 / 15



Special Matrices

The diagonal entries of an n × n matrix A = [aij ] are a11, a22, . . . , ann.

We
call A a diagonal matrix if its non-diagonal entries are all zeroes.

The n × n diagonal matrix whose diagonal entries are all ones is called the
n × n identity matrix; we write

I =


1 0 . . . 0
0 1 . . . 0
...

...
...

...
0 0 . . . 1

 .

You should check that for any square matrix A, we have both

A I = A

and I A = A.

These I ’s are the multiplicative identities for matrix arithmetic. If A is any
square matrix, can we find another square matrix C so that AC = I?
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