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The Problem: rotate 60◦ about the line x = y = z

Here we find a formula for a 60◦ rotation about the line x = y = z .

Since this rotation is a linear transformation R3 T−→ R3, there is a 3× 3
matrix A such that for every vector ~x in R3, T (~x) = A~x .

Recall that A is the standard matrix for T , and the columns of A are given
by the T images of the standard basis vectors, so

A = [T ]E =
[
T (~e1)T (~e2)T (~e3)

]
.

Lets look at a picture!
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The action of T

R3 T−→ R3 is 60◦ rotation about the line L = Span{ ~m} where ~m =

1
1
1



I don’t see an easy way to find T (~e1),T (~e2),T (~e3). But, there are some
vectors whose rotations about L can be found (easily).

For example, if ~x lies on L, then T (~x) = ~x . ¨̂

Next, look at L⊥; this is the plane x + y + z = 0.

If ~x lies on L⊥, then T (~x) also lies on L⊥!

That is, T is a rotation of the plane L⊥.

Recall that we know how to find the standard matrix for a rotation of R2.
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Rotations of R2

Again, that the columns of the standard matrix for a linear transformation
are given by the images of the standard basis vectors.

Let’s rotate R2 by θ radians (in the ccw direction). Where does ~e1 go?
Note that its length does not get changed.
Once we determine the image of ~e1, it is easy to find the image of ~e2,
right?

Knowing the images of ~e1, ~e2
gives us the standard matrix
for a rotation of R2 by θ
radians, namely[

cos θ − sin θ
sin θ cos θ

]
.

~e1

~e2

θ
~u1

~u2

The same matrix “works” for any right-handed orthogonal basis of R2.
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Back to the 60◦ rotation R3 T−→ R3 about L = Span{ ~m}

Recall that is T is a rotation of the plane L⊥.

Thus if we have any
right-handed orthogonal basis for L⊥, then relative to this basis, T is
given by multiplication by[

cosπ/3 − sinπ/3
sinπ/3 cosπ/3

]
=

1

2

[
1 −

√
3√

3 1

]
.

That is, given ~x in L⊥, we multiply the coordinates of ~x by the above
matrix to get the coordinates of T (~x).

Next, recall that for ~x in L, T (~x) = ~x .

Thus, if we have a right-handed orthonormal basis U = {~u1, ~u2, ~u3} for R3

such that {~u1, ~u2} is a basis for L⊥, then we can find the U-matrix for T !
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An orthogonal basis for R3–part I

We seek a right-handed orthonormal basis U = {~u1, ~u2, ~u3} for R3 such
that {~u1, ~u2} is a basis for L⊥.

Since L = Span{ ~m}, let’s take ~u3 =
~m

‖ ~m‖
, so ~u3 =

1√
3

1
1
1

.

Now all we need is a right-handed basis {~u1, ~u2} for L⊥.

Here L⊥ = NS(
[
1 1 1

]
) which is the plane x + y + z = 1.

One basis B = {~b1, ~b2} for L⊥ is given by using

~b1 =

 1
−1
0

 and ~b2 =

 1
0
−1

 .
To get an orthormal basis, we do the “usual”. Put ~u1 = ~v1/‖~v1‖ and
~u2 = ~v2/‖~v2‖ where ~v1 = ~b1 and

~v2 = ~b2 − Proj~v1(~b2).
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An orthogonal basis for R3–part II

With ~v1 = ~b1 =

 1
−1
0

 and ~b2 =

 1
0
−1

 we compute

Proj~v1(~b2) =
~b2 · ~b1
~b1 · ~b1

~b1 =
1

2
~b1

and then

~v2 = ~b2 − Proj~v1(~b2) = ~b2 −
1

2
~b1 =

1

2

 1
1
−2

 .

Thus, ~u1 =
~v1
‖~v1‖

=
1√
2

 1
−1
0

 and ~u2 =
~v2
‖~v2‖

=
1√
6

 1
1
−2

.
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An orthogonal basis for R3–part III

With ~u1 =
1√
2

 1
−1
0

, ~u2 =
1√
6

 1
1
−2

, ~u3 =
1√
3

1
1
1

 we obtain a

right-handed orthonormal basis U = {~u1, ~u2, ~u3} for R3 such that {~u1, ~u2}
is a basis for L⊥.

Then we find that the U-matrix for T is

[T ]U =
1

2

 1 −
√

3 0√
3 1 0

0 0 2

 .
Now A = [T ]E = P[T ]UP

−1, where P = PEU =
[
~u1 ~u2 ~u3

]
is the

U-to-E change of coordinates matrix. That is,

P =
1√
6


√

3 1
√

2

−
√

3 1
√

2

0 −2
√

2

 .
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A formula for a 60◦ rotation about the line x = y = z

Finally, since U is orthonormal, P−1 = PT and so we compute

A = [T ]E = P[T ]UP
−1 = P[T ]UP

T

=
1

12


√

3 1
√

2

−
√

3 1
√

2

0 −2
√

2

 1 −
√

3 0√
3 1 0

0 0 2


√

3 −
√

3 0
1 1 −2√
2
√

2
√

2


= · · ·

=
1

3

 2 −1 2
2 2 −1
−1 2 2

 . (Note that A is orthogonal!)

As an example, we determine the rotation of my favorite vector,

T

(1
2
3

) = A

1
2
3

 =

2
1
3

 .
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